
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

06351 Summary -- Methods for Modelling Software Systems
(MMOSS)

Citation for published version:
Brinksma, E, Harel, D, Mader, A, Stevens, P & Wieringa, R 2007, 06351 Summary -- Methods for Modelling
Software Systems (MMOSS). in E Brinksma, D Harel, A Mader, P Stevens & R Wieringa (eds), Methods for
Modelling Software Systems (MMOSS). Dagstuhl Seminar Proceedings, Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, Dagstuhl, Germany.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Methods for Modelling Software Systems (MMOSS)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/28976147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/06351-summary--methods-for-modelling-software-systems-mmoss(5150942d-6fed-4b0f-922a-7fb2b5cf7892).html


Methods for Modelling Software Systems:

organisers’ summary

Dagstuhl seminar 06351

Ed Brinksma, David Harel, Angelika Mader, Perdita Stevens, Roel Wieringa

February 27, 2007

Abstract

We survey the key objectives and the structure of this Dagstuhl sem-
inar, and discuss common themes that emerged.

1 Introduction

A proper engineering approach to the construction of complex software
systems requires models for their design and verification. Such models
must represent both the software system and its (intended) environment.
Modelling the environment is needed to define both the events in the en-
vironment to which the system must respond, and the effects that the
system must have on its environment. A typical environment may consist
of other software, hardware, and physical and social systems. The envi-
ronment of a manufacturing control system, for example, consists of man-
ufacturing information systems, the physical plant, and work procedures
to be followed by human operators, all of which affect and complicate the
task of modelling at some point of the design and verification processes.

It is clear that the quality of a design or verification process is directly
affected by the quality of the models that are being used. They should
meet certain quality criteria, such as correctness, understandability and
maintainability. An important question that we have to address is what
the relevant quality criteria for design and verification modelling are. Are
there guidelines on how to achieve them? And how can we validate them?

Models invariably introduce abstractions, and the modeller has, in
principle, an obligation to show that he or she has introduced the “right”
abstractions. This justification is essentially informal for a number of
reasons:

• Complexity: many systems are too complex to be represented with-
out a substantial recourse to abstraction. In practical cases, formal
proofs of the adequacy of such abstractions are infeasible, because
they somehow rely on the availability of a non-existing model of the
“full” system.

1

Dagstuhl Seminar Proceedings 06351
Methods for Modelling Software Systems (MMOSS)
http://drops.dagstuhl.de/opus/volltexte/2007/957



• Physical reality: this is a non-formal domain by definition, and the
quality of a model with respect to its physical environment must be
validated by experimental or informal means.

• Social aspects: the user environment of a software system is also
informal in nature, but must be taken Into account to ensure that
it will respond properly.

It is clear that most abstractions introduced by design and verification
models of real systems cannot be justified formally, and must also rely
on informal argumentation. The quality of any analysis based on such
models, therefore, depends crucially on the quality of informal arguments.

To build models of a certain quality, we need guidelines on how to
construct them well. Too often, however, such guidelines are nonexistent
or simply ignored in practice, e.g. in verification modelling often “model
hacking precedes model checking”. And the less we understand about the
way a model is built, the harder it is to validate its quality. In design
modelling, designers like to proceed as if they were starting from scratch,
ignoring any models that have already been developed by others. How
can we improve this practice, so that we know how to build models that
can be validated?

Although the problems of modelling in design and verification have
many similarities, there are differences too. On the one hand, design
models represent (an aspect of) the intended structure of the software-to-
be. They are prescriptions that must be used by implementors and must
include details needed by the implementor. Usability of the model by the
implementor is an important quality criterion of these models; complete-
ness is another. For verification models, on the other hand, abstraction
is a crucial technique, preserving just as much information about the sys-
tem as needed to prove correctness, and providing models that can be
efficiently verified. Each property to be verified may require a different
model. Still, all models, design or verification, must have some isomorphy
to the modelled system, so that a from the fact that the model has a
property, we can conclude that the system has this property too. This
requires a good understanding of the relationship between the model and
the modelled system.

The questions that we invited participants in the seminar to address
were:

Model quality:

• What are quality criteria for models? How can they be quanti-
fied and checked?

• What is the relationship between models and systems in design
and in verification?

• What makes an abstraction reasonable?

Modelling method:

• What are the sources and principles for the construction of good
models? What is the relation between design and verification
models?

2



• How can the structure of a model be coupled to the structure
of the system? What criteria should be used for the structuring
of models?

• How to bridge between informal knowledge and formal repre-
sentation?

• How can we use domain knowledge, and especially engineering
documentation to build correct models?

Effectiveness:

• Can we build libraries of problem frames in the domain of em-
bedded software, or in subdomains?

Maintainability:

• Can we build models in such a way that changes in the system
(versions) can be easily mapped to versions of models?

• How can changes in the verification property imply changes in
the verification model?

2 Structure of the workshop

Almost forty participants from all over the world accepted our invitations
and over thirty of them gave talks, represented by papers or abstracts in
this volume. Most of the talks were thirty minutes long, some an hour.
Summarising what was said seems impractical: one key observation is
that participants were working in a wide variety of domains which differ
in almost every important respect. The importance of (de)composition,
and, closely related, abstraction, was a recurring theme, but participants’
ideas of how to address it varied widely. In some contexts, it is possible
to decompose a problem according to the demands of verification, for
example, so as to isolate and verify a crucial element of the design. In
others, problem decomposition is driven by the engineering needs of the
system development, and verification must work with what it can get.
We heard about many successes applying sophisticated modelling and
verification procedures, especially in the domain of embedded systems.
Another recurring theme was, however, that we must not and cannot
assume that engineers will adopt our formalisms and notations. Success
and failure can depend on aspects of the languages that formalists would
not always regard as important: for example, pragmatic features such
as the ability to lay out diagrams with related elements together may
be important to practical usability even if they make no difference to
semantics. There are several possible reactions to this, and which is best
will depend on the domain: projects can plan to include a verification
specialist and to insulate most engineers from the need to understand
verification and its associated notations in detail, or projects can carefully
choose only those formalisms that can actually be used.

3



3 Acknowledgements

We thank all the participants for coming and sharing their work and
participating in lively and thought-provoking discussion.

We would also like to thank the staff at Dagstuhl who, as always,
helped to ensure that we spent an enjoyable and productive week. The
(three) organisers who were parents of the (two) children present would
especially like to thank Elvira Schnur who looked after them and ensured
that they enjoyed their Dagstuhl as much as the rest of us did.

Finally, we would like to thank Wouter Kuijper for undertaking much
of the work involved in preparing these proceedings.

4


