

Edinburgh Research Explorer

Systems Reengineering Patterns

Citation for published version:
Stevens, P & Pooley, R 1998, Systems Reengineering Patterns. in Proceedings of the 6th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM, New York, NY, USA, pp. 17-23.
DOI: 10.1145/288195.288210

Digital Object Identifier (DOI):
10.1145/288195.288210

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 6th ACM SIGSOFT International Symposium on Foundations of Software Engineering

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28976145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/288195.288210
https://www.research.ed.ac.uk/portal/en/publications/systems-reengineering-patterns(49a6966d-e21c-40c4-98c3-0836d45b57d3).html

Systems Reengineering Patterns

Perdita Stevens �Perdita�Stevens�dcs�ed�ac�uk� and
Rob Pooley �rjp�dcs�ed�ac�uk�

Department of Computer Science
University of Edinburgh

Kings Buildings
Edinburgh EH� �JZ

Abstract� The reengineering of legacy systems � by which we mean those that �signi�
�cantly resist modi�cation and evolution to meet new and constantly changing business
requirements� � is widely recognised as one of the most signi�cant challenges facing soft�
ware engineers	 The problem is widespread
 a�ecting all kinds of organisations� serious

as failure to reengineer can hamper an organisations attempts to remain competitive� and
persistent
 as there seems no reason to be con�dent that todays new systems are not also
tomorrows legacy systems	

This paper argues

�	 that the main problem is not that the necessary expertise does not exist
 but rather

that it is hard for software engineers to become expert�

�	 that the diversity of the problem domain poses problems for conventional methodological
approaches�

�	 that an approach via systems reengineering patterns can help	

We support our contention by means of some candidate patterns drawn from our own
experience and published work on reengineering	 We discuss the scope of the approach

how work in this area can proceed
 and in particular how patterns may be identi�ed and
con�rmed	

� The problem

The problems that legacy systems pose are well known� Today�s businesses can only survive if they
can adapt rapidly to a changing environment and take advantage of new business opportunities�
Since IT systems are now vital to almost all businesses� this requires that the IT systems can
be modi�ed quickly and cheaply� There are several reasons why this may not be the case� The
best known is that the system was built in an era before evolvability was recognised as a di	cult
and crucial goal of system design� Many very large systems in COBOL� for example� fall into
this category� However� even more modern systems which were originally well
built in an object
oriented and�or component based way can become hard to modify� because the structure of the
system becomes obscured by years of modi�cations� Brodie and Stonebreaker�� de�ne a legacy
system as one that signi�cantly resists modi�cation and evolution to meet new and constantly
changing business requirements� regardless of the technology from which it is built� and this is the
de�nition we will use�

What should be done with a legacy system� The now
classic decision matrix �see� for example�
����� clari�es the options�

ttotterd
Typewritten Text
Stevens, P., & Pooley, R. (1998). Systems Reengineering Patterns. In Proceedings of the 6th ACM SIGSOFT International Symposium on Foundations of Software Engineering. (pp. 17-23). New York, NY, USA: ACM. 10.1145/288195.288210

�

�

Business value

Changeability

Discard

Maintain Enhance

Reengineer

We are concerned here with systems which are good candidates for reengineering� because they are
too valuable to the business to be discarded� but are too hard to change to be enhanced without
restructuring� Of course� deciding which systems fall into this category is itself a skilled task� and
one which has been addressed by ����� ���� �����

The most widely researched and best
understood approach to reengineering legacy systems
is �cold turkey� � the legacy system is replaced by a new system with the same or improved
functionality� This enables the reengineering problem to be factored into two phases� �rst� use
reverse engineering and domain analysis to construct a new set of requirements� possibly identifying
and retaining some aspects of the existing design such as the overall architecture� second� use an
appropriate software development methodology to build a new system� Development is much
better understood than reengineering� so the second step is comparatively tractable� Increasingly
there is tool support available for the �rst� Unfortunately� however� for a high proportion of large
legacy systems such an approach is utterly infeasible ��� The risks of making such a huge change
in a single step � including that business requirements inevitably change during the reengineering
project itself � are daunting� Even more concretely� where a legacy system controls a large amount
of mission critical data� the downtime that would be required for the cut
over� including the
inevitable data scrubbing� may in itself be so unacceptable as to rule out cold turkey� Therefore�
in many cases� an incremental approach may be essential�

However� in practice organisations have great di	culty in making evolutionary reengineering
of systems work ��rst time� every time�� Even when they work in organisations that� corporately�
have a great deal of expertise and experience in evolutionary reengineering of systems to support
business process change� software engineers have great di�culty in becoming expert

reengineers� There is a shortage of books� papers and training courses that can e�ectively
transfer applicable expertise� Apprenticeship is probably the most e�ective way to learn� a software
engineer is a member of a team for one reengineering project� gathering experience which will be
helpful in running a latter project� However� experts in reengineering are much rarer than are
experts in design� and engineers in most SMEs will not have access to anyone with a signi�cant
amount of experience� Recently the Y�K problem has exposed to many organisations their lack
of corporate expertise in reengineering�

The problem of becoming expert is exacerbated by the wide range of factors �or forces� which
must be taken into account in evaluating candidate solutions� Reliable statistics are scarce� but it
seems that reengineering projects are even more liable than development projects to fail for reasons
which can be considered �political�� that is� they do not encounter any insurmountable technical
problem� but rather� they fail to deliver su	cient apparent value to the business in a su	ciently
timely way� A project may be cancelled even though it �would have� delivered a small enough
cost�bene�t ratio on completion� had it been allowed to run to completion� An expert reengineer
is someone who understands how to prevent this� as well as how to deliver an appropriate technical
solution�

In summary� we believe that the most important problem is not an absence of expertise but
the di	culty of transferring that expertise to those who need it�

� The solution space

Our aim is to understand the way in which experienced software practitioners undertake the reen

gineering of legacy systems� so that we can develop better techniques and material for transferring
expertise�

Most work on systems reengineering so far has attempted to provide a methodology for reen

gineering� Examples include ��� ���� and Unisys� Re�ts� Each has example projects which have
followed the methodology and succeeded� In most cases the projects have been undertaken in con

junction with the developers of the methodology as consultants or collaborators� comparatively
little e�ort has been put� so far� into developing books or training courses that allow software
engineers to learn to behave like experts� No reengineering methodology has yet had anything
like the impact of the successful development methodologies� Reengineering methodologies are
younger than development methodologies and it may be simply that not enough time has elapsed
for adoption to occur� However� given that �especially because of Y�K� there is unprecedented
industry attention to reengineering� it seems worth considering the other possibility� that we do
not yet have an adequate solution to the problem� We can identify several possible factors�

� Organisations and their projects di�er very widely� One organisation�s legacy system may be a
small but vital and unmaintainable collection of spreadsheets� another�s a system consisting of
millions of lines of code� A methodology must either make �explicit or implicit� restrictions on
its scope� or be huge� with most of the methodology being irrelevant to any given reengineering
project� The potential user of the methodology then has to identify how to instantiate the
methodology for their own project� In order to do this e�ectively an understanding of

expertise embodied in the methodology is essential� but may be hard to obtain from published
information about the methodology� In the worst case the assumptions may be unrecognised
even by the authors of the methodology� since their own experience is drawn from projects in
which their assumptions held�

� E�ective validation of a reengineering methodology is very hard� The validation problem
is harder than for development methodologies because of the greater dependence on social
and political factors� and because of the large average size of the projects involved� people
with experience in a very wide variety of reengineering projects are rarer than people with
experience in a comparable variety of development projects�

� Software engineering research is particularly good at constructing �and evaluating� technical
solutions to technical problems� Constructing and evaluating solutions to social and political
problems is much harder� there is a tendency to evaluate contributions on the basis of their
technical content alone� Of course general tools for handling social and political aspects are
imported from other �elds� For example cost bene�t analysis is an essential part of planning
a project� However� this can fail to take account of di�erent stakeholders� viewpoints� Further
techniques such as viewpoint analysis� and prioritising pieces of work described for example as
use cases or scenarios� can sensibly be imported from software development� These techniques�
however� are often under
emphasised in writings on reengineering�

In summary there is a great deal of expertise� but the nature of that expertise is too little under

stood� especially when it deals with systems whose structure must be incrementally improved� not
abandoned� This is a problem� because the task of helping comparative novices to learn quickly
to behave like experts relies on an understanding of expertise� This is particularly true where
the learning has to be done by means other than apprenticeship� as in the case of an organisation
which lacks signi�cant reengineering expertise�

��� Proposal

In software design ���� etc��� the term pattern has been imported from architecture to describe an
application of an expert solution to a common problem in context� Learning the pattern includes
understanding the context� the problem� the solution� and its merits and demerits relative to

other solutions� Patterns have been adopted enthusiastically by software practitioners because
a pattern is an e�ectively transferable unit of expertise� The vocabulary provided by
patterns is also an aid to discussion and clear thought� by experts as well as novices� Importantly�
patterns are small and speci�c enough for the community to validate them e�ectively�

We believe that the same bene�ts will accrue � and possible be even more important � from
the identi�cation of systems reengineering patterns � By this we mean a description of an expert
solution to a common systems reengineering problem� including its name� context� and advant

ages and disadvantages� In this paper we are principally concerned with the problem how how

reengineering should proceed � rather than with what the design of the reengineered artefact should
be� The latter problem seems to be adequately addressed by existing techniques �not least� design
patterns�� A reengineering pattern embodies expertise about how to guide a reengineering pro

ject to a successful conclusion� Because this is not only or even principally a technical problem�
the context of a reengineering pattern must be much broader than that of a design pattern� It
includes business context as well as software context� and may even need to take into account
factors such as the budgeting procedures of the organisation or the personalities of the managers
whose support is needed� From our initial contacts with senior technical managers in industry� it
is clear that there are indeed patterns in reengineering� that is� situations which commonly arise
and which are recognisable �consciously or unconsciously� to an expert and where the advantages
and disadvantages of a particular solution are well understood by that expert� Furthermore� it is
equally clear that some people are better able than others to talk in the somewhat abstract terms
that describe such patterns�

reverse engineering
techniques help to
analyse this

reengineering techniques

reengineering patterns
including systems

design techniques including
design patterns help to
design this

initial system

reengineered
system

incremental
reengineering process

budgetary
pressures

time
pressures

humans

political
pressuresbusiness

needs

business
opportunities

help to plan this

We believe that with the help of experts it will be possible to identify such reengineering
patterns� and that the bene�cial e�ects of doing so will be both profound and wide
ranging� We
think that the approach will at the very least be a valuable complement to the development of
over
arching methodologies for reengineering� Patterns� being small and speci�c� may be validated
individually� and information about the circumstances under which they are appropriate and their
advantages and disadvantages� can be collated� An organisation� whose reengineering projects
share a large number of characteristics� might make a collection of the patterns most useful to it�
discarding any it considers inappropriate� Future methodologies might incorporate patterns which
are appropriate to the assumptions underlying the methodology�

We do not expect to develop a comprehensive pattern language on our own � we are not
experts in the whole �eld of reengineering� We think that academics like ourselves can have as
their primary role that of facilitating the identi�cation and validation of patterns by experts in
the software engineering community� Even though patterns are a rather new import to software
engineering� there is already a thriving patterns community� including conferences� local groups

and active mailing lists� We aim to harness similar energy to address the problem of reengineering
legacy systems� This paper is one step in that direction� another is that we have set up a mailing
list for discussion of systems reengineering patterns� see
http���www�dcs�ed�ac�uk�home�pxs�reengineering�patterns�html�

Patterns have also been adopted in several �elds other than software design� some of which are
relevant to systems reengineering� Cunningham�s EPISODES ��� describes patterns for a process�
in his case the software development process� emphasising the process of making decisions� an
episode is a sequence of mental states leading to an important decision� Coplien has also worked in
this area ��� and that of organisational patterns ����� Appleton has written in ��� about patterns for
software process improvement � In business process reengineering� the term reengineering pattern

has been coined by Michael Beedle in ��� �which is why we have to use the slightly clumsy phrase
systems reengineering pattern to describe our very di�erent class of patterns��� So far as we
have been able to �nd out this paper is the �rst to propose patterns as an approach to systems
reengineering in the sense described here�

� Scope and di�culties

Di�culties An important di	culty in identifying design patterns is that of �nding the right level
of abstraction at which to describe patterns� Experience in getting this right is growing in the
design pattern community� and we try to learn from that experience here�

This work will share with all work in reengineering the di	culty of validating what has been
done� It is easy to write guidelines � particularly the �motherhood and apple pie� variety� � much
harder to �nd out whether they are correct and useful� We hope that the manageable size of
patterns will ease this problem�

A further related problem� to which we have not found a solution� is that organisations are
often unwilling to allow data about their reengineering projects to be published� especially when
it relates to projects which were not completely successful�

What are systems reengineering patterns not	

Systems reengineering patterns are not design patterns Although design patterns are frequently
useful to reengineering projects� the systems reengineering patterns we consider here are concerned
with social and organisational issues as much as� if not more than� technical issues� Whereas a
design pattern speci�es something about the structure of the �nal� system� a reengineering pattern
speci�es something about the process by which the �nal system should be reached� Similarly� the
applications of patterns to software development� to organisations� to process improvement and
to business process reengineering cited above are interesting and relevant� but none addresses
the particular combination of process� technical and organisational issues that arise in systems
reengineering�

Systems reengineering patterns are not rules of thumb They should be supported by a discussion
of their merits and demerits so that the reader can understand whether or not the use of a pattern
is appropriate�

Systems reengineering patterns are not a methodology A systems reengineering pattern has a de

liberately limited scope� and even a catalogue of reengineering patterns will not be a reengineering
methodology� any more than a catalogue of design patterns is a design methodology� Eventually�
experts will want to study both methodologies and patterns� Where it is best to start seems to
be largely a matter of individual psychology� though lack of time may make a relevant pattern
catalogue more attractive than a large methodology�

� a �gure of speech� of course no successful system is ever really �nal�

Systems reengineering patterns are not formal objects Conceivably there could be cases where a
technical description of a reengineering pattern� supported by rigorous argument as to why it was
correct� could be useful� However� we do not yet have any example of such a pattern� and we think
such things will be rare�

Systems reengineering patterns are not a panacea We propose them as a complement to� not a
replacement for� other work in the area�

How can candidate patterns be identi�ed	 We propose the following techniques� which
we have begun to use to identify our initial candidates� some of which are described in the next
section�

� Study particular projects in industrial collaborators� using some or all of the tactics�

�� Take part in and contribute to informal discussions of the project as it proceeds�
�� Attend design reviews and other meetings of the project�
�� Interview a senior designer on a project about the strategy they are adopting in the

reengineering of a system� and why�
� Interview both senior decision
makers and junior engineers� at various stages of the project�

about the progress of the project�

We �nd the �rst two techniques the most useful� since they do not a�ect the progress of
the projects adversely� Taking people away from their project work to be interviewed is
unfortunately impracticable at the most interesting stages of the projects�
Observe the problems that arise and the tactics that the project team use to address them�
paying particular attention to any areas where the behaviour of the team seems to deviate
from the strategy planned in advance�

� Interview experienced reengineers about the projects they have been involved with� aiming to
identify the patterns that they �consciously or unconsciously� use�

� Study published work on reengineering projects� extracting candidate patterns by abstraction
from description of techniques that worked� Unfortunately such published work is in short
supply�

� Draw on one�s own experience of reengineering�
� Solicit input and comments from the reengineering community and the patterns community
at large� making appropriate use of workshops� conferences� mailing lists and newsgroups�

How can patterns be validated	 This requires collaboration with as many people as possible
who have experience of reengineering� We can draw on our own software engineering experience
as an initial �sanity check�� but this is not su	cient in itself�

� Within our own research project� we can observe whether our candidate patterns occur in the
later reengineering projects we observe� Since the number of projects that we will be able to
observe directly in a small number of years is small� this technique is limited�

� Discuss candidate patterns other reengineers� in face to face interviews� on the mailing list and
at workshops and conferences�

� What kinds of things might be systems reengineering patterns�

In this section we propose four candidate reengineering patterns� drawn �in one case� from in

terviews with people in a large company which undertakes many reengineering projects� and �in
three cases� from our own experience of working on reengineering projects� Comments� criticisms
and suggestions from readers of this paper are welcomed� as part of the validation process�

Real validated systems reengineering patterns would be expected to be several times longer
than these candidates� This is partly because we give abbreviated descriptions to �t the space
available here� More importantly� the validation and elaboration process will identify more detail�

Patterns are described in a set format for ease of reference� At present several formats exist�
di�ering in details� We use an abbreviated version of that used in ���� with elements�

Name
 a few words� describing as evocatively as possible the overall nature of the pattern�
Context
 a situation giving rise to a problem�
Problem
 the recurring problem arising in that context�
Solution
 a proven resolution of the problem�
Consequences
 notes on the merits and demerits of the resolution described� with references to

other possible solutions or relevant patterns where appropriate�

��� Divide and Modernise

This strategic� high
level example illustrates the conceptual di�erence between a design pattern
and a reengineering pattern� It is drawn from discussion of several very large reengineering projects
at the same commercial organisation� including verbal reports of the lively discussion which led
one project team to the decision to follow the strategy described here� rather than developing a
new system from scratch� We were fortunate to be able to talk both with someone involved with
very high level strategic decisions about reengineering systems� and with people involved �on the
ground� in one of the projects concerned�

Name
 Divide and Modernise
Context
 a legacy system whose technology �e�g� database� is obsolete and soon to be unsup

ported� An identi�able area of functionality� relatively well localised in the legacy system� of
which a generalisation would be useful� but is not immediately mission critical�

Problem
 Modi�cation of a dying legacy system is undesirable� Wrapping the system� sometimes
useful� is not a good solution here because it perpetuates the use of unsupported technology�
If a new system is developed �from scratch� to replace part of the old� the developers will be
expected to provide ideal functionality� it will be impossible to manage expectations and the
project will become huge and correspondingly risky�

Solution
 Begin by mechanically translating the relevant part of the database to a modern format�
Rewrite the relevant code without yet attempting to change its structure� thus acquiring a new
system providing part of the functionality of the old� but no more� and without substantially
di�erent structure from the part of the old system� Remove the now redundant data and
code from the rest of the legacy system� handling the consistency and gateway issues� Then
consider the reengineering of the now
separated� manageably sized system�

Consequences
 Work proceeds in distinct manageable phases� Even if �requirements explosion�
does overtake the �nal restructuring step� the main aim� that of removing the dependency of
the functionality on the obsolete technology� will have been achieved�
On the negative side� code and data is migrated before the new requirements on the system
are analysed� which means that some of this e�ort may turn out to have been wasted�
Major outstanding questions include� can the problem of data dependencies between the new
and the old system be solved� and how� Will the restructuring of the new system in fact be
�politically� technically�� possible and�or desirable�

��� Modularity in compilers

The next candidate patterns are drawn from the experience of a group �including Pooley� who
reengineered a set of existing programming language compilers� to produce a component based
portable compiler suite� The work occupied a number of years and occurred in several stages�
New requirements emerged as the demands of both processor manufacturers and compiler users
changed�

In contrast to the previous example� the patterns proposed here are both closely related to
possible design patterns which would emerge in constructing similar systems from scratch� These
reengineering patterns can be seen as capturing the expertise embodied in the decision that it is
possible and desirable to migrate in a certain incremental way to a new system which itself makes
use of certain design patterns�

Name
 Externalising an internal representation
Context
 A system in which data is processed notionally in a number of phases� where the phases

are invoked by a driver program which itself is easily modi�ed� Phases are not currently well
encapsulated� however� two phases which are currently always consecutive share an internal
data representation which is adapted to the needs of those two speci�c phases� not designed
to be an interface format for arbitrary processing� There is a requirement to add new �op

tional� phases which may intervene between two phases which previously were always called
consecutively� It is expected that other new phases may be required in future�

Problem
 Adding the new optional phases to the system as it stands requires either that func

tionality of the existing phases be duplicated� or that some optional phase use the �internal�
format which was not designed as an interface format� Either course will create maintenance
problems which are unacceptable in this context� given that there is an anticipated need to
add further phases in future�

Solution
 Incrementally replace the internal format with an newly de�ned and fully documented
interface format� open to use by new phases� Modify the existing �rst phases to output the new
format optionally� Develop the new optional phase using the new interface format as input�
At this point the original �rst phase outputs two formats depending on what its successor will
be� Next modify the old second phase to input the new format� at which point the old format
can be abandoned� and the ability of the old �rst phase to output the old internal format can
be removed� The structure of the new system is now modular� with the driver program as a
Mediator����

Consequences
 The generation of an externally readable version of the representation allows
new modules to be attached with no further alteration of the existing system� apart from the
easily modi�able driver program� This creates a more open system�
Depending on the nature and use of the old intermediate format� the new system may possibly
be slower than the old� since the interface format is no longer so well adapted to the particular
needs of the two originally communicating phases� If speed is critical� this e�ect needs to be
considered in designing the new format and the altered phases�

The following example might be criticised for being too speci�c to a particular �eld � compilers
� but that �eld seems broad enough to justify its inclusion here� Of course� an important bene�t
of the �piecemeal� patterns approach is that it supports the easy discarding of irrelevant patterns�
those whose context does not apply to the reader�

Name
 Portability through backend abstraction
Context
 Compilers from two di�erent languages to the same language� e�g� processor instruction

set� It becomes desirable to support a new hardware platform� and it is anticipated that new
targets will continue to emerge� Frequent minor modi�cations to the existing compilers are
required�

Problem
 If a new system is developed �from scratch� for each new target� the developers will
be expected to meet demands from a rapidly evolving set of target projects� it is important to
minimise the work needed to support a new platform and the maintenance work required� We
could consider �wrapping� the old compilers and translating from the old target to the new�
but such translations are not easily de�ned and appear to be very error prone� At the same
time� it is impossible to cease to enhance the old compilers whilst developing the new ones�

Solution
 De�ne an abstract intermediate target� suitable for both easy translation from the front
ends and easy translation to the targets� Develop new versions of the two current systems�
in which their frontends are preserved intact but they compile to the new abstract target�
Produce translators from this abstract intermediate code to the currently urgent targets� Do
not modify the current working system for the old target at this stage� but begin work� in
parallel and at lower priority� on a backend translator for this also�

Consequences
 At worst the reengineering of the existing systems is no worse than writing new
systems from scratch for one new target� In practice it is likely to be less costly� since the
abstract target is chosen in part to be easy to translate to� Work on the backend translators will

involve some extra overhead in the case of a single new target� but will represent a signi�cant
gain for the second target� Future retargetting will be quicker� easier and more exible� The
quality of the backends will be higher since more resources will be freed to devote to this stage�

��� Changing interfaces in a clientfriendly way

The �nal example draws on Stevens� experience of reengineering the Edinburgh Concurrency
Workbench� which is a highly complex system which had evolved a structure which was clearly
far from ideal� but where because of inadequate resources it was impractical to impose a new
structure and newly designed interfaces in one go� It also embodies practice in APIs to large
systems used in various versions by a number of developers� two examples familiar to us are Sun�s
Java Development Kit and emacs lisp� It seems to be less well known as a technique for use within
a system�

Name
 Deprecation
Context
 Parts of a system are accessed using interfaces which are unsatisfactory� for example�

the interfaces expose information which should be encapsulated� or they are inconsistent and
hard to use� However� there is too much code using the interface to change the interface and
all code using it in one go� or else the code which uses the interface is not under the control
of the interface writer� It may not be possible to be completely con�dent that a particular
modi�cation to the interface is an improvement� until it has been tried out by a large group
of users of the API�

Problem
 The obvious solution is to modify the interface� release a new version� and force
all clients of the interface to be modi�ed accordingly� However� this may impose an un

acceptable burden on the maintainers of those clients �whether or not they are the same
people�organisation who own the interface�� Worse� if a modi�cation turns out to be a mis

take � which may be hard to tell without full knowledge of how an interface is being used � it
might be necessary to undo a modi�cation� whereupon the double modi�cation of the client
code would be extremely wasteful of e�ort�

Solution
 Using all available information� design a modi�cation to the interface which is believed
to be an improvement� Add any new elements to the interface� Any elements which are
not present in the modi�ed interface are not immediately removed� but are documented as
�Deprecated� with pointers to alternative features which should be used instead� Users of
the interface are encouraged to provide feedback on any problems they encountered using the
new interface without deprecated features� particularly if this led client developers to continue
using a deprecated interface element� The default procedure is that in each new release of
the interface the features which were already deprecated in the previous release are removed�
but feedback from users may provoke a rethink� for example� a feature which the interface
designers had thought was not useful and had marked �deprecated� might turn out not to be
redundant� in which its �deprecated� tag could be removed in a subsequent release�

Consequences
 If cases emerge where it is di	cult to avoid using a deprecated interface element�
the element can be used and the reason for the di	culty examined� It may be that adequate
replacement features are not in place� By deprecating the element rather than removing it we
avoid presenting the API user with the frustrating situation in which a problem which was
soluble using one version of the API becomes insoluble using a later version�
This technique is useful where the existing structure is reasonably sensible� but interfaces are
poorly designed or too broad� It is harder to use it in cases where the structure needs to
be rede�ned in a way which is visible to the user� In such a case facilities may have to be
temporarily duplicated using the old and the new structure� which depending on the length
of the deprecation period may be unacceptable�
Depending on the nature of the user community the deprecation may be ignored� One way
to tackle this would be to specify that a deprecated interface element will be removed in a
speci�c version�

� Conclusions

This paper has proposed systems reengineering patterns as a way of codifying and disseminating
good practice in systems reengineering� These patterns address the reengineering process� taking
into account all the factors that a�ect the success or failure of a reengineering project� such as the
urgency with which enhancements are needed and the priorities of the organisation� The intention
is to address the problem in a way which takes into account the needs of a software engineer who
needs to make decisions about reengineering in a reasoned way� taking advantage of the experience
of others� The manageable size of patterns complements reengineering methodologies� in that an
engineer can learn patterns individually as they become relevant� rather than having to learn a
large methodology all at once� Systems reengineering patterns do not� however� remove the need
for methodologies to embody other aspects of expertise� and we expect systems reengineering
methodologies and systems reengineering patterns to in uence one another� We have proposed
some candidate patterns to illustrate the technique and its scope�

To take the idea further requires input from many sections of the reengineering community� and
this paper solicits such input� You are invited to consult our new systems reengineering patterns
Web page�
http���www�dcs�ed�ac�uk�home�pxs�reengineering�patterns�html

and to send comments or suggestions to the authors�

References

�	 Appleton
 Brad
 �Patterns for conducting process improvement� In Proceedings of PLoP��	
�	 Beedle
 Michael �Pattern Based Reengineering�
 Object Magazine
 ����
�	 Bergey
 John K	
 Northrup
 Linda M	
 and Smith
 Dennis B	 �Enterprise Framework for the Disciplined

Evolution of Legacy Systems�
 Technical Report CMU�SEI����TR���� ������
�	 Brodie
 Michael L	
 and Stonebraker
 Michael �Migrating Legacy Systems� Gateways
 Interfaces and

the Incremental Approach�
 Morgan�Kaufman Publishers ������
�	 Brown
 Alan W	
 Morris
 Ed J	
 and Tilley
 Scott R	 �Assessing the Evolvability of a Legacy System�

CMU SEI draft white paper
 ����
�	 Buschmann
 Frank
 Meunier
 Regine
 Rohnert
 Hans
 Sommerlad
 Peter and Stal
 Michael	 �Pattern

Oriented Software Architecture� A System of Patterns� Wiley
 ����	
�	 Coplien
 James O	
 �A Development Process Generative Pattern Language�
 in Proceedings of

PLoP��
�	 Cunningham
 Ward	 �EPISODES� A Pattern Language of Competitive Development�
 available from

http���www�c��com�ppr�titles�html	
�	 Gamma
 E	
 Helm
 R	
 Johnson
 R	
 Vlissides
 J	 �Design Patterns� Elements of Reusable Object�

Oriented Software�
 Addison�Wesley Professional Computing series
 ����
��	 Jacobson
 Ivar
 and Lindstr�om
 Fredrik �Re�engineering of old systems to an object�oriented architec�

ture�
 OOPSLA��	
��	 Opdyke
 William Object�Oriented �Refactoring
 Legacy Constraints and Reuse�
 presented at �th

Workshop on Institutionalizing Software Reuse ������
��	 OrganizationalPatterns web page
 administered by Jim Coplien	

http���www�bell�labs�com�cgi�user�OrgPatterns�OrgPatterns

��	 Ransom
 Jane
 Sommerville
 Ian and Warren
 Ian �A Method for Assessing Legacy Systems for Evol�
ution�	 In Proceedings of Reengineering Forum ��	

��	 �The RENAISSANCE project� information and some documents available from
http���www�comp�lancs�ac�uk�computing�research�cseg�projects�renaissance�RenaissanceWeb	

��	 �Software Reengineering Assessment Handbook v�	�� available from
http���stsc�hill�af�mil�RENG�

Links to on
line versions� where available� are at our Web site�
http���www�dcs�ed�ac�uk�home�pxs�sweng�html

