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Observational mu�calculus

Julian Brad�eld� and Perdita Stevens ��

Laboratory for Foundations of Computer Science
University of Edinburgh
JCMB� King�s Buildings

May�eld Road
EDINBURGH EH� �JZ

Scotland

� The problem

The modal mu�calculus is widely considered to be a good �assembly language� into which temporal
logics can be compiled� However� the mu�calculus is not good at expressing properties of systems
where the observations are structured in some way� The principal examples are real�timed systems�
in which the passing of time can be observed� and value�passing systems� in which the system
may be observed to input and output values along named ports� The values may even be names
themselves� as in the pi�calculus� A large number of extensions of popular logics has been proposed
�for example� in 	
� �� �
�� but there is as yet no common framework in which the extensions can
be studied� This seems unfortunate� since in fact the extensions have a great deal in common�

In this abstract we consider the problem of de�ning an �assembly�language� logic for such
extensions� The logic should be small and simple� and it should be possible to translate these
previously studied extensions into it� This requirement will almost certainly lead to a logic in which
typical properties are expressed as long formulae� This will not concern us� It is unreasonable
to expect model�checking in so powerful a logic to be decidable in general� we will settle for a
framework in which it is possible to identify decidable fragments su�cient to include the images
of decidable high level logics� Here we describe �rst steps in this direction�

There are several possible frameworks in which one might look for a solution� The most
powerful framework is full second�order logic� however� this is intractable� in many ways� Monadic
second�order logic is a restriction which has a much more amenable theory� it is also used in at least
one serious veri�cation environment	�
� It can be argued that second�order quanti�cation is too
hard to understand� even for an assembly�language logic� It is also arguable that since the popular
temporal logics are all expressible in terms of �xpoints� it is unnecessary to go beyond �xpoints to
second order� even monadic� This would suggest the use of �rst�order logic with �xpoints� a logic
much studied in �nite model theory� though less so in the mainstream veri�cation community�
However� we maintain that all these logics have one feature� which is not shared by traditional
temporal logics� and which we consider undesirable� they all have variables ranging over �states��
so that a formula can capture states and keep them for later inspection� Temporal logics� including
the modal mu�calculus� do not have state variables� although the semantics is de�ned over states�
or even runs� there is no explicit access to states in the logic� This accords with the observational
paradigm� in which one can inspect the behaviour of a process� but not its internal state� We
therefore adopt a modal mu�calculus framework for our logic� However� when observing a value�
passing or real�time process� values� which may be arbitrary datatypes� or times are part of the
observation� It is therefore reasonable � and necessary to capture existing logics� � to allow our
logic to have variables ranging over observable values� and to allow some logical and non�logical
manipulation of these observed values� To obtain decidability results� one may need to restrict
such manipulation severely� however� in general we propose the use of �rst�order logic� with a set
of de�ned predicates� for the data language�
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� An assembly language mu calculus� A�

A formula is allowed to observe transitions� including values� names or times which may be part
of the action� It may store these values for later use� Accordingly we allow a formula to use a set
C of mutable cells c� d� � � � � The values of these cells may change when the formula tracks a change
in the process by observing a transition� or autonomously� We need to be able to state constraints
on the contents of the cells� Accordingly we have a two�level logic� the higher level parametrized
on the lower� Formulae � � � � have free variables which are cellnames c� d � � � or hooked cell names
�c �

�

d � � � � this allows us to state constraints on how cell values change� for example at a modality�
�Logically� the cells can be expressed as �rst�order variables which are also passed through the
�xpoints as parameters� the cell notation saves symbols� and imposes certain constraints on the
use of these variables� as does the use of the VDM�style hooks��

The high level logic is de�ned thus�

� � T F X � � � � � � hl� C� �i� 	l� C� �
� �X�� �X��

where l is an action expression� C � C a set of cells whose contents may be altered on passing
through the modality� and � a low level formula over C �

�

C which must be satis�ed by the cell
contents �and ex�contents of modi�able cells� after the modality�

Action expressions depend on the domain of interpretation� For example� suppose that we
interpret the logic over labelled transition systems where the labels L include a�v� or a�v� where
v � V is a value� �Such a transition system arises naturally from early semantics of a value�passing
CCS process�� Then an action expression may be any label l � L� or � �a dummy label such that

P
�
�� P � allowing autonomous setting of cells�� or a�c� or a�c� for a cell name c� In the last case

the purpose is to set c� we have P satisfying ha�c�� C� �i� i� P
a�v�
�� P � for some v and there exist

new values of the cells C such that � holds and �c � v� holds� and P � satis�es � �with respect
to the updated cell values�� Note that if c 	� C� we are requiring the process to read exactly the
current value of c�

If we are concerned with pi calculus processes� we may want also to allow an action expression
to be c�d� where c �as well as d� may be a cellname� again� the process will do a transition with a
particular name and the result will be to put that name into the cell c�

For another example� we can interpret the logic over real timed processes� modelled as labelled
transition systems with instantaneous action labels l � L� and delay actions 
�d� for non�negative
reals d which are always possible from any state� We can then incorporate the �speci�cation clocks�
of 	

 simply by having a real�valued cells c�� c�� � � � � and requiring that in every delay modality� C
includes the ci and the predicate � enforces their updating� e�g� h
�d�� fd� c�� ���� cng� c� �

�c� � d �
��� � cn � �cn � di� As syntactic sugar we may adopt the convention that cells marked cl behave in
this manner� and omit them from the delay modalities� Note that these are speci�cation clocks�
Since we are taking a rigorously observational view here� internal state of a process� such as
propositions or clocks� is not observable unless the process chooses to export the information� by
the usual hacks� any internal state can be exported�

Finally� we note that the �xpoints are implicitly parametrized on the cells�

� Use of A�

To illustrate our logic� we exhibit the key points of translations from existing timed logics� Timed
CTL� in the �avour of 	

� is interpreted on systems which have a discrete state and a number of
real�time clocks� a system either does an instantaneous action� which may include resetting clocks�
or allows time to pass� The atomic predicates are state predicates� or simple comparison of clocks
� a restriction which allows model�checking procedures � and the temporal connectives are 	U
and 
U � The underlying semantic model is systems of �real�time trajectories� along which time
passes or states change� �premodels� satisfy basic sanity properties �including stutter closure��
�safe premodels� are closed under limits� and �real�time systems� have only divergent trajectories



�along which time passes� in particular� zeno paths are excluded�� To get the normally desired
interpretation of inevitability 
U � one interprets over real�time systems� In this case the �obvious�
translation of p
U q is just �Z�q � ��p� q�� 	
Z� However� we are working with transition systems
as the underlying model� so a priori we must have non�divergent paths� and thus the obvious
translation is actually translating from safe premodels� not real�time systems� There are two
options here� in the tradition of Fair CTL� one could simply decree that non�divergent paths are
unfair� and adjust the model�checking procedures to ignore them� However� as we have a powerful
mu�calculus� we can encode this fairness constraint�

tr�p 
U q� � �X�tr�q� � 	�� bcl� bcl � �
�Z� �tr�p� � tr�q��

� �bcl � �� X�

� 	L� 
�T
Z

� �h�� fdg�Ti�h
�d�� 
�Titr�q� � 	
�d��� fd�g� d� � d
Z

� 	
�d���� fd��g�T
Z�

In this slightly obscure formula� the inner maximal �xpoint and the speci�cation clock bcl are used
to arrange that the main minimal �xpoint only has to be unwound if time passes�

In a similar style� the timed mu�calculus T� of 	

 with its binary �until� operator p � q can be
translated�

As sketched earlier� we can also handle value�passing logics such as 	�� �
� The question then
is� can we treat in our logic the problems that can be treated in the original logics�in particular�
the model�checking problem�both with the generality given by our framework� and in speci�c
domains with the e�ectiveness of the domain logics� It is easy to see that a minor variant of the
standard model�checking game 	�
 characterises satisfaction of an A� formula by a process� We
need only alter the modality rules to allow the player who chooses the process transition to choose
new values for the modi�able cells too� subject to satisfying the predicate on cell values� and to
correct matching of an action expression to an observation� Whether it is possible to calculate
a winning strategy � that is� to solve a model�checking problem � depends on the domain of
interpretation and the lower level logic� 	�
 suggests an approach via abstract games � in which
classes of cell values are considered together and split only when the analysis requires it� this is a
generalisation of techniques such as the region analysis used by 	

� Exploring the application of
this technique is future work� but we are optimistic that it will make reasonable model�checking
problems in A� tractable�
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