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SUMMARY

The cell-wall pectic domain rhamnogalacturonan-II (RG-II) is cross-linked via borate diester bridges, which

influence the expansion, thickness and porosity of the wall. Previously, little was known about the mecha-

nism or subcellular site of this cross-linking. Using polyacrylamide gel electrophoresis (PAGE) to separate

monomeric from dimeric (boron-bridged) RG-II, we confirmed that Pb2+ promotes H3BO3-dependent dimeri-

sation in vitro. H3BO3 concentrations as high as 50 mM did not prevent cross-linking. For in-vivo experi-

ments, we successfully cultured ‘Paul’s Scarlet’ rose (Rosa sp.) cells in boron-free medium: their wall-bound

pectin contained monomeric RG-II domains but no detectable dimers. Thus pectins containing RG-II

domains can be held in the wall other than via boron bridges. Re-addition of H3BO3 to 3.3 lM triggered a

gradual appearance of RG-II dimer over 24 h but without detectable loss of existing monomers, suggesting

that only newly synthesised RG-II was amenable to boron bridging. In agreement with this, Rosa cultures

whose polysaccharide biosynthetic machinery had been compromised (by carbon starvation, respiratory

inhibitors, anaerobiosis, freezing or boiling) lost the ability to generate RG-II dimers. We conclude that RG-II

normally becomes boron-bridged during synthesis or secretion but not post-secretion. Supporting this con-

clusion, exogenous [3H]RG-II was neither dimerised in the medium nor cross-linked to existing wall-associ-

ated RG-II domains when added to Rosa cultures. In conclusion, in cultured Rosa cells RG-II domains have a

brief window of opportunity for boron-bridging intraprotoplasmically or during secretion, but secretion into

the apoplast is a point of no return beyond which additional boron-bridging does not readily occur.

Keywords: rhamnogalacturonan-II, gel electrophoresis, pectin, boron, radiolabelling, cross-linking, apoplast,

cell wall, Rosa sp., Arabidopsis thaliana.

INTRODUCTION

Unlike most organisms, plants have a readily demonstra-

ble requirement for boron (B) (Blevins and Lukaszewski,

1998; Goldbach and Wimmer, 2007). Boron in soil is avail-

able to plants as soluble boric acid, H3BO3, a weak Lewis

acid which forms the borate anion [B(OH)4
�] only at high

pH (pKa 9.1). Symptoms of B deficiency include short, thick

stems and roots, dying growing points and rough or corky

epidermal surfaces (Warington, 1923; Lehto et al., 2010;

Wimmer and Eichert, 2013). This agriculturally important

feature of plant life is poorly understood biochemically.

Despite being an essential element, excess B is detrimental

to plants, and there is a narrow window between concen-

trations giving deficiency and those (e.g. 5 mM) producing

toxicity (Aquea et al., 2012). Problems of B deficiency can

be solved with fertilisers, but excess B is an intractable

agricultural problem, especially in some arid areas

(Al-Mustafa et al., 1993). Understanding why plants require

B, and the basis of its toxicity, will facilitate progress in

agriculture.

Boron strongly affects the mechanical properties of

plants: tissues with inadequate and excess B often feel

‘brittle’ and ‘rubbery’, respectively (Loomis and Durst,

1992; Blevins and Lukaszewski, 1998). This mechanical

effect suggests a role for B in cell-wall structure, as does

the observation that withdrawal of B decreases the elastic-

ity of root cell walls within 5 min (Findeklee and Goldbach,
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1996). Pectin-rich tissues (e.g. collenchyma) show espe-

cially striking deficiency symptoms, and the B require-

ments of different plants correlate with their pectin

contents (Hu et al., 1996). Loomis and Durst (1992) first

suggested that apiose (Api*) was the key wall component

to which B binds, and it is now widely accepted that

pectic Api residues are a plant-specific, B-dependent wall

component.

Pectins are partially methylesterified, a-GalA-rich cell-

wall polysaccharides. They are built of up to four domains

[homogalacturonan (HGA), rhamnogalacturonans (RG-I,

RG-II) and xylogalacturonan], which are glycosidically

interlinked (Ishii et al., 2001; Coenen et al., 2007). When,

for analytical purposes, pectin is de-esterified and then

digested with endopolygalacturonase (EPG), the HGA

domain is degraded to free GalA plus di- and tri-galacturo-

nide, whereas RG-I and RG-II are released intact and can

be purified by gel-permeation chromatography (Matoh

et al., 1993, 1996; Coenen et al., 2007).

Rhamnogalacturonan-II is of particular interest because

of its ability to form borate esters. Rhamnogalacturonan-II

is a small [usual degree of polymerisation (DP) 29–30;

about 5 kDa] but complex, taxonomically conserved, pectic

domain that is ubiquitous in the primary cell walls of vas-

cular plants. To its acidic backbone of about eight a-GalA

residues are attached five unique sidechains (O’Neill et al.,

2004; Pabst et al., 2013): (i) A (octasaccharide) composed

of a-L-Gal, b-GlcA (sometimes methylesterified), a-MeXyl,

a-Fuc, b-Rha, a-GalA, b-GalA (carrying zero to two methyl

ether groups), b-Api; (ii) B (hexa- to nonasaccharide) of

b-Araf (zero to one), a-Rha (zero to two), a-Arap, b-D-Gal,

a-MeFuc acetyl ester, a-AceA acetyl ester, b-Rha, b-Api; (iii)
C (disaccharide) of a-Rha, a-Kdo; (iv) D (disaccharide) of

b-Araf, b-Dha; (v) and ‘E’ (monomer), a-Araf. The RG-II

domain carries O-acetyl esters in sidechain B (O’Neill et al.,

2004), but only the single GlcA residue of sidechain A is

methylesterified (Pabst et al., 2013), so sidechains A–D are

negatively charged. Sidechain A has a unique ability to

strongly bond to H3BO3.

Driselase digestion of plant cell walls yields a stable

B–RG-II complex (Matoh et al., 1993, 1996; Kobayashi

et al., 1996). In B-sufficient tissues, many of the wall’s RG-II

domains are dimerised by tetrahedral B-bridges involving

the O-2 + O-3 of two sidechain-A Api residues in a

diol–(B�)–diol diester arrangement (Kobayashi et al., 1996;

O’Neill et al., 1996, 2004; Ishii et al., 2002). Such dimers are

scarce in the bor1 mutant (defective in H3BO3 transport)

(Noguchi et al., 2003) and in B-starved wild-type plants.

The need to form a precise B-bridge may be why the struc-

ture of RG-II is highly conserved. For example, B-bridging

of RG-II is diminished in the tobacco mutant nolac-H18,

which is defective in NpGUT1 (glucuronosyltransferase)

and consequently lacks GlcA and L-Gal in sidechain A (Iwai

et al., 2002) (notwithstanding the curious fact that two Ara-

bidopsis proteins, IRX10 and IRX10-L, which resemble

N-terminal truncated versions of NpGUT1, appear to con-

tribute in Arabidopsis to the biosynthesis of xylan back-

bones rather than RG-II; Wu et al., 2009). Furthermore,

mur1 [which has L-Gal in place of L-Fuc (Reuhs et al., 2004)

and may have a shortened sidechain A (Pabst et al., 2013)]

is defective in RG-II B-bridging (O’Neill et al., 2001). Finally,

virus-induced gene silencing (VIGS) of AXS1 (leading to

Api deficiency) also compromises RG-II bridging (Ahn

et al., 2006). The formation of RG-II–(B�)–RG-II bridges is a

major reason why plants require B, and why the pectin-

poor Poales need less B than dicots.

Functionally, RG-II bridging via B decreases the size of

the pores in the wall (Fleischer et al., 1998, 1999), affecting

intercellular communication. It also affects the mechanical

properties and thickness pf the wall and the plant’s growth

and morphogenesis (Hirsch and Torrey, 1980; Hu and

Brown, 1994; Findeklee and Goldbach, 1996; Ishii et al.,

2001). For example, pollen genetically unable to make Kdo

(unique to RG-II) is defective in pollen-tube growth (Del-

mas et al., 2008) and AXS1-silenced plants and the

mutants bor1 and mur1 are dwarfed, suggesting that B-

bridging is necessary for normal growth and morphogene-

sis. However, with our current understanding of B-bridges

largely limited to a static description of their chemistry, it

is unclear why increasing the cross-linking of a wall com-

ponent would favour cell expansion, which is dependent

on wall loosening. The kinetics of B-bridge formation and

turnover await elucidation.

Most neutral sugars rapidly esterify with the borate

anion at a pH of about 9, a fact exploited in the electropho-

resis of ‘neutral’ sugars (Weigel, 1963; Goubet et al., 2006),

but the bonds formed are unstable at pH < 7, characteristic

of the cell wall. Such bonds are thus not valid models of

B–RG-II bridging. Furanosyl cis-1,2-diols (e.g. Ribf in NAD+,

Apif in methyl b-apioside, and hydrated 1-deoxy-3-keto-L-

ribulose, Chen et al., 2002) form B esters that are more sta-

ble than their trans-diol or pyranosyl counterparts (Ishii

and Ono, 1999), but even these are unstable compared

with B–RG-II bridges. The latter are stable enough to with-

stand column chromatography in (or dialysis against)

mildly acidic, B-free buffers (half-life � 24 h at pH 2.8 and

20°C) (O’Neill et al., 1996).

While slow to break, B–RG-II bridges are also slow to

form in vitro with pure RG-II + H3BO3 as substrates. Such

bridging is slightly promoted by very high Ca2+, e.g. 50 mM

(Ishii et al., 1999). Also, some non-biological cations (e.g.

*Standard sugar abbreviations are used throughout: Api, D-apiose; Ara,
L-arabinose; Dha, 3-deoxy-D-lyxo-heptulosaric acid; Fuc, L-fucose; f, furanose;
D-Gal, D-galactose; L-Gal, L-galactose; GalA, D-galacturonic acid; Glc, D-glucose;
GlcA, D-glucuronic acid; Kdo, 2-keto-3-deoxy-D-manno-octulosonic acid;
MeFuc, 2-O-methy-L-fucose; MeXyl, 2-O-methyl-D-xylose; p, pyranose; Rha,
L-rhamnose; Rib, D-ribose; Xyl, D-xylose.
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0.5 mM Pb2+, Sr2+ or Ba2+) strongly enhance RG-II bridging

by H3BO3 in vitro (O’Neill et al., 1996; Ishii et al., 1999); it

remains unknown what biological agent ‘replaces’ Pb2+

etc. in vivo.

It was reported that when H3BO3 is resupplied to

B-starved Chenopodium cells (Fleischer et al., 1999) or

Cucurbita leaves (Ishii et al., 2001), many of the existing RG-

II domains rapidly became B-bridged. This suggests that

B-bridging can occur in the wall long after pectin secretion.

However, it was not known if this is the normal subcellular

site of bridge formation in B-sufficient cells – alternatives

being within the Golgi system prior to (or at the plasma

membrane during) pectin secretion. Resolving this question

would inform our attempts to detect enzymes and other

components needed for promoting B-bridging in vivo.

Little is known about why excess B is toxic to plants

(Loomis and Durst, 1992; Reid et al., 2004), but the effect of

a high [B] on tissue mechanics points to an involvement of

the cell wall, probably RG-II. We considered the hypothesis

that the H3BO3:RG-II molar ratio is critical. At a H3BO3:RG-II

ratio of zero, all the RG-II molecules in a population will

clearly be monomeric (represented in the equations below

as RG-II.H2, where the two H atoms indicated are those of

the cis-diol of the Api residue in sidechain A); at a ratio of

0.5, most of the molecules can dimerise, perhaps via two

steps:

RG-II:H2 þ BðOHÞ3 ! RG-II�ðB�Þ�ðOHÞ2 þ H2O þ Hþ;

then

RG-II�ðB�Þ�ðOHÞ2 þ RG-II:H2 ! RG-II�ðB�Þ�RG-II

þ 2H2O:

But at a ratio of 1.0 or higher, most of the RG-II molecules

might quickly become ‘half-bridged’ [as RG-II–(B�)–(OH)2]

and thus locked in the monomeric form:

RG-II:H2 þ BðOHÞ3 ! RG-II�ðB�Þ�ðOHÞ2 þ H2O þ Hþ;

unable to find a B-free partner with which to form a full

bridge:

RG-II�ðB�Þ�ðOHÞ2 þ RG-II�ðB�Þ�ðOHÞ2 ! no reaction:

This is a potential explanation of why high H3BO3 concen-

trations are toxic to plants.

The main objectives of this work were to define when in

the ‘career’ of an RG-II domain the B-bridging occurs

in vivo, and whether excess B concentrations interfere in

bridging. Secondarily, we introduced several methodologi-

cal innovations: (i) to provide useful biological material for

these studies, we developed a Rosa cell-suspension culture

capable of growing in a B-free medium and thus producing

only non-B-bridged RG-II; (ii) we prepared high-specific-

activity radiolabelled RG-II; and (iii) we developed a

polyacrylamide gel electrophoresis (PAGE) system for

separating monomeric and dimeric RG-II. Using these

techniques, we now report on the in-vivo B-bridging of

endogenous and exogenous RG-II.

RESULTS

Separation of monomeric and dimeric RG-II by gel

electrophoresis

Previous work on RG-II cross-linking has employed anion-

exchange and gel-permeation chromatography combined

with inductively coupled plasma mass spectrometry

(ICP–MS) to separate monomers from dimers and to quan-

tify them (Kobayashi et al., 1996; O’Neill et al., 1996; Flei-

scher et al., 1999; Matsunaga et al., 2004). To allow us to

run multiple samples simultaneously, we developed a

PAGE system. Monomeric and dimeric RG-II have a similar

charge:mass ratio, but the sieving properties of polyacryl-

amide enabled their separation by size (about 5 and

10 kDa respectively), as with protein SDS–PAGE and oligo-

saccharide polysaccharide analysis using carbohydrate gel

electrophoresis (Goubet et al., 2006). Advantages of gel

electrophoresis include excellent resolution, convenient

long-term storage of separated samples and simple

radioisotope detection. The developed system was able to

separate RG-I, RG-II dimer, RG-II monomer and oligogalac-

turonides (Figure 1). The bromophenol blue marker (not

visible in Figure 1 because it elutes during staining) runs

slightly slower than the smallest oligogalacturonides. All

oligogalacturonides of DP < 20 were well resolved from

RG-II.

Optimum staining of RG-II was achieved with a silver

method similar to that used for staining proteins (Nest-

erenko et al., 1994; Chevallet et al., 2006; Simpson, 2007;

Singh, 2011); alcian blue and basic fuchsin failed to stain

rhamnogalacturonans and oligogalacturonides satisfacto-

rily. Staining intensity was related to the amount of RG-II

loaded (Figure 2b). The RG-II dimer stained more intensely

than the monomer (Figure 3).

Characterisation and radiolabelling of RG-II

Cell walls (as alcohol-insoluble residue, AIR) of cell-sus-

pension cultures were de-methylesterified with Na2CO3,

then digested with EPG, generating rhamnogalacturonans

(Figures 2b and 3a) plus non-staining oligogalacturonides.

Rhamnogalacturonan-II freshly prepared from red wine or

from the cell walls of Arabidopsis cell cultures grown in

standard medium (containing 100 lM H3BO3) was largely

dimeric (Figure 2a,b), as expected (O’Neill et al., 2004),

whereas RG-II from Rosa cell cultures grown in their rou-

tine medium (containing 3.3 lM H3BO3) produced RG-II that

was only partially dimeric (Figure 2c, right-hand lane).

Similar results were obtained when AIR was digested with

Driselase or impure pectinase preparations. Driselase

released arabinogalactan–protein fragments in addition to

RG-II and was therefore not routinely used.

© 2013 The Authors
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For preparative purposes, Arabidopsis or Rosa AIR was

de-esterified then EPG-digested, and the RG-II purified

from the crude digest by gel-permeation chromatogra-

phy. Four independent preparations of Rosa RG-II (A–D)

were analysed for sugar composition (Figure 4a,b and

Figure S1). In each case, prominent monosaccharides

were GalA, Gal, Ara, Rha, MeXyl, Fuc and Api; smaller

amounts of MeFuc and GlcA lactone (de-lactonised dur-

ing the HPLC run) were also detected. This agrees with

the published composition of RG-II (O’Neill et al., 2004).

A minor sugar migrating slightly slower than Gal on TLC

and several peaks on the HPLC remain unidentified.

2-Keto-3-deoxy-D-manno-octulosonic acid (Kdo) had an

HPLC retention time of 74.0 min, but authentic Kdo was

completely degraded during acid hydrolysis, as reported

by York et al. (1985).

Preparation ‘A’ was selected for radiolabelling with NaB3H4.

The crude [3H]RG-II was repurified by gel-permeation

chromatography (Figure 4c,d). On PAGE, the purified prod-

uct, after monomerisation with HCl, gave a single band

detectable by fluorography.

Artificially monomerising dimer and dimerising monomer

In agreement with previous reports (O’Neill et al., 1996;

Matsunaga et al., 2004; Yapo, 2011), and validating our

electrophoresis method, we showed that dimeric RG-II was

monomerised at pH 1 (Figure 3a). Under the conditions

used, there was no evidence of degradation to smaller

products such as might occur if the HCl cleaved the highly

labile apiosyl linkages. The loadings in lanes 3 and 4 of Fig-

ure 3(a) are equal, yet the staining intensity of monomer is

noticeably weaker than that of the starting dimer, confirm-

ing that the silver stain is more sensitive to the dimer.

We also showed that monomeric RG-II can be dimerised

by treatment with 0.1–1.0 mM H3BO3 (Figure 3b). Boron-

dependent dimerisation was little affected by pH in the

DP 4–9   
i ii

DP 6–13  DP 11–20  DP 16–27  

RG-II
dimer

RG-II
monomer

Oligogalact-
uronides

RG-I

DP7

DP13

i ii i ii i ii(a) (b)

DP7
DP4–6

DP10

DP13

Figure 1. Resolution of rhamnogalacturonans

and oligogalacturonides by gel electrophoresis.

(a) Oligogalacturonide preparations of the

approximate degree of polymerisation (DP)

ranges indicated were loaded at (i) 0.50% or (ii)

0.25% w/v.

(b) Endopolygalacturonase digestion products

of Rosa cell walls. The third sample from the left

shows the result of incomplete digestion of the

homogalacturonan.

RG-II 
dimer

RG-II 
monomer

3.3 μ� H3BO30.30

(c) Rosa cell RG-II:

RG-I

1 μl 2 μl 3 μl 4 μl 5 μl 6 μl 7 μl 8 μl 9 μl 10 μl

(b) Arabidopsis cell RG-II: different loadings

i ii

(a) Red wine

0

6 weeks 8 weeks

Figure 2. Characterisation of rhamnogalacturonan-II (RG-II) preparations by gel electrophoresis.

(a) Non-volatile solutes of red wine were dissolved at 1% (w/v) in water and electrophoresed before (i) and after (ii) 24 h of dialysis.

(b) Electrophoresis of various volumes of a RG-II-rich preparation from Arabidopsis cultures grown in standard medium (containing 100 lM H3BO3). The 1-ll
sample contained about 0.2 lg RG-II.

(c) Rosa cells were grown with 0, 0.3 or 3.3 lM H3BO3 for various periods, the medium being renewed fortnightly. Rhamnogalacturonan-II from their cell walls

was electrophoresed.
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range 3–7, but was strongly promoted by 0.5 mM Pb2+, as

reported before (O’Neill et al., 1996).

Acclimation of Rosa cells to B-free medium

To provide plant cells suitable for monitoring the in-vivo

cross-linking of monomeric RG-II, we attempted to grow

Rosa, Arabidopsis and Spinacia cell suspension cultures in

their respective media adjusted to contain ‘0’, 10 or 100%

of the standard H3BO3 concentration. Polypropylene flasks

were used, avoiding contamination from B in glassware.

After 3–4 days, Arabidopsis and Spinacia cells stopped

growing and died in media containing ‘0’ or 10 lM H3BO3.

The Rosa culture, in contrast, continued to grow well at ‘0’,

0.33 and 3.3 lM H3BO3, the only noticeable difference being

that within 2–4 weeks the ‘zero-B’ cells became whitish

instead of pale yellow. The medium was renewed fort-

nightly: after 6 weeks in ‘zero-B’ medium, the Rosa cells

still contained appreciable RG-II dimer, but this became

undetectable by 8 weeks (Figure 2c).The walls of B-free

cells still contained approximately normal amounts of RG-

II, albeit all monomeric. The pectins containing these RG-II

domains were firmly linked in the cell wall, unlike those in

B-free Chenopodium cells, which dissolved in phosphate

buffer (Fleischer et al., 1999). The Rosa cells have now

been successfully maintained in our laboratory in the

absence of deliberately added B for over 2 years.

Only traces of contaminating B were present in our

media. The ‘0’, 10 and 100% [B] Rosa media were shown

by ICP–MS to contain 0.95, 2.71 and 29.5 lg L�1 total B;

theoretical values are 0, 3.5 and 35 lg L�1. Thus, the ‘zero-

B’ medium contained about 88 nM B, presumably as a con-

taminant from the other nutrients, but this amount was too

low for detectable formation of RG-II dimers.

Endogenous RG-II domains have only a brief window of

opportunity for dimerisation in Rosa cell cultures

To trace the possible dimerisation of wall-bound mono-

meric RG-II domains in vivo, we re-fed 3.3 lM H3BO3 to

zero-B Rosa cell cultures that contained no detectable RG-II

dimers. No dimer appeared during the first 30 min of

H3BO3 addition (Figure 5a), in contrast to the report on

Chenopodium cells (Fleischer et al., 1999). Over the follow-

ing 24 h, RG-II dimers did gradually form, but with no con-

current loss of monomer; indeed, by 24 h there had been a

noticeable increase in total RG-II (Figure 5a). This suggests

that previously wall-bound monomeric RG-II domains were

unable subsequently to dimerise in the presence of 3.3 lM
H3BO3, but that RG-II newly synthesised since the addition

of H3BO3 was able to dimerise.

To test this interpretation, we applied various treatments

designed to decrease or prevent de-novo polysaccharide

synthesis and then resupplied 3.3 lM H3BO3. Each such

treatment strongly diminished the production of dimeric

RG-II (Figure 5b–f). Cells starved of glycerol, their usual

carbon source, for 4 days (and thus unable to produce new

polysaccharides) and cells treated with the respiratory

inhibitors carbonyl cyanide 3-chlorophenylhydrazone

(CCCP) and 2,4-dinitrophenol (DNP) produced no detect-

able dimer (Figure 5b–d), although controls did generate

some dimer within 24 h (Figure 5c). Living Rosa cells incu-

bated with reduced aeration produced little dimer within

24 h, frozen–thawed cells produced very little and boiled

cells produced none (Figure 5e–g).

Thus, Rosa cells re-fed 3.3 lM H3BO3 were only able to

dimerise RG-II efficiently when concurrent production and

secretion of polysaccharide was occurring. We conclude that

0 0.12 1.2 mM H3BO3

Pb2+

0 0.12 1.2 0 0.12 1.2 0 0.12 1.2 0 0.12 1.2 0 0.12 1.2

pH 3.0 pH 5.0 pH 7.0

RG-II
dimer

RG-II
monomer

EP
G

A
IR

EP
G

 +
 A

IR

EP
G

 +
 A

IR
 +

 H
Cl

H
G

A

(a) (b)

+– ––Pb2+ Pb2+ + Pb2+ Pb2+ + Pb2+

Figure 3. Artificially monomerising dimer and dimerising monomer.

(a) Arabidopsis alcohol-insoluble residue (AIR) was saponified with Na2CO3, then incubated for 16 h with or without endopolygalacturonase (EPG); products

were analysed by PAGE. Lane 4 shows the products of an additional 16-h incubation in 0.1 M HCl. Endopolygalacturonase alone gave no rhamnogalacturonan-II

(RG-II). HGA, homogalacturonan (‘polygalacturonic acid’; marker).

(b) Monomeric RG-II, produced as in lane 4 of (a), was incubated for 16 h in 0, 0.12 or 1.2 mM H3BO3, in the presence or absence of 0.5 mM PbNO3. The solutions

were buffered at pH 3, 5 or 7.
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B-bridging of RG-II normally occurs during or very shortly

after de novo biosynthesis, and that secretion into the wall

is a point of no return precluding subsequent dimerisation.

Exogenous RG-II is not dimerised in cell walls or culture

medium of Rosa cells

Supporting the conclusion that the dimerisation of endoge-

nous RG-II domains normally occurs intraprotoplasmically

and/or during secretion, we found that exogenous mono-

meric RG-II (approximately 60 lM) remained soluble, and

monomeric, in spent culture medium. Only a trace of

dimer was observed when 1.2 mM H3BO3 was added to the

medium (Figure 6b) compared with a zero-B sample

(Figure 6a). Thus, there was no evidence for the presence

of secreted factors, such as enzymes, B carriers or RG-II

chaperones, that might ‘mimic’ Pb2+ to enhance apoplastic

RG-II dimerisation in vivo. In addition, the presence of live

cells in the medium had no effect on the behaviour of

soluble extracellular RG-II (Figure 6c), indicating the

absence of wall-bound factors that might act as immobi-

lised catalysts promoting the dimerisation of soluble RG-II.

It might be objected that the concentration of RG-II

(about 60 lM) used in Figure 6 had saturated any biological

B-bridging mechanism (enzymes, B transfer agents etc.) so

that only a small percentage of the added RG-II was suc-

cessfully dimerised. We therefore also tested a tracer con-

centration (3.9 lM) of monomeric radiolabelled RG-II

(Figure 7). No dimerisation of exogenous soluble [3H]RG-II

was observed in the presence of B-supplemented Rosa cul-

tures (Figure 7a,b). Similar results were obtained when the

[3H]RG-II was mixed with cell-free spent medium harvested

from similar cells (Figure S2). Furthermore, all the [3H]RG-II

remained soluble in the medium (Figure 7c); the cells, col-

lected after 24 h in the presence of [3H]RG-II and thor-

oughly washed in water, showed no bound radioactivity.

This result was obtained with all four permutations of cells

pre-grown with or without H3BO3 and then fed [3H]RG-II

with or without H3BO3 (Figure 7c). Samples of medium
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Figure 4. Characterisation and radiolabelling of rhamnogalacturonan-II (RG-II).

(a), (b) Four independent preparations of Rosa RG-II, A–D, were acid hydrolysed and the products separated by TLC and stained with aniline hydrogen phthalate.

The plate was photographed under visible light (a) and 360-nm ultraviolet light (b).

Preparation A was then radiolabelled with NaB3H4 and the 3H-polysaccharide was purified by gel-permeation chromatography on Bio-Gel P-30 (c) followed by

Bio-Gel P-2 (d). In each case, the fractions indicated in red were harvested.
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collected at 24 h contained negligible 3H2O (Fig. 7c inset),

confirming that the [3H]galactonate moiety of the [3H]RG-II

was not being catabolised.

It could be argued that bridging of soluble extracellular

RG-II to cell walls was inefficient owing to its dilution into

a relatively large volume of medium; however, a similar

lack of bridging was observed when a very small volume

of radioactive RG-II solution was pipetted directly on to a

small mound of Rosa cells growing on agar with no free

liquid medium. Therefore, dilution into the medium was

not the cause of the failure of wall binding.

Thus, cultured Rosa cells were unable to ‘mimic’ Pb2+ by

catalysing the dimerisation of extracellular RG-II in the

presence of H3BO3; and B-starved Rosa cells were unable

to link exogenous free RG-II to their own wall-associated

monomeric RG-II domains, even with the benefit of B sup-

plementation.

Excess boric acid does not prevent RG-II dimerisation –

eliminating a potential basis of B toxicity

It might be speculated that since the concentration of H3BO3

used in some experiments (Figures 6 and 7) was high

(1.2 mM), greatly exceeding that of RG-II, dimerisation might

have been inhibited, as proposed in the Introduction. How-

ever, in an in-vitro cross-linking experiment similar to that

in Figure 3(b), dimer production was not inhibited by H3BO3

concentrations up to at least 50 mM (Table 1). Thus H3BO3

at the highest concentration used in our in-vivo experiments

(1.2 mM) did not interfere in RG-II cross-linking.
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–½ h after adding H3BO3(0) ½ 1 2 4 6 24
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d
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0 h* 24 h*
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Fig. 5. Production of rhamnogalacturonan-II (RG-II) dimer in Rosa cells is

dependent on de-novo polysaccharide biosynthesis.

Rosa cells maintained in B-free medium for several months were re-fed

H3BO3 to 3.3 lM at time ‘0’. The cells were (a) healthy, (b) pre-starved of

their usual carbon source for 4 days, (c) treated with 10 lM carbonyl cyanide

3-chlorophenylhydrazone (or with an equivalent volume of ethanol, indi-

cated by *), (d) treated with 200 lM 2,4-dinitrophenol, (e) anaerobic, (f) fro-

zen/thawed, or (g) boiled. In each case, samples of alcohol-insoluble

residue taken at intervals after H3BO3 addition were saponified and digested

by endopolygalacturonase, and products were analysed by PAGE. Time ‘–½’
represents a sample taken 30 min before the addition of H3BO3; time ‘(0)’

was sampled as quickly as possible after H3BO3 addition.

h after adding RG-II½ 1 2 4 6 24

RG-II monomer

RG-II dimer

RG-II monomer

RG-II monomer

0 h
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Figure 6. Rhamnogalacturonan-II (RG-II) largely fails to dimerise in Rosa

culture apoplast.

Purified monomeric RG-II (about 60 lM) was incubated in cell-free spent

medium harvested from a zero-B Rosa culture 4 days after subculture.

(a) No H3BO3, (b) H3BO3 added to 1.2 mM concurrently with the RG-II, (c)

cells and 1.2 mM H3BO3 added. At intervals (0–24 h), samples of the med-

ium were frozen and later electrophoresed.
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DISCUSSION

Boron bridges are not essential for holding RG-II domains

in the wall

It is widely accepted that RG-II is a cell-wall pectin domain,

glycosidically linked between other pectic domains (espe-

cially HGA and RG-I) by a-(1?4)-galacturonosyl bonds.

Sidechain A endows RG-II with the ability to form unusu-

ally durable tetrahedral B-bridges at typical apoplastic pH

values (e.g. 4–5), and such bridging has been shown to be

essential for the biophysical properties of the cell wall, and

thus for cell growth and development. Although the

B-bridges may help to hold the pectin within the wall archi-

tecture, our data show that their existence is not essential

for this: Rosa cells grown in the absence of B still produce

pectin that contains monomeric RG-II domains, and this

pectin remains as an integral component of the cell wall

upon washing in Na2CO3. It is likely that cross-links involv-

ing other pectic domains ensure this wall association, e.g.

Ca2+ bridges between acidic HGA domains, glycosidic

bonds between xyloglucan and RG-I (Popper and Fry,

2005) and possibly galacturonoyl esters or amides to other

wall components (Kim and Carpita, 1992; Brown and Fry,

1993; Perrone et al., 1998). Nevertheless, the absence of B,

or a mutation rendering the RG-II incapable of binding B,

results in cell walls with defective biophysical properties

(Fleischer et al., 1998; O’Neill et al., 2001; Noguchi et al.,

2003).

Dimerisation of RG-II is largely protoplasmic, not

apoplastic

Although it is clear that B-bridges exist between RG-II

domains, and that their existence is biologically important,

very little was known about the mechanism of bridge for-

mation, or at what stage(s) during the ‘career’ of a RG-II

domain it is amenable to being dimerised in vivo. Possibil-

ities include synthesis in the Golgi bodies during de-novo

biosynthesis, during trafficking to the plasma membrane,

upon exocytosis into the wall and during maturation

within the wall. Dimerisation of RG-II is a slow process in

vitro unless non-biological agents such as Pb2+, Sr2+ or

very high Ca2+ are added. Yet dimerisation appears to
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Fig. 7. Exogenous [3H] rhamnogalacturonan-II (RG-II) fails to dimerise or

integrate into walls in cultured Rosa cells.

(a), (b) Monomeric [3H]RG-II (3.9 lM) was fed to B-starved 4-day-old Rosa

cultures at the same time as 1.2 mM H3BO3. Samples of medium were

electrophoresed: (a) fluorograph; (b) relevant bands scintillation counted.

(c) In a separate experiment, 8.5 nM [3H]RG-II was fed to B-sufficient and

B-deficient Rosa cultures, with or without 3.3 lM H3BO3 supplementation. At

intervals, samples of medium were assayed for total remaining soluble 3H

(graph); at 24 h, additional samples were assayed for volatile 3H (inset

Table; indicating any 3H2O formed by catabolism).

Table 1 Effect of high H3BO3 concentrations on the Pb2+-induced
dimerisation of [3H] rhamnogalacturonan-II (RG-II). Partially mono-
merised [3H]RG-II (22 lM) was incubated for 16 h in 0.2 M succi-
nate buffer (Na+), pH 5.5, in the presence of 0.5 mM Pb(NO3)2 plus
the indicated concentration of boric acid, and then analysed by
PAGE for radioactive dimers.

Added H3BO3

concentration
(mM)

Increase in
yield of dimeric [3H]RG-II
(as % of total tritium)

0 0.0a

0.2 1.0
0.4 1.9
0.8 5.6
1.6 9.3
3.1 10.6
6.3 12.7
12.5 16.8
25.0 18.5
50.0 19.7

aIn this experiment, monomerisation of the RG-II was incomplete;
in the H3BO3-untreated control, 44.8% of the total 3H was in the
form of monomeric RG-II.
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occur efficiently in-vivo, even in the presence of low

H3BO3 concentrations such as the 3.3 lM which is routinely

present in Rosa medium. There are important differences

between in-vivo and in-vitro dimerisation, e.g. all in-vitro

experiments to date have used purified free RG-II (Kobay-

ashi et al., 1996; O’Neill et al., 1996), whereas in vivo the

RG-II occurs as domains within much larger pectin mole-

cules. Also, RG-II preparations used for B-bridging experi-

ments in vitro have all used de-esterified RG-II (O’Neill

et al., 1996), which will lack the methylester group of on

the GlcA residue of sidechain A and the O-acetyl ester

groups of sidechain B. Furthermore, in-vitro experiments

have been conducted in the absence of enzymes and of

any cellular components that might act as carriers of B,

RG-II chaperones or catalysts of the borate esterification

reaction. For all these reasons, it is highly informative

to monitor RG-II dimerisation in-vivo in comparison with

in-vitro dimerisation. In the present paper, we have stud-

ied the dimerisation of both endogenous RG-II domains

(covalently linked to other pectic domains, retaining the

acetyl esters and associated with all other normal cellular

components) and exogenous RG-II (assured to be extracel-

lular, of a known concentration and if desired radioactively

labelled for ease of quantification).

These distinct approaches tracking endogenous pectin-

bound RG-II domains and exogenous free RG-II led to the

same conclusion: RG-II is not readily dimerised in the

apoplast, and protoplasmic dimerisation is dependent on

concurrent synthesis and/or secretion of polysaccharides.

Thus, when H3BO3 was re-added to a B-free culture,

endogenous RG-II dimer appeared only slowly, over a per-

iod of 24 h, at a rate commensurate with de-novo synthe-

sis. There was no disappearance of the large existing pool

of wall-bound monomeric RG-II domains. Furthermore,

prevention of polysaccharide biosynthesis blocked the

accumulation of RG-II dimer, supporting the conclusion

that B-bridging of RG-II occurs intraprotoplasmically and/

or at the time of secretion, but not appreciably later. It is

possible that the B-bridging occurs within the Golgi cister-

nae or within the Golgi-derived vesicles en route to the

plasma membrane; it is also possible that B-bridging

occurs at the moment of exocytosis, when the RG-II first

comes into contact with the plasma membrane. We con-

clude that at the time of integration into the cell wall, many

pectin molecules are already B-bridged via their RG-II

domains. Golgi and exocytotic sites of dimerisation would

not be accessible to exogenous RG-II, added to the culture

medium, in accordance with the inability of the cells to

cross-link soluble extracellular free RG-II or to bind it to

their existing wall-bound RG-II domains.

It had been reported that when 10–100 lM H3BO3 is

resupplied to B-starved Chenopodium cells (Fleischer

et al., 1999), many of the existing RG-II domains rapidly

(<10 min) become B-bridged. Our observations do not

agree with this. The reason for the discrepancy is unclear;

however, it is surprising that in the Chenopodium cells

90% of the endogenous high-Mr pectin-associated RG-II

domains were extractable in cold phosphate buffer

(Fleischer et al., 1999), suggesting that they were not truly

integrated within the cell wall. In contrast, we found that

B-free Rosa cells, in which the RG-II-domain-containing

pectins were firmly bound within the wall, showed no

dimer production during the first 30 min of restoring the

cells’ usual H3BO3 concentration. Another difference

between the Rosa and Chenopodium cells was that the lat-

ter required subculturing every 2 days so that they did not

enter the stationary phase. It was reported that if they did

enter the stationary phase the Chenopodium cells failed to

stop expanding and eventually burst (Fleischer et al.,

1999). Our B-free Rosa cells in contrast were routinely sub-

cultured every 2 weeks, and survived for at least 3 weeks if

they were not subcultured. They may have become better

acclimated to a B-free environment thanks to having been

maintained in a low [B] medium for many years (Nash and

Davies, 1972).

Ishii et al. (2001) also reported the in muro dimerisation

of RG-II. When 25 lM H3BO3 was supplied to B-deprived

Cucurbita plants, the proportion of B-bridged RG-II

domains in the third leaf gradually increased from 10–33%

to 80–93% over a 22-h period (there is some uncertainty

about the figures, depending on whether the% dimer val-

ues in Table 1 and Figure 2(b) are reported on a w/w or

mol/mol basis). Ishii et al. (2001) suggested that pre-

formed, presumably wall-localised, RG-II domains dimer-

ised in muro after H3BO3 addition. However, it was not

reported how much new wall biosynthesis occurred during

the 22-h period of observation. It seems plausible that

much of the dimeric RG-II detectable in Cucurbita leaves at

22 h had been biosynthesised de novo after H3BO3 treat-

ment, and thus that most dimer formation may have

involved newly synthesised RG-II domains and taken place

intraprotoplasmically or during secretion, as indicated by

our own work.

Methodological advances

We developed an effective PAGE system for resolving

monomeric and dimeric RG-II, with several advantages

over existing methods such as gel-permeation and anion-

exchange chromatography. Multiple samples with little or

no pre-purification can be run simultaneously; resolution is

excellent and rapid; detection is highly sensitive by stain-

ing; completed gels are amenable to long-term storage;

detection and quantification of radioactive RG-II is

facilitated; and no sophisticated apparatus is required.

Furthermore the quantitative trifluoroacetic acid (TFA)/scin-

tillation-counting method developed for assay of [3H]RG-II

is not compromised by chemiluminescence, a common

problem with radioactive bands on polyacrylamide gels
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(see https://www.nationaldiagnostics.com/liquid-scintilla-

tion/article/chemiluminescence-and-static-electricity, 2012).

We also developed a method for radiolabelling RG-II

based on reductive tritiation with NaB3H4. This method

converts the oxo- group of the reducing terminus (D-galact-

uronic acid in the case of RG-II) to the corresponding alco-

hol (in this case L-galactonic acid), in which one of the

carbon-bonded H atoms is stably replaced by tritium. The

radiolabelled substrate therefore has a minor chemical dif-

ference from free RG-II, but this difference concerns only

one out of the 30 sugar residues of RG-II, and clearly does

not compromise the ability of the RG-II to undergo H3BO3-

dependent dimerisation in the presence of Pb2+.

The basis of B toxicity

In the Introduction, we offered a potential explanation for

the phytotoxicity of high [B]: namely that high H3BO3

favours the rapid binding by each RG-II domain of a single

B atom [forming RG-II–(B�)–(OH)2], thus leaving very few

B-free RG-II domains as potential partners for dimerisation.

However, we found that RG-II cross-linking was not com-

promised in vitro by an approximately 2000-fold molar

excess of H3BO3 (tested at up to 50 mM), so this hypothesis

for the toxicity of high [B] was not supported by in-vitro

experiments.

CONCLUSION

This work shows that RG-II is not readily dimerised in the

Rosa cell-culture apoplast, and that dimerisation is depen-

dent on concurrent synthesis and/or secretion of polysac-

charides. Thus, in these cells, RG-II domains have a brief

window of opportunity for B-bridging within Golgi vesicles

or during exocytosis, but secretion into the apoplast is a

point of no return beyond which B-bridging does not read-

ily occur. Further studies aimed at identifying any enzymes,

B carriers or RG-II chaperones that promote B-bridging in

vivo should therefore be focused on the endomembrane

system and the plasma membrane at the site of exocytosis.

EXPERIMENTAL PROCEDURES

Gel electrophoresis

To prepare one 26.4% polyacrylamide gel of size
83 9 73 9 0.75 mm we mixed 834 ll water, 834 ll 2-amino-2-
(hydroxymethyl)-1,3-propanediol (TRIS) buffer (1.5 M TRIS base,
pH adjusted to 8.8 with HCl), 3.33 ml 40% (w/v) acrylamide/bis-
acrylamide (29:1), 3.9 ll tetramethylethylenediamine (TEMED) and
46.7 ll of freshly prepared 0.44 M ammonium persulphate. The
mixture was quickly poured and a 10-tooth comb was inserted;
gelation took 30 min. The electrode buffer was 50 mM TRIS base,
38 mM glycine, pH 8.5. Samples (8 ll) were mixed with 2 ll sam-
ple buffer (0.63 M TRIS-HCl containing 0.25% (w/v) bromophenol
blue and 50% (v/v) glycerol, pH 8.8).

A double-sided electrophoresis apparatus (Bio-Rad, http://
www.bio-rad.com/) was used, allowing 20 samples to be run simul-
taneously. Electrophoresis was conducted at 200 V for 75 min. The

gel was then fixed in ethanol/acetic acid/water (4:1:5) for 30 min,
washed with water for 1 min three times, then treated successively
with 400 lM sodium thiosulphate for exactly 1 min, water (3 9

20 sec), freshly prepared 6 mM silver nitrate in 10 lM formaldehyde
for 20 min, water (2 9 20 sec) and 0.28 M Na2CO3 containing 8 lM
sodium thiosulphate and 64 mM formaldehyde for 2–10 min.
Colour development was stopped 30 sec before the desired
intensity was reached by adding stopping solution (0.33 M TRIS
base in 2% v/v acetic acid) for 10 min. Colour development contin-
ued for about 30–60 sec in the stopping solution, the background
turning dark yellow (e.g. Figure 1a). Stained gels were stored in
water for up to a month, or dried onto cellulose acetate sheets.

Plant cell cultures

Arabidopsis thaliana (Landsberg erecta) suspension cultures, initi-
ated by May and Leaver (1993), were grown under constant illumi-
nation (25 lmol m�2 sec�1) with orbital shaking at 135 r.p.m. and
25°C. Cultures were maintained at 220 ml per 500-ml flask and
subcultured weekly. The medium (containing 100 lM H3BO3) was
modified from May and Leaver (1993) with 2% glycerol instead of
3% sucrose.

Cell suspension cultures of ‘Paul’s Scarlet’ rose (a complex
hybrid; genus Rosa), initiated by Nickell and Tulecke (1959), were
grown under constant illumination (about 10 lmol m�2 sec�1) in
medium MX1 of Nash and Davies (1972) (containing 3.3 lM H3BO3;
but with 2% glycerol instead of 2% sucrose), on an orbital shaker
at 25°C as described by Fry and Street (1980).

Spinach (Spinacia oleracea L., cv. ‘Monstrous Viroflay’) suspen-
sion cultures, initiated by Dalton and Street (1976), were main-
tained in Murashige and Skoog (1962) medium (containing 100 lM
H3BO3 and 1% w/v glucose) under constant illumination
(60 lmol m�2 sec�1).

For a study of the tolerance of cell cultures to low B, the media
were prepared from ‘AnalaR’ purity components in autoclavable
polypropylene flasks (Nalgene, Thermo Scientific, http://www.thermo
scientific.com/en/about-us/general-landing-page/nalgene-labware.
html). H3BO3 was added at 10 or 100% of the standard concentra-
tion, or omitted altogether.

Representative samples of culture media were concentrated
10-fold, filtered, then assayed for total dissolved B by ICP–MS (we
thank Dr L. J. Eades and Dr J. G. Farmer, Department of Chemis-
try, University of Edinburgh, UK, for conducting this analysis).

Isolation of RG-II from cell-cultures and red wine

Cultured cells were rinsed in water, then AIR was prepared by stir-
ring in 75% ethanol at 20°C for 4–6 h twice. The AIR was treated
with 1 M Na2CO3 at 4°C for 16 h, then rinsed with water until neu-
tral and freeze-dried. Endopolygalacturonase (10 U ml�1; Mega-
zyme, http://www.megazyme.com/) was added (about 50 ll mg�1

AIR) and incubated at 20°C for 16 h. Solubilised material was
taken for electrophoresis. In preliminary experiments, crude pec-
tinase preparations (Sigma-Aldrich, http://www.sigma-aldrich.
com/, or Koch-Light) or Driselase (Sigma-Aldrich) were used in
place of pure EPG.

For preparative purposes, AIR of Rosa culture was treated with
Na2CO3, then EPG, as above, and the RG-II was purified from the
crude digest by gel-permeation chromatography on Bio-Gel P-30
followed by Bio-Gel P-2 (Bio-Rad). The columns were eluted with
pyridine/acetic acid/water, 1:1:98, containing 0.5% chlorobutanol.
Four independent preparations of Rosa RG-II (A–D) were compared.

Red wine was dried and the residue re-dissolved at 1% (w/v)
in water. Some samples were then dialysed for 24 h in ‘12-kDa
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cut-off’ tubing, which removed essentially all the monosaccharide
GalA but retained the majority of the (dimeric) RG-II.

In-vitro monomerisation and dimerisation of RG-II

For monomerisation, Arabidopsis RG-II was incubated for 16 h in
0.1 M HCl at 20°C, then de-salted on Bio-Gel P-2 in water. In a
study of in-vitro dimerisation, the monomer was incubated for
16 h in 0, 0.12 or 1.2 mM H3BO3, with or without 0.5 mM PbNO3.
The solutions were buffered at pH 3.0, 5.0 or 7.0 with HEPES, 2-(N-
morpholino)ethanesulphonic acid (MES) and acetic acid (50 mM

each; Na+). Samples were analysed by PAGE without further
preparation; the presence of Pb2+ and the presence of these buf-
fers did not interfere in the electrophoresis of RG-II.

Radiolabelling of RG-II

NaB3H4 (78 MBq; 3.9 GBq lmol�1; DuPont, http://www.dupont.
com/) in 20 ll 20 mM NaOH was added to 200 lg of RG-II prepara-
tion ‘A’ in 100 ll water (neutralised with NaOH) and incubated for
48 h. Xylose (1 mg) was then added and incubated for 5 h to scav-
enge any remaining NaB3H4. Next 20 ll of 5% acetic acid was
added, and the products were fractionated on Bio-Gel P-10; the
void volume (crude [3H]RG-II) was collected, repurified on Bio-Gel
P-30, monomerised with HCl and desalted on Bio-Gel P-2, as
above. The specific activity of the [3H]RG-II was estimated (by
scintillation-counting and total carbohydrate assay) at 17 MBq
lmol�1 RG-II monomer.

Detection of radioactivity

For fluorography, polyacrylamide gels were bathed in glacial ace-
tic acid for 5 min, then in 20% (w/v) 2,5-diphenyloxazole (PPO) in
acetic acid for 30 min, rinsed with water for 5 min, dried between
cellophane sheets and exposed to pre-flashed film for 1–8 weeks.
For quantification of [3H]RG-II in gels, the bands were cut out of
the dried gel and incubated in 1 ml 2 M TFA at 100°C for 1 h; this
hydrolyses the polysaccharide and elutes the radioactive sugars
from the gel. Water-miscible scintillation fluid was then added,
and 3H was assayed in a scintillation counter.

Sugar analysis

For the analysis of sugar composition, RG-II was hydrolysed in
2 M TFA at 120°C for 1 h and the products were resolved on Merck
microcrystalline cellulose TLC plates (http://www.merck.com/) in
butanol/acetic acid/water (3:1:1) followed by ethyl acetate/pyri-
dine/water (10:4:3). After staining with aniline hydrogen phthalate
(Fry, 2000), the plate was photographed under visible light and
360-nm ultraviolet light.

Additional portions were analysed by HPLC on CarboPac PA1
(Dionex UK, http://www.dionex.com/) eluted at 1 ml min�1 with:
0–2 min, 20 mM NaOH; 2–40 min, water; 40–75 min, water ?
800 mM NaOH (linear gradient); 75–82 min, 800 mM NaOH; 82–
90 min, 20 mM NaOH. A pulsed amperometric detector with a gold
electrode was used.

Tracking the dimerisation of endogenous RG-II domains in

vivo

Rosa cells maintained in B-free medium for at least 8 weeks were
re-fed H3BO3 to 3.3 lM 7 days after subculture. In some cases the
cells were in their standard medium and flasks, and normal shak-
ing (aeration) was continued after the addition of H3BO3. In oth-
ers, the cells were maintained in carbon-free medium for 4 days
before H3BO3 re-feeding. Alternatively, CCCP or DNP was added

from an ethanolic stock solution to give 10 or 200 lM, respectively
(accompanied by 0.1% v/v ethanol) at the same time as the
H3BO3; controls received ethanol only. Further 18-ml aliquots of a
7-day culture were dispensed into 60-ml Sterilin beakers; under
these conditions, in which the medium has a low surface area:
volume ratio, the cultures are partially anaerobic and although
remaining viable do not grow. Other 18-ml aliquots were killed
by freezing/thawing or by incubation at 100°C for 1 h. In each
case, aliquots of culture were taken at intervals after the addition
of H3BO3 and used for the preparation of AIR, treated with
Na2CO3, water and EPG, and the RG-II generated was analysed
by PAGE.

Tracking the possible dimerisation of exogenous free RG-II

in vivo

For the experiment shown in Figure 6, 150 ll of 4-day-old Rosa
culture (or cell-free spent medium thereof) was incubated with
shaking (aeration) in the presence of about 50 lg of monomerised
non-radioactive RG-II (giving about 60 lM) plus 1.2 mM H3BO3. At
intervals, 8-ll samples of medium were removed, frozen and later
subjected to PAGE.

To test the fate of lower concentrations of exogenous RG-II in
Rosa cultures (Figures 7a,b and S2), we fed monomerised [3H]RG-
II (final concentration 3.9 lM) followed by H3BO3 (to 1.2 mM) to
150 ll of 4-day-old B-free Rosa culture (or cell-free spent medium)
and incubated it under standard conditions. At intervals, samples
of medium were removed, frozen and subjected to PAGE; the gel
was fluorographed, and the radioactive bands were quantified by
scintillation counting.

In a separate experiment (Fig. 7c), 8.5 nM [3H]RG-II was fed to
B-sufficient and B-deficient Rosa cultures, with or without 3.3 lM
H3BO3 supplementation. At intervals, samples of medium were
assayed for the remaining soluble 3H. At 24 h, replicate samples
of medium were assayed for total 3H and for non-volatile 3H
remaining after drying and redissolving in the original volume of
water (loss of 3H on drying indicates any 3H2O formed).
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online
version of this article.
Figure S1. Characterisation of purified Rosa rhamnogalacturonan-
II by HPLC.
Figure S2. Exogenous [3H] rhamnogalacturonan-II fails to dimerise
in spent medium of cultured Rosa cells.
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