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Abstract

Liver fibrosis results from the co-ordinated actions of myofibroblasts and macrophages, a proportion of which are of bone
marrow origin. The functional effect of such bone marrow-derived cells on liver fibrosis is unclear. We examine whether
changing bone marrow genotype can down-regulate the liver’s fibrotic response to injury and investigate mechanisms
involved. Proteinase activated receptor 1 (PAR1) is up-regulated in fibrotic liver disease in humans, and deficiency of PAR1 is
associated with reduced liver fibrosis in rodent models. In this study, recipient mice received bone marrow transplantation
from PAR1-deficient or wild-type donors prior to carbon tetrachloride-induced liver fibrosis. Bone marrow transplantation
alone from PAR1-deficient mice was able to confer significant reductions in hepatic collagen content and activated
myofibroblast expansion on wild-type recipients. This effect was associated with a decrease in hepatic scar-associated
macrophages and a reduction in macrophage recruitment from the bone marrow. In vitro, PAR1 signalling on bone marrow-
derived macrophages directly induced their chemotaxis but did not stimulate proliferation. These data suggest that the
bone marrow can modulate the fibrotic response of the liver to recurrent injury. PAR1 signalling can contribute to this
response by mechanisms that include the regulation of macrophage recruitment.
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Introduction

Fibrosis is a consequence of chronic liver disease and may lead

to cirrhosis and liver failure. Hepatic stellate cells (HSC) and

activated myofibroblasts are the predominant liver cell-types that

produce collagen in response to chronic injury. Recent studies

have clearly shown that the bone marrow (BM) can contribute to

hepatic myofibroblast populations in murine models of liver injury

and in patients with liver fibrosis [1–4]. The BM contributes to

other non-parenchymal cell-types in the liver such as macrophag-

es, which are known to regulate both scar formation and resolution

[5]. Rats depleted of macrophages develop less liver fibrosis, and

impairment of monocyte chemotaxis and activation leads to less

liver fibrosis and HSC activation [6–8]. Moreover, BM-derived

cells, such as macrophages, may also aid liver recovery by assisting

in fibrous matrix degradation via the production of matrix

metalloproteinases and anti-inflammatory cytokines [9–11].

Coagulation cascade proteinases, such as thrombin, play key

roles in inflammation and fibrosis in multiple organs including the

liver [12–16]. Hepatic fibrosis progression is correlated with pro-

coagulant status in humans with chronic viral hepatitis and in

murine models of liver fibrosis [16,17]. Indeed antagonism of

thrombin has been shown to prevent fibrosis progression in these

models [14,16]. Thrombin signals via cellular proteinase activated

receptors (PAR), predominantly PAR1, which is widely expressed

on fibroblasts, macrophages, platelets, and endothelium [18].

PAR1 is localised to activated HSCs and macrophages in cirrhotic

livers in humans and is up-regulated on HSC and macrophage

activation in vitro [19–23]. Pharmacological antagonism of PAR1

reduces portal fibrosis in the rat bile duct ligation model of

cholestatic liver injury, and the hepatic scarring response to carbon

tetrachloride (CCl4) injury is reduced in PAR1-knockout mice

(PAR1(2/2)) [22,24]. Additionally, PAR1-deficient mice exposed

to steatohepatitic injury exhibit lower levels of liver inflammation

[25]. Genetic polymorphisms of PAR1 may influence fibrosis

progression in humans with hepatitis C infection [26].

The precise functional contribution of the BM to the liver’s

fibrotic response to injury has not been clearly defined, and the

mechanisms involved require further clarification. The role of

PAR1 signalling on BM-derived cells, in particular that on BM-

derived macrophages, is yet to be elucidated. By performing bone

marrow transplantation (BMT) experiments in a murine model of
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fibrotic liver injury using mice deficient in functional PAR1, we

sought to investigate the mechanisms by which PAR1 signalling in

BM-derived cells, in particular in macrophages, may influence

liver fibrosis.

Methods

Mouse models and induction of liver fibrosis
All animal work was approved by the British Home Office

(project licence no. 70/5956) and carried out under its procedural

and ethical guidelines. Mice were housed in self-contained

isolation units with free access to drinking water and standard

chow. PAR1(2/2) mice (C57/BL6 background), which lack

functional PAR1 and wild-type (WT) littermates were bred in

house. The production (involving backcrossing on to a C57/BL6

background .10 generations) and phenotype of this mouse have

been previously described [27]. In contrast to humans, mouse

platelets do not express PAR1 so coagulation status is unaltered in

these knockout mice [28]. 4–8 week-old female PAR1(2/2) mice

(n = 8) and age-matched female WT littermates (n = 8) received 6

weeks CCl4 (Sigma-Aldrich, Harlan, UK) via intra-peritoneal

injection three times a week to induce liver fibrosis. CCl4 diluted in

sunflower oil was administered at the following concentrations:

week 1 1:31, week 2 1:15, week 3 1:7, weeks 4–6 1:3. A total

volume of 0.1 mL was given with each intra-peritoneal injection.

Mouse livers were harvested 72 h after the last CCl4 injection.

To examine whether BM genotype influences liver fibrosis, 4–6

week-old female recipient C57/BL6 mice (Harlan, Bicester, UK,

n = 8 per group) received BMT from age-matched PAR1(2/2) or

C57/BL6 WT male donors. BM cells were obtained from the

pelvis, femur and tibia of donor mice in cooled PBS with 2% fetal

calf serum (FCS) (n = 4 per group). Female recipient mice,

maintained on acidified water, were myelo-ablated by whole body

irradiation (total 10 Gray in two doses), and injected with

unfractionated male BM in PBS via the tail vein. BMT was sex-

mismatched to enable BM-derived cells to be identified using the

Y chromosome. After four weeks to allow for BM reconstitution,

liver fibrosis was induced with the same CCl4 regimen described

above.

Immunohistochemistry and Y chromosome in situ
hybridisation

Liver tissue was routinely processed and 5 mm-thick sections cut.

Fibrosis was assessed by Picrosirius Red (BDH Laboratory, Poole,

UK) staining for collagen. Immunohistochemistry was performed

for myofibroblasts (aSMA), macrophages (F4/80), endothelium

(endomucin) and PAR1 using the primary antibodies and antigen

retrieval steps shown in Table 1. Appropriate secondary and

tertiary antibody layers were used to develop signal for light

microscopy or immunofluorescence. Where detection of the Y

chromosome was required, in situ hybridisation was subsequently

performed. Liver tissue was permeabilised in 1 mol/L sodium

thiocyanate at 80uC (10 min), digested in 0.4% pepsin in 0.1 mol/

L hydrochloric acid at 37uC (7 min), fixed in 4% paraformalde-

hyde, then dehydrated. A FITC-labelled Y-chromosome paint

(Star-FISH, Cambio, Cambridge, UK), was added, sections

denatured at 60uC (10 min), then incubated overnight at 37uC.

Sections were nuclear-counterstained with DAPI.

Liver microscopy and image analysis
Sections were viewed by light microscopy (Nikon Eclipse E600,

DXM 1200F camera, Nikon, Kingston-upon-Thames, UK) or

fluorescent microscopy (Zeiss Axioplan, Carl Zeiss, Welwyn

Garden City, UK, with a triple bandpass filter). Cell counting

was performed blinded on 10 consecutive randomly-selected6400

magnification fields unless otherwise stated. To quantify the

histological distribution of hepatic collagen and activated myofi-

broblasts, digital image analysis was performed blinded on an

average of 12 randomly-selected 6100 fields from each section

and analysed using a Zeiss AxioVert 200M microscope and

AnalySIS software (Soft Imaging System Inc, NY).

Assessment of hepatic gene expression by real time RT-
PCR

Total RNA was extracted from frozen, powdered liver using

TRIzol reagent as per the manufacturer’s protocol. Random

hexamers were used as primers for the reverse transcription of

1 mg RNA using the Applied Biosystems kit (Applied Biosystems,

Foster City, CA), according to the manufacturer’s instructions.

Complementary DNA (cDNA) was synthesised from 1 mg of RNA

per sample using the GeneAmp RT-PCR kit (Applied Biosystems).

Table 1. Details of primary antibodies used for immunohistochemistry.

Cell Antigen Dilution Incubation Manufacturer Antigen Retrieval

Myofibroblast aSMA 1:2000 1 h Sigma-Aldrich, Dorset, UK SCMW pH6 5 min

Macrophage* F4/80 1:40 1 h Insight Biotech, Wembley, UK 0.1% chymotrypsin 37uC 15 min

Macrophage** F4/80 1:200 1 h Abcam, Cambridge, UK SCMW pH6 5 min

Endothelium Endomucin 1:200 1 h Santa Cruz Biotech, CA, USA SCMW pH6 20 min

PAR1 PAR1 1:1000 Overnight 4uC n/a1 SCMW pH6 20 min

aSMA, a-smooth muscle actin; PAR1, proteinase activated receptor 1; SCMW, sodium citrate buffer (2.94 g/L) microwave,
*used for total hepatic macrophage counting with light microscopy.
**used for fluorescence immunodetection of macrophages in conjunction with in situ hybridisation for Y chromosome.
1a kind gift from Dr Eleanor Mackie, Melbourne, Australia.
doi:10.1371/journal.pone.0086241.t001

Table 2. Primer nucleotide sequences used for real-time
quantitative RT-PCR.

Target Gene Primer

Mouse COL1A1 For: 59 TCGTGGCTTCTCTGGTCTC 39

Rev: 59 CCGTTGAGTCCGTCTTTGC 39

Mouse HPRT For: 59 TCATTATGCCGAGGATTTGG 39

Rev: 59 ACAGAGGGCCACAATGTGAT 39

Col 1A1, collagen Ia1; HPRT, hypoxanthine guanine phosphoribosyl transferase.
doi:10.1371/journal.pone.0086241.t002

Macrophage PAR-1 Mediated Liver Fibrosis
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Real time RT-PCR was performed using Platinum SYBR Green

qPCR SuperMix UDG (Invitrogen) on a LightCycler 1.5 Real-

time Detection System (Roche, Welwyn Garden City, UK) and

analysed using LightCycler Real-time PCR Detection System

Software Version 3.5. 2 mL of cDNA were added to make a 20 mL

final volume PCR mix. The nucleotide sequences of primers used

for messenger RNA (mRNA) target gene analysis are shown in

Table 2. All samples were normalised against hypoxanthine

guanine phosphoribosyl transferase housekeeping gene expression.

To facilitate a quantitative comparison, individual sample values

were normalised against respective mean WT expression.

Cell Lines and Culture
Primary BM-derived macrophages (BMDM) were isolated by

flushing the femurs and tibias of 8–12 week-old C57/BL6 mice

and then matured in macrophage selective media for 7–9 days as

previously described [5]. A human monocyte cell line, THP-1, and

a murine macrophage cell line, RAW 264.7, (both American

Tissue Culture Collection, Rockville, MD) were also used. For

details of cell culture and media see Table 3.

In vitro monocyte migration assay
BMDM’s (26105 cells in 200 mL) were washed in serum-free

medium and left to settle overnight in the upper chamber of

12 mm transwell inserts containing an 8 mm pore size polycar-

bonate membrane (Corning, NY). Thereafter, 500 mL of serum-

free medium, containing varying concentrations of SFLLRN

(Sigma-Aldrich, UK), a synthetic PAR1 ligand, was added to the

lower chamber. Monocyte chemoattractant protein (MCP1,

100 ng/mL, R&D Systems, Minneapolis, MN) or 10% FCS were

used as positive controls and serum-free medium as a negative

control (n = 2 per group, experiments in duplicate). After 4 h

incubation at 37uC, non-migrated cells were wiped off the upper

surface of the membrane and cells attached to the under-surface

were methanol-fixed and stained. Migrated cells were counted

from four randomly-selected fields using a 620 objective.

Migration in THP-1 cells was also assessed this way (3 h

incubation time).

In vitro macrophage proliferation assay
RAW 264.7 cells and BMDM’s were serum-starved for 16 h,

seeded at densities of 6.256103 or 26105 cells/well in 96-well

plates, then incubated in various concentrations of SFLLRN at

37uC for 24 h & 72 h, respectively. FCS and serum-free medium

acted as positive and negative controls, respectively. (n = 2,

experiments in duplicate). To quantify proliferation, cells were

then incubated with MTT (3-[4,5-dimethylthiazol-2yl]-2,5-diphe-

nyl tetrazolium bromide, 0.4 mg/mL, Sigma-Aldrich) for 3 h,

formazan crystals eluted with DMSO and absorbance measured at

560 nm.

Statistics
Statistical analysis employed the t test, Mann Whitney test and

the one-way ANOVA with Dunnett’s post-test, for parametric and

non-parametric data, respectively, where appropriate (GraphPad

Prism, La Jolla, CA). A p value cut-off of 0.05 was taken as

significant and results presented as mean +/2 SEM.

Results

PAR1 is up-regulated during chronic liver injury and is
abundantly expressed by hepatic macrophages

Iterative intra-peritoneal CCl4 administration induced hepato-

cyte necrosis, inflammatory cell infiltration and the formation of

thick fibrous septae. We report that PAR1 is abundantly expressed

along the septal scars and within the hepatic lobule, with

expression increasing markedly after liver injury (figure 1). Within

the septal scars, co-staining for PAR1 and F4/80 was commonly

found. In contrast, only a minority of aSMA-positive septal

myofibroblasts and hepatic endothelial cells expressed PAR1.

Absence of PAR1 signalling leads to diminished liver
fibrosis after CCl4 injury

To examine the role of PAR1 signalling in hepatic fibrosis,

PAR1(2/2) mice and WT littermates received 6 weeks CCl4,

resulting in hepatic inflammation and scarring. PAR1(2/2) mice

acquired significantly less liver fibrosis than WT controls with

sparser, thinner fibrotic bands, as assessed by histological collagen

percentage surface area (2.20+/20.27% vs. 3.28+/20.08%,

p = 0.001). Additionally, there was a lower density of activated

myofibroblasts, assessed by histological percentrage surface area

Table 3. Details of cell culture media.

Cell-type Culture Medium

BMDM DMEM, 20% L929 conditioned media16, 10% FCS, 1% penicillin, 1% streptomycin

THP-1 RPMI-1640 medium, 10% FCS

RAW264.7 DMEM, 10% FCS, 1% L-glutamine, 100 IU/mL penicillin, 100 mg/mL streptomycin

BMDM, primary mouse bone marrow-derived macrophage; DMEM, dulbecco’s modified eagle medium; FCS, fetal calf serum.
doi:10.1371/journal.pone.0086241.t003

Figure 1. Hepatic PAR1 is up-regulated during liver injury and
is expressed on liver macrophages. (A–B) In wild-type mice, there
is a marked up-regulation of hepatic PAR1 (brown, 6100) after carbon
CCl4 injury on cells along the hepatic scars (black arrows) and within the
lobule itself (black arrowheads). (C–E) PAR1 (green) is commonly co-
localised to macrophages (C, F4/80, red), but only occasionally to
myofibroblasts (D, aSMA, red) and hepatic endothelium (E, endomucin,
red). (Fluorescence images at 6200 magnification, nuclei in blue.)
doi:10.1371/journal.pone.0086241.g001

Macrophage PAR-1 Mediated Liver Fibrosis
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(aSMA+, 1.43+/20.18% vs. 2.18+/20.35%, p = 0.05) (figure 2).

Analysis at gene expression level confirmed that PAR1(2/2) mice

had significantly lower levels of COL1A1 mRNA than WT

controls (p = 0.023) (figure 3). This confirms that PAR1 signalling

contributes to liver fibrosis in this experimental model.

Absence of PAR1 signalling is associated with a reduction
in scar-associated macrophages after liver injury

Given the abundant expression of PAR1 on hepatic macro-

phages, we examined whether loss of functional PAR1 during liver

injury resulted in differences in the hepatic macrophage popula-

tion. Analysis revealed significantly fewer macrophages in the

scarred livers of PAR1(2/2) mice compared to WT controls

(143+/212 vs. 244+/220, p = 0.003, figure 2). To ensure that

PAR1(2/2) mice were not constitutively deficient in macrophag-

es, the livers of uninjured PAR1(2/2) mice and WT littermates

were compared. To minimise sampling error due to lower total cell

numbers, 10 consecutive randomly-selected low power rather than

high power fields were counted. There were no differences

between PAR1(2/2) mice and WTs (mean cell counts 205+/218

vs. 234+/212, p = 0.63). The attenuated fibrotic phenotype

secondary to PAR1 deficiency is therefore associated with a lower

number of hepatic macrophages. We next sought to investigate the

specific contribution of BM-derived cells to the hepatic scar-

associated cell populations and the mechanisms by which PAR1

signalling might mediate liver injury.

Attenuation of liver fibrosis in PAR1(2/2) mice: role of
the bone marrow

BM cells from PAR1(2/2) mice were transplanted into C57/

BL6 WT recipients to ascertain whether modification of BM

genotype alters the fibrotic response in the CCl4-injured livers of

recipient animals. C57/BL6 WT recipients, transplanted with

C57/BL6 WT BM, served as controls. Male BM was transplanted

into myelo-ablated female recipients to enable tracking of BM-

Figure 2. Loss of PAR1 diminishes the hepatic fibrotic response to CCl4 liver injury. PAR1(2/2) mice acquire significantly less hepatic
collagen (images A&D, sirius red, 6100; graph G), fewer activated myofibroblasts (images B&E, aSMA, brown, 6100; graph H) and fewer hepatic
macrophages (images C&F, F4/80, brown, 6200; graph I) after CCl4 injury compared to control WT mice (WT, A–C). (graphs show mean + SEM, p
values as shown.)
doi:10.1371/journal.pone.0086241.g002

Figure 3. Hepatic collagen I mRNA expression in vivo. A
considerable reduction in COL1A1 gene expression was found in
PAR1(2/2) mice subjected to carbon tetrachloride (CCl4) liver injury
compared to WT controls (A). A corresponding reduction in COL1A1
gene expression of lower magnitude was seen WT mice transplanted
with PAR1(2/2) bone marrow (PAR1(2/2) BMT) compared to WT
controls transplanted with WT bone marrow (WT BMT) (B). (graphs
show mean + SEM, normalised to hypoxanthine guanine phosphor-
ibosyl transferase housekeeping gene expression and against respec-
tive controls, p values as shown.)
doi:10.1371/journal.pone.0086241.g003

Macrophage PAR-1 Mediated Liver Fibrosis
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derived cells by Y chromosome in situ hybridisation. Successful

haematological reconstitution of the recipient animal with donor

BM was verified by confirming replacement of recipient splenic

tissue with male donor cells in all animals (figure 4). Considerable

hepatic engraftment of BM-derived myofibroblasts was seen in

recipient animals, consistent with our previous published data

(figure 4) [1]. Engraftment rates ranged between 20–30% of total

myofibroblast number. Given that nuclei in 5 mm liver sections

will not include the Y chromosome approximately one-third of the

time, this equates to adjusted engraftment rates of 30–45% [1]. No

significant differences were found between the proportional

engraftment of myofibroblasts in the WT BMT and PAR1(2/

2) BMT groups, suggesting that PAR1 signalling does not play a

role in the hepatic migration of these fibrogenic cells.

PAR1(2/2) BMT mice accumulated significantly less liver

fibrosis than equivalent WT BMT controls (2.65+/20.10% vs.

3.11+/20.08%, collagen surface area, p = 0.004) after CCl4
injury, and had significantly lower density of activated myofibro-

blasts (1.40+/20.10% vs. 1.99+/20.21%, aSMA+ histological

percentage surface area, p = 0.01, figure 5). Analysis of collagen at

gene expression level revealed that PAR1(2/2) BMT mice had a

trend to lower levels of COL1A1 mRNA compared to WT BMT

controls though this difference did not reach statistical significance

at this time-point of advanced fibrosis (p = 0.076) (figure 3). These

data provide evidence that absence of PAR1 signalling on BM-

derived cells can confer protection against CCl4-induced liver

fibrosis, thus indicating that the BM can influence the liver’s

fibrotic response.

Analysis of macrophage recruitment showed that a considerable

proportion of hepatic macrophages were BM-derived, with

adjusted engraftment rates in WT mice of 60% (figure 4).

Moreover, a significantly lower proportion of this population

was of BM origin in PAR1(2/2) BMT mice (29.0+/23.4% vs.

39.6+/23.8%, unadjusted rates, p = 0.05), suggesting that PAR1

signalling may play a role in macrophage recruitment to the

injured liver. A reduction in total hepatic macrophage number was

also seen (206+/213 vs. 264+/223, p = 0.04, figure 5). Thus,

PAR1 signalling on hepatic macrophages may influence hepatic

macrophage recruitment during injury affecting total macrophage

number.

Figure 4. Absence of PAR1 signalling on BM-derived cells is associated with a significant reduction in macrophage recruitment to
the injured liver. Female C57/BL6 mice received BMT from male PAR1 knockout donors (PAR1(2/2)BMT, B&D) or from male C57/BL6 WT controls
(WTBMT, A&C) before CCl4 liver injury. In both groups, BM-derived myofibroblasts (aSMA, red, A&B) and hepatic macrophages (F4/80, red, C&D) are
seen (examples indicated by white arrowheads, 6400 magnification). (E) Splenic tissue showing complete haematopoietic reconstitution of recipient
mice (female) with male cells, validating the efficacy of the BMT protocol. In all panels BM-derived (male) cells are identified by Y chromosome in situ
hybridisation (green dot, Y chrm), localised within nuclei (DAPI, blue). (F) Graph showing the relative proportion of hepatic myofibroblasts (aSMA) and
macrophages (F4/80) of BM origin. There is a significant reduction of BM-derived macrophage infiltration into the liver with loss of PAR1 signalling.
(n = 8 per group, mean + SEM, p values as shown.)
doi:10.1371/journal.pone.0086241.g004

Figure 5. Absence of PAR1 signalling on BM-derived cells can
confer protection against liver fibrosis. C57/BL6 WT mice
transplanted with BM from PAR1 knockout donors (PAR1(2/2)BMT,
D–F) acquired significantly less hepatic collagen (images A&D, sirius red,
6100; graph G), fewer activated myofibroblasts (images B&E, aSMA,
brown, 6100; graph H) and fewer hepatic macrophages (images C&F,
F4/80, brown,6200; graph I) after CCl4 injury compared to control mice
transplanted with WT BM from C57/BL6 donors (WTBMT, A–C). (graphs
show mean + SEM, p values as shown.)
doi:10.1371/journal.pone.0086241.g005

Macrophage PAR-1 Mediated Liver Fibrosis
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PAR1 activation induces macrophage migration but not
proliferation

The reduction of liver fibrosis in PAR1(2/2) mice was strongly

associated with a reduction in hepatic macrophage numbers and

found in conjunction with reduced macrophage recruitment to the

liver from the BM. In vitro migration assays revealed that PAR1

activation directly induces macrophage/monocyte migration. Both

primary BMDM’s and the THP-1 human monocyte cell-line,

demonstrated significant chemotaxis to the PAR1 ligand,

SFLLRN (figure 6). In primary BMDM’s the magnitude of the

response was equivalent to that achieved with MCP1, a potent

monocyte chemoattractant. In order to exclude the possibility that

hepatic macrophage numbers were attenuated in PAR-1(2/2)

BMT mice due to a direct effect of PAR1 stimulation on WT

macrophage proliferation, primary BMDM’s were incubated in

vitro with SFLLRN. These studies revealed that PAR1 activation

has no effect on macrophage proliferation (figure 6).

Discussion

The importance of PAR1 signalling in liver fibrogenesis has

been shown in murine models of cholestatic and parenchymal liver

injury, and PAR1 expression in human liver disease has also been

demonstrated [19,22–24]. In this study using knockout mice, we

confirm that PAR1 signalling plays an important role in CCl4-

mediated liver fibrosis. We demonstrate that absence of PAR1 is

associated with a 33% reduction in histological collagen deposition

and a significant reduction in the activated aSMA-positive

myofibroblast expansion. Our results are consistent with a

previously published study where liver fibrosis reductions of 36%

and 56% were reported in heterozygote and homozygote PAR1-

deficient mice, respectively [24]. We furthermore go on to

demonstrate that an important cell-type in PAR1 regulation of

liver fibrosis is the hepatic macrophage. In our model of CCl4-

induced liver fibrosis, we found that PAR1 expression in WT mice

is highly up-regulated localising to both septal scars and the

hepatic lobule itself. A large majority of the PAR1 expression seen

within the injured liver occurred on hepatic macrophages. Scar-

associated macrophages play an important role in releasing pro-

inflammatory and pro-fibrogenic cytokines during liver injury [5–

8]. Knockout of PAR1 in our study is associated with a decrease in

macrophage number within the damaged liver. In other organ

systems, loss of PAR1 signalling has been shown to be protective in

a mouse model of crescentic glomerulonephritis in parallel with a

decrease in renal macrophage number, and PAR-1 deficiency

causes amelioration of bleomycin-induced lung injury in associa-

tion with a reduction in macrophage recruitment to alveolar

airspaces [13,29].

We have gone on to demonstrate that BM transplantation alone

can partially confer the phenotype of reduced hepatic fibrosis seen

in PAR1(2/2) mice. In mice where only the BM was rendered

PAR1-deficient (i.e. in WT mice transplanted with PAR1(2/2)

BM), reductions in hepatic fibrosis, collagen gene expression and

activated myofibroblast expansion were observed in conjunction

with a diminution of the hepatic macrophage population. The

impact on liver fibrosis seen here was of lower magnitude than that

seen in wholly PAR(2/2) deficient, i.e. those not undergoing BM

transplantation. This may reflect the fact that PAR1 signalling on

cells endogeneous to the liver is also relevant. At the single time-

point of advanced fibrosis studied in these experiments, only 30–

45% of hepatic myofibroblasts were of BM origin, indicating

chimerism in these cell populations in both PAR(2/2) and WT

Figure 6. PAR1 activation induces monocyte/macrophage migration but not proliferation. (A–B) Migration assay of primary mouse BM-
derived macrophages and a human monocyte cell line (THP-1) to SFLLRN demonstrating chemotaxis to the PAR1 agonist in both cell-types (MCP1
positive control). (C–D) SFLLRN has no pproliferative effect on primary mouse BM-derived macrophages (72 h) or a mouse macrophage cell line (RAW
264.7, 24 h) plated at the two different starting cell densities shown. (graphs show mean + SEM; p values as shown.)
doi:10.1371/journal.pone.0086241.g006
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mice. Furthermore, up to 60% of the total hepatic macrophage

population appeared BM-derived. Here, deficiency of PAR1 on

BM cells led to a significant reduction in macrophage engraftment

into the liver, suggesting a role for PAR1 signalling in macrophage

recruitment. PAR1 signalling in other cells controlling inflamma-

tion and fibrosis, such as T-cell lymphocytes, may also play a role

in liver fibrosis, but this has not been explored in these

experiments [23,24].

The importance of MCP1/CCL2 signalling to monocyte/

macrophage chemotaxis is well described and recent studies have

highlighted the importance of MCP1/CCL2 signalling via CCR2

receptors on BM-derived cells in the CCl4 mouse model of fibrotic

liver injury [8,30]. In these studies, mice deficient in CCR2 have

reduced hepatic macrophage infiltration associated with reduced

HSC activation and diminished liver fibrosis. It has previously

been shown that PAR1 activation on rat HSCs induces MCP1/

CCL2 synthesis in vitro, as well as stimulating HSC proliferation

and collagen I expression [20,22]. Likewise, PAR1 activation also

stimulates MCP1/CCL2 production in both murine and human

monocytes/macrophages [21,31]. MCP1/CCL2-generated mac-

rophage recruitment was shown to be dependent on PAR1

activation in vivo in a mouse heart to rat model of acute humoral

rejection [32]. In the studies presented here, we have demonstrat-

ed that PAR1 activation can directly stimulate monocyte

migration, independent of MCP-1 signalling, in vitro. This

highlights a further pathway by which PAR1 signalling could

recruit macrophages during liver injury to promote fibrosis. It is

probable that several pathways exist by which PAR1 signalling can

recruit hepatic macrophages to sites of injury. Conversely, we

found that PAR1 activation did not promote macrophage

expansion, suggesting that PAR1 signalling affects hepatic

macrophage number predominantly via recruitment of these

cell-types rather than their proliferation.

We sought to further test the hypothesis that the BM can play a

significant role in liver fibrosis and have demonstrated this by

selectively disrupting PAR1 signalling on BM-derived cells. We

provide further evidence that BM-derived macrophages may play

an important role in promoting liver fibrogenesis, and propose a

role for PAR1-induced macrophage chemotaxis in this process.
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