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a b s t r a c t

Mangroves are globally important carbon stores and as such have potential for inclusion in future forest-
based climate change mitigation strategies such as Reduced Emissions from Deforestation and Degrada-
tion (REDD+). Participation in REDD+ will require developing countries to produce robust estimates of
forest above-ground biomass (AGB) accompanied by an appropriate measure of uncertainty. Final esti-
mates of AGB should account for known sources of uncertainty (measurement and predictive) particu-
larly when estimating AGB at large spatial scales. In this study, mixed-effects models were used to
account for variability in the allometric relationship of Kenyan mangroves due to species and site effects.
A generic biomass equation for Kenyan mangroves was produced in addition to a set of species-site spe-
cific equations. The generic equation has potential for broad application as it can be used to predict the
AGB of new trees where there is no pre-existing knowledge of the specific species-site allometric rela-
tionship: the most commonly encountered scenario in practical biomass studies. Predictions of AGB using
the mixed-effects model showed good correspondence with the original observed values of AGB although
displayed a poorer fit at higher AGB values, suggesting caution in extrapolation. A strong relationship was
found between the observed and predicted values of AGB using an independent validation dataset from
the Zambezi Delta, Mozambique (R2 = 0.96, p = < 0.001). The simulation based approach to uncertainty
propagation employed in the current study produced estimates of AGB at different spatial scales (tree
– landscape level) accompanied by a realistic measure of the total uncertainty. Estimates of mangrove
AGB in Kenya are presented at the plot, regional and landscape level accompanied by 95% prediction
intervals. The 95% prediction intervals for landscape level estimates of total AGB stocks suggest that
between 5.4 and 7.2 megatonnes of AGB is currently held in Kenyan mangrove forests.

� 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

Mangrove forests are now widely recognised as globally impor-
tant carbon (C) stores (Bouillon et al., 2008; Chmura et al., 2003;
Donato et al., 2011; McKee et al., 2007). Despite accounting for
just 0.7% of the world’s tropical forest cover (Giri et al., 2011) man-
groves play a disproportionately important role in the global C
cycle. Recent estimates suggest that as much as 20Pg of C is cur-
rently being stored in mangrove biomass, sediments and peat
world-wide (Donato et al., 2011). Mangroves do not merely seques-
ter and store C they also provide a number of other key ecosystem
services which are ecologically and economically important at local,

regional and global scales. Such services include but are not limited
to; coastal defence (Zhang et al., 2012), fisheries production
(Aburto-Oropeza et al., 2008), habitat provision for terrestrial and
aquatic fauna (Kathiresan and Bingham, 2001), timber and
fuelwood production (Dahdouh-Guebas et al., 2000), pollution
abatement (Wickramasinghe et al., 2009) and regulation of
sediment exchange between land and sea (Duarte et al., 2005).

The continued degradation and destruction of mangroves
world-wide has been highlighted in recent years (Alongi, 2002;
Giri et al., 2011). Mangroves are considered to be one of the most
threatened ecosystems on the planet with an estimated decline
in global cover of �35% during the period 1980–2000 (Valiela
et al., 2001). This decline is largely due to over-exploitation of
wood products, conversion to aquaculture, coastal development
and human settlement (Primavera, 2005). Although rates of
destruction may be slowing in some countries they generally re-
main high; for example Kenya experienced an estimated mean loss
of mangrove cover of �0.7% yr�1 during the period 1985–2010
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(Kirui et al., 2012). Continued degradation and loss of mangrove
cover not only represents a loss of future C sequestration potential
but could result in significant release into the atmosphere of C cur-
rently being stored by mangroves (Pendleton et al., 2012).

An estimated 8–20% of annual global anthropogenic CO2 emis-
sions result from land-use changes occurring primarily in the tro-
pics (van der Werf et al., 2009). This realisation has led to proposals
for forest-based climate change mitigation strategies such as Re-
duced Emissions from Deforestation and Degradation (REDD+). In
essence REDD+ envisages achieving CO2 emissions reductions, for-
est conservation and sustainable development by placing an eco-
nomic value on forest carbon storage and facilitating the transfer
of funds from developed to developing nations through interna-
tional trade in carbon credits. Details of how REDD+ will operate
at the national and international level under the United Nations
Framework Convention for Climate Change (UNFCCC) are still un-
der debate. However many developing nations (including Kenya)
are already in the process of formulating national REDD+ readiness
strategies in partnership with the World Bank’s Forest Carbon Part-
nership Facility (FCPF). There is definite scope for mangroves to be
included in national and/or local scale forest carbon projects oper-
ating either under existing voluntary or future compliance carbon
markets. Indeed, a recent study by Siikamaki et al. (2012) sug-
gested that at the global scale reducing CO2 emissions by avoiding
further loss of mangroves could prove to be an economically viable
option in comparison with the cost of reducing emissions from
other sources (e.g. industry) even under scenarios of low mangrove
carbon offset supply.

Participation in REDD+ (under the UNFCCC) will require coun-
tries to produce accurate estimates of their forest carbon stocks
and stock changes through robust Measurement, Reporting and
Verification (MRV) programs. The most recent Intergovernmental
Panel on Climate Change (IPCC) Guidelines for National Green-
house Gas Inventories (IPCC, 2006) provide the current methodo-
logical framework for REDD+ MRV requirements (Maniatis and
Mollicone, 2010). In accordance with these guidelines all estimates
should be accompanied by an appropriate measure of uncertainty
(95% confidence interval) and should account for and reduce all
known sources of uncertainty as far as is possible (IPCC, 2006).
Above-ground biomass (AGB) is one of five forest carbon pools
(identified by the IPCC) which will be estimable and reportable
for REDD+. Providing robust estimates of AGB is important both
in terms of future REDD+ reporting but also in providing the link
between ground and remote sensing efforts to monitor changes
in forest biomass and land cover at local, regional and global scales.

The above-ground biomass of trees is commonly estimated by
the use of allometric equations (derived using regression analysis)
which relate one or more easily measurable tree variables (e.g.,
stem diameter at breast height (DBH)) to total above-ground bio-
mass. These equations are then applied to forest inventory data
in order to estimate biomass at larger spatial scales. Allometric
equations have been developed for a variety of mangrove species
occurring across a broad geographical range (Clough and Scott,
1989; Kairo et al., 2009; Komiyama et al., 2005; Poungparn et al.,
2002; Soares and Schaeffer-Novelli, 2005). However, African man-
groves are under-represented in the current literature with pub-
lished equations existing for Kenya (Kairo et al., 2009; Kairo
et al., 2008; Kirui et al., 2006; Slim et al., 1996; Tamooh et al.,
2009) and South Africa (Steinke et al., 1995) only.

Allometric relationships in trees are generally considered to be
both species and site-specific. However, the infeasibility of con-
structing a new allometric equation for every species encountered
at every new site has led to increasing interest in the development
of generic equations for biomass estimation (Brown et al., 1989;
Chave et al., 2005; Zianis and Mencuccini, 2004). Existing generic
equations for mangroves have used wood density as the

species-specific component of the relationship (Chave et al., 2005;
Komiyama et al., 2005). The generic equation developed by Komiy-
ama et al. (2005) was deemed to perform within acceptable levels
of precision (as measured by the relative error) in comparison with
site-specific equations for selected species (Komiyama et al., 2008).

Uncertainties are introduced at all stages of the biomass estima-
tion process (from single tree to landscape level). Total uncertainty
at the single tree level is comprised of uncertainty in the measure-
ment of tree variables (measurement uncertainty) and uncertainty
due to the use of the allometric model for predicting the biomass
of a new individual (predictive uncertainty) (Chave et al., 2004;
Zianis, 2008). These uncertainties are, in turn, propagated to plot
and landscape level biomass estimates. Failing to account for uncer-
tainty during the biomass estimation process ultimately leads to an
underestimation of the uncertainty on final predictions (Dietze et al.,
2008).

Accounting for predictive uncertainty is particularly important in
biomass estimation as allometric equations are often applied out-
with the data range for which they were originally intended (Chave
et al., 2005) and are always applied outside the particular trees (and
often sites) from which they were developed. Uncertainty in the
parameters of a regression model is often represented by simply
quoting the standard error of the allometric constants whilst the
coefficient of determination (R2) is the usual means by which to
evaluate both the ‘fit’ of the model and its predictive power (e.g.
Komiyama et al., 2005; Soares and Schaeffer-Novelli, 2005). How-
ever, over reliance on the use of R2 in regression analysis as a mea-
sure of model predictive accuracy and for model comparison
(between datasets) has been criticised in recent years (Gelman
and Pardoe, 2006; Johnson and Omland, 2004). In contrast to model
selection criteria such as the Akaike Information Criteria (AIC)
(Akaike, 1987) the R2 statistic is not a direct measure of model pre-
dictive accuracy and model selection made solely on the basis of
maximising the R2 statistic can lead to imprecise predictions as no
account is taken of model complexity (Johnson and Omland, 2004).

The issue of uncertainty in biomass estimation has been ad-
dressed in the literature for forests in general (Brown, 2002; Chave
et al., 2004; Ketterings et al., 2001; Parresol, 1999; Phillips et al.,
2000; Zianis, 2008). Methodologies for propagating uncertainty
have been presented based on summing the variances of compo-
nent sources of uncertainty (see Chave et al., 2004; Ketterings
et al., 2001; Phillips et al., 2000) and simulation techniques such
as Monte Carlo (Heath and Smith, 2000; Ryan, 2009). To the best
of our knowledge such methodologies have never been applied
for the purpose of propagating uncertainty to biomass estimates
in mangroves. With this in mind and in the context of future
REDD+ requirements for biomass/carbon accounting this study fo-
cused on: (1) the development of new allometric equations to esti-
mate the above-ground biomass of Kenyan mangroves using linear
mixed-effects models and based on a meta-analysis of all the avail-
able harvest data for Kenyan mangrove species (2) demonstrating a
simulation based methodology for propagating uncertainty during
the biomass estimation process and (3) demonstrating the practi-
cal application of said equations and simulations to a large forest
inventory dataset spanning the entire Kenyan coastline for the pur-
pose of producing estimates of above-ground biomass at different
spatial scales (tree, plot, region and landscape) with an appropriate
measure of uncertainty.

2. Methods

2.1. Harvest dataset – model development and validation

The harvest data used in this study is detailed in Table 1 and
represents the largest dataset compiled to date for African
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mangroves. The bulk of the harvest data originates from the Gazi
Bay area (4�250S, 39�300E) located �55 km south of the city of
Mombasa in Kenya (Fig. 1) and was made available through collab-
oration with Kenya Marine and Fisheries Research Institute
(KMFRI). The Gazi Bay data has been divided into two sub-sites;
Gazi (the area next to Gazi village) and Kinondo (the area next to
Kinondo village). An additional study within the Gazi Bay area by
Slim et al. (1996) was considered for inclusion but discounted as
it was not possible to obtain the raw data. Attempts were made
to source additional datasets from outwith Africa in order to ex-
pand the range of stem diameter and height data available for each
species and also to provide some data for species (e.g. Xylocarpus
sp.) not included in any of the African studies. An extensive litera-
ture search was carried out to look for raw harvest data which
were (1) from the same species that occur in Kenya and (2) freely
available in the publication. It was only possible to find one study
which met both these criteria; that of Poungparn et al. (2002) from
South-East Asia.

The harvest dataset used in this study to develop regression
models comprises the raw data from 337 individually harvested
trees (see Section 2.1.1 for harvest methodology) and includes data
for seven of the nine mangrove species known to occur in Kenya.
The harvest dataset is unbalanced with very few data points for
some species (Table 1). However, Rhizophora mucronata and
Avicennia marina are well represented in the dataset in terms of
sample size and these are two of the most dominant and widely
distributed mangrove species in Kenya. In common with most allo-
metric studies, there is a paucity of data from large diameter size
classes with 97% of the harvested trees in the current dataset
<20 cm in diameter. This means that the data range in the harvest
dataset does not fully encompass the upper values of diameter and
height recorded in the existing forest inventories.

Harvest data from a recent study conducted by WWF, Mozam-
bique and KMFRI in 2011 in the Zambezi Delta, Mozambique
(Bosire et al., unpublished results) were used in this study for val-
idation purposes only and were not used to develop regression
models (data summarised in Table 1). The Zambezi validation data-
set comprises harvest data from 23 trees from six mangrove spe-
cies occurring in both Mozambique and Kenya.

2.1.1. Summary of harvest methodology
All of the studies listed in Table 1 employed similar methodol-

ogies for tree harvesting and determination of total live above-
ground biomass (but see individual papers for details). Harvested
trees were selected randomly and prior to harvest, the stem diam-
eter (cm) and total height (m) of each tree was recorded. Stem
diameter was measured at 1.3 m above-ground (DBH) except in
the case of Rhizophora trees where the highest prop root occurred
>1.3 m above-ground in which case diameter was measured at
�30 cm above the highest prop root. Trees were then harvested
at ground level and the fresh weight of component parts (stem,
branches, leaves and prop roots in the case of Rhizophora sp.)
was measured in the field. Sub-samples of component parts were
then oven dried to constant weight (80–85 �C in the case of all
studies apart from Poungparn et al. (2002) where fresh material
was dried at 110 �C) in order to calculate wet-dry weight ratios
(conversion factors). Conversion factors were then applied to con-
vert the fresh weight of each tree component to dry weight in kilo-
grams (kg DW) and summed giving total above-ground biomass in
kg DW. The study by Kirui (2006) employed a slightly different
methodology for determining the total above-ground biomass of
multi-stemmed Avicennia trees. Each stem arising from a common
butt was treated as an individual tree and the biomass of each stem
was calculated separately following a procedure outlined in Clough
et al. (1997) involving apportionment of the common butt.

2.2. Statistical analyses

2.2.1. Rationale for using mixed-effects models
Ecological datasets often display a complex structure where

data from individuals within populations are nested or grouped
by one or more factors. Such grouping factors could include for
example; the species and/or site which the individual belongs to,
an experimental treatment applied to a subset of individuals and
time series data. If such correlations or group effects are not ac-
counted for during analysis the standard errors of the regression
coefficients will tend to be underestimated due to inflation of the
effective sample size (Steele, 2008). Mixed-effects models not only
account for but explicitly model the variance due to group effects.

In mixed-effects models the intercept and regression coeffi-
cients can be assigned their own probability models and allowed
to vary by group (as random effects) around the overall population
mean (the fixed effects). This is particularly useful in studies where
the main target of inference is the wider population and predic-
tions are sought for new individuals within new groups, with an
appropriate measure of predictive uncertainty (Gelman and Hill,
2007). In addition, mixed-effects models deal well with unbal-
anced datasets (especially common in meta-analysis studies) and
provide a more robust estimation of regression coefficients for
groups where there is little information (i.e. a small sample size)
as additional information on the probability distribution of coeffi-
cients can be gained from the dataset as a whole (Dietze et al.,
2008).

2.2.2. Model specification and selection process
The power function equation (Eq. (1)) or its linearized form

(Eq. (2)) is commonly used as the underlying allometric scaling
relationship for biomass regression models (e.g. Brown et al.,
1989; Chave et al., 2005; Komiyama et al., 2008; Parresol, 1999).

y ¼ axb ð1Þ

lnðyÞ ¼ lnðaÞ þ b lnðxÞ þ ei ð2Þ

where y is the response variable, x is the predictive variable and a
and b are the allometric constants. Specifically, a is the scaling coef-
ficient (or intercept), b is the scaling exponent (or slope) and ei is the
error term which is assumed to be normally distributed
ei � N(0,r2). For mangroves, biomass regression models have been
developed using stem diameter (D) as the sole predictive variable
(Clough and Scott, 1989; Steinke et al., 1995). However, many stud-
ies have found that the inclusion of additional biometric variables
(e.g. tree height (H)) either fitted independently or as a combined
variable such as x = D � H or x = D2 � H have improved model fit
(Chave et al., 2005; Komiyama et al., 2002; Soares and Schaeffer-
Novelli, 2005). The inclusion of wood density as a predictive vari-
able in models has also been recommended (Chave et al., 2005;
Komiyama et al., 2005).

In the current study, a linear relationship was obtained between
predictive variables (diameter and height) and the response vari-
able (total above-ground biomass (AGB)) after transforming all
variables by natural log (Fig. 2) allowing for the use of regression
models of the form shown in Eq. (2). Wood density was not in-
cluded as a potential predictive variable as tree level wood density
data were not available in the harvest dataset used for model
development. The individual level grouping factor used in the cur-
rent study was a combined species_site indicator which grouped
the harvest data from individuals within each species at each site
in the dataset. For example data from Rhizophora trees at Kinondo
(Table 1) formed the group Rhiz_Kin and so on. In total there were
eighteen species_site groupings present within the harvest dataset.
It was necessary to combine species and site into one grouping
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Table 1
Provenance and summary of the tree harvest dataset used in this study to develop and validate biomass equations for Kenyan mangroves.a

Study Location Forest type Species Stem diameter range (cm) Height range (m) Above-ground biomass (kg DW) Sample size

Lang’at (2008) Ramisi, Kenya Plantation (12 yrs old) Bruguiera gymnorrhiza 1.1–4.8 2.7–6.6 0.5–7.3 15
Kairo et al. (2008) Kinondo (Gazi Bay), Kenya Plantation (12 yrs old) Rhizophora mucronata 2.4–11.5 3.5–8.9 0.6–68.9 50
Kirui et al. (2006) Gazi (Gazi Bay), Kenya Natural Rhizophora mucronata 5.7–21.4 4.3–11.3 13.4–269.5 15
Kirui (2006) Kipini, Kenya Natural Rhizophora mucronata 2.3–23.6 2.8–16.1 0.6–383.7 15

Avicennia marina 2.5–15.8 3.9–11.7 4.6–71.4 28 (19)
Gazi (Gazi Bay), Kenya Natural Avicennia marina 3.7–21.8 2.1–11.3 7.2–127.3 51 (15)

Tamooh et al. (2009) Gazi (Gazi Bay), Kenya Plantation (6yrs old) Rhizophora mucronata 0.9–6.4 0.8–3.9 0.08–16.2 12
Kairo et al. (2009) Gazi (Gazi Bay), Kenya Plantationb Avicennia marina 5.2–10.2 4–5.8 6.8–22.5 10

Sonneratia alba 5.3–11.3 4–5 3.8–9.4 10
Ceriops tagal 5–5.5 1.8–2.6 1.5–6.1 10
Rhizophora mucronata 3–8 2.8–5 3–25.8 58

Steinke et al. (1995) Mgeni estuary, South Africa Natural Bruguiera gymnorrhiza 3.4–11.5 4.6–13.5 3.2–107.2 12
Avicennia marina 5.4–9.9 4.9–7.7 5.3–31.9 4

Poungparn et al. (2002) Thailand Natural Sonneratia alba 4.2–12.7 3.4–13.4 3.1–79.3 10
Bruguiera gymnorrhiza 4.8–33.4 9.2–24.9 8.3–943.5 10
Rhizophora mucronata 4.7–11.2 6.9–16 7.7–73.7 11
Xylocarpus granatum 3.7–12.7 4.1–8 3.2–66.8 8

Indonesia Natural Sonneratia alba 6.7–21.7 7.3–22.6 13.1–256 2
Bruguiera gymnorrhiza 9.7–48.9 11.1–30.6 54.7–1411.1 4
Xylocarpus granatum 18.6 13.4 162.2 1
Xylocarpus moluccensis 11.8 13.5 47.4 1

WWF/KMFRI
(Validation Dataset)

Zambezi Delta, Mozambique Natural Ceriops tagal 5.3–15.4 3.6–6.5 6.55–68.2 3
Bruguiera gymnorrhiza 5.6–24.6 5.5–8.1 11.7–161.8 4
Xylocarpus granatum 5.2–14.9 4–7.8 6.7–49 3
Sonneratia alba 5.9–35 5.9–13.5 8.8–453.4 6
Avicennia marina 8–28 5.3–13.5 14.9–248 4
Heritiera littoralis 5–22.5 4.9–9.5 3.9–121.2 3

a Above-ground biomass is given in kg dry weight (kg DW) and includes stem, branch, leaf and prop root (in the case of Rhizophora sp.) components. An exception is the study by Lang’at (2008) where above-ground biomass
comprises stem weight only. In the study by Kirui (2006) sample sizes for Avicennia sp. are the total number of stems (treated separately during analysis) and numbers in parentheses are the actual number of harvested trees. The
study by Poungparn et al. (2002) included data sourced from other studies; see original paper for details.

b Plantation age at time of harvest in Kairo et al. (2009) was 5 years old for R. mucronata and S. alba and 8 years old for C. tagal and A. marina.
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factor due to the unbalanced nature of the harvest dataset which
has insufficient replication of species data at each site to allow sep-
aration of any possible variation in AGB attributable solely to either
factor. In addition, Zianis and Mencuccini (2004) showed that
within-species variability in allometric coefficients across sites is
just as large as the variability in coefficients across species. Given
that the harvest dataset comprises data from various studies any
differences between the species_site groupings could also poten-
tially incorporate an effect of study origin. However, harvest meth-
odologies are broadly consistent across studies therefore it is likely
the case that the random effects predictions are largely reflective of
the differences across groups due to species and site effects.

Linear mixed-effects models were fitted using the lme4 package
within R statistical software version 2.15.0 (Bates et al., (2011),
http://CRAN.R-project.org/package=lme4). Prior to model fitting
the logged predictive variables were centred at their mean to re-
duce any correlation between intercept and slope coefficients.
Models were initially fitted using maximum likelihood (ML) esti-
mation and compared using the Deviance Information Criterion
(DIC) as outlined in Gelman and Hill (2007). In order to identify
the best fixed and random effects terms for inclusion in the final

model eight candidate models were fitted to the data (Table 2).
Model notation follows that of Gelman and Hill (2007) where ln(yi)
is the response (AGB in this study) for the ith individual, a is the
intercept, b represents the coefficients for the predictive variables
diameter (ln(xi)) and height (ln(zi)) and r2

y is the residual or the
unexplained ‘within-group’ variance. The subscript term j[i] in-
dexes the ith individual within the jth group and denotes where
the intercept or a coefficient has been allowed to vary across
groups (j = 1, ..., J) as a random effect.

Model I was the simplest model and included a random effects
term for the intercept only whilst the slopes of both predictive
variables were kept constant across groups (Table 2). The inclusion
of a random effects term for ln(xi) and ln(zi) coefficients in models
II and III respectively led to a reduction in the DIC value in compar-
ison with model I. In order to ascertain if both diameter and height
were needed as predictive variables within the model; models IV
and V excluded each variable as a fixed effect (and hence as a ran-
dom effect) in turn. As shown in Table 2 there is clearly a need to
include both variables as fixed effects within the model. This is
especially evident in the case of model V where exclusion of diam-
eter from the model had a large impact on the DIC value. Models
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were also fitted using two new combined predictive variables:
ln(xizi) and lnðx2

i ziÞ, both of which were logged and centred prior
to model fitting as before. However, as shown in Table 2 models
VI and VII using the combined variables displayed a poorer overall
fit in comparison with models II and III (Table 2). Model VIII had
the lowest DIC value of all the models under consideration indicat-
ing that the inclusion of a random effects term for the coefficients
of both ln(xi) and ln(zi) was needed in order to account for variabil-
ity in AGB across groups.

Model VIII was considered to be the most appropriate model
overall and was subsequently re-fitted using restricted (or resid-
ual) maximum likelihood (REML) estimation in order to produce
the best unbiased estimates of variance and co-variance parame-
ters (Pinheiro and Bates, 2000). In model VIII the terms aj, bjx and
bjz signify that these parameters have themselves been modelled
yielding a partial pooling estimate of a and the coefficients bx

and bz for each group along with an estimate of the overall popu-
lation mean and the ‘between-group’ variance (estimated from
the data). The group-level model for model VIII can be written as:

aj

bjx

bjz

0
B@

1
CA�N

la

lbx

lbz

0
B@

1
CA;

r2
a q1rarbx q2rarbz

q1rarbx r2
bx q3rbxrbz

q2rarbz q3rbxrbz r2
bz

0
B@

1
CA

0
B@

1
CA; for j¼1; . . . ; J;

ð3Þ

where the overall mean across all groups (the fixed effects esti-
mates) for the intercept, slope of ln(xi) and the slope of ln(zi) are de-
noted by la, lbx and lbz respectively. The between-group variance
in the intercept, slope of ln(xi) and the slope of ln(zi) are given as
r2

a and r2
bx and r2

bz respectively. The parameters q1, q2 and q3 are
also estimated as the between-group correlations of the a’s and
b’s (e.g. q1rarbx is the correlation between the group intercepts
and slopes of ln(xi)).

2.2.3. Simulation-based approach to biomass estimation
In order to estimate the biomass of mangroves along the entire

Kenyan coastline the equations developed in this study were ap-
plied to a forest inventory dataset (detailed in Section 2.3) compris-
ing 498 plots inventoried during the period 2007–2012. The
modelling process described in Section 2.2.2 generated a mean bio-
mass equation and a suite of specific equations; one for each of the
eighteen species_site groups. The mean equation is comprised of
the fixed effects estimates and can be regarded as a generic equa-
tion for Kenyan mangroves. The group specific equations represent
the group departures from the fixed effects estimates (fixed effect
estimates ± the group specific random effects) and are only valid
for the specific groupings from which they were originally derived.
Eight of the group specific equations can potentially be applied to
the forest inventory dataset to estimate biomass as the remaining
ten equations are only valid for species_site combinations occurring
outwith Kenya. Therefore, group specific equations were applied to
estimate the biomass of individual trees within the inventory data-
set if those trees fell into one of the pre-existing groups identified
within the harvest dataset. For example the group specific equation
for Rhiz_Kin was applied to inventoried Rhizophora trees at Kinondo
and so forth. In cases where inventoried trees did not fall into one of
the pre-existing groups their biomass was estimated using the gen-
eric equation. The simulation-based approach adopted in this study
allows for the propagation of measurement, parameter and residual
uncertainty to estimates of biomass at the individual tree, plot and
regional level.

2.2.4. Simulations for individual tree biomass
The above-ground biomass of each tree in the inventory dataset

was simulated 10,000 times using a new set of simulated values for
each iteration. In order to propagate measurement uncertainty
possible values of stem diameter ln(Dsim) and height ln(Hsim) for
each tree were randomly sampled from a normal distribution with
mean equal to the observed value and one standard deviation con-
servatively assumed to be 5% and 10% of the observed diameter
and height respectively. These assumed values of measurement
uncertainty are consistent with the findings of previous studies
(Chave et al., 2004; Gregoire et al., 1990; Phillips et al., 2000).

To propagate parameter uncertainty, possible values of the
fixed effects intercept (afixsim) and coefficients for stem diameter
(bxfixsim) and height (bzfixsim) were sampled from a multivariate nor-
mal distribution around means equal to la, lbx and lbz from model
VIII using the variance-covariance matrix of the fixed effects. In
cases where the generic equation was applicable (to estimate the
biomass of new trees in new groups) simulated values of the ran-
dom effects for the intercept (aransim) and the coefficients for stem
diameter (bxransim) and height (bzransim) were generated by sampling
from a multivariate normal distribution around means equal to
zero using the variance-covariance matrix of the group level (or
mean) random effects (Eq. (3)). In cases where a group specific
equation was applicable (to estimate the biomass of new trees in
existing groups) possible values of the random effects were simu-
lated as for the generic equation, however values were sampled
around means equal to the group specific random effects for the
intercept and coefficients and used the variance-covariance matrix

Fig. 2. Relationship between above-ground biomass (AGB) and stem diameter (D)
of harvested mangrove trees after transformation by natural log. The vertical
arrangement of data points at approximately ln(D) = 1.6 is mostly due to data from
the study by Kairo et al. (2009) which focused on harvesting trees from plantation
forests of known age whereby a large proportion of data points arising from this
study were of similar stem diameter (�5 cm).

Table 2
Comparison of candidate models fitted using maximum likelihood (ML) estimation,
with corresponding DIC values.a

Model DIC

I. ln(yi) � N(aj[i] + bln(xi) + bln(zi), ry
2), for i = 1, . . .,n, 274.1

II. ln(yi) � N(aj[i] + bj[i]ln(xi) + bln(zi), ry
2), for i = 1, . . .,n, 231.5

III. ln(yi) � N(aj[i] + bln(xi) + bj[i]ln(zi), ry
2), for i = 1, . . .,n, 220.3

IV. ln(yi) � N(aj[i] + bj[i]ln(xi), ry
2), for i = 1, . . .,n, 260.5

V. ln(yi) � N(aj[i] + bj[i]ln(zi), ry
2), for i = 1, . . .,n, 603.7

VI. ln(yi) � N(aj[i] + bj[i]ln(xizi), ry
2), for i = 1, . . . ,n, 299.1

VII. ln(yi) � N(aj[i] + bj[i]ln(xi
2zi), ry

2), for i = 1, . . .,n, 240.1
VIII. ln(yi) � N(aj[i] + bj[i]ln(xi) + bj[i]ln(zi), ry

2), for i = 1, . . .,n, 206.1*

a The asterisk symbol denotes that model VIII was the best model overall.
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of the group specific random effects. Simulated values were then
used in Eq. (4) to calculate AGB biomass (ln(AGBpred)) for each tree:

lnðAGBpredÞ ¼ asim þ ððbxfixsim þ bxransimÞ lnðDsimÞÞ
þ ððbzfixsim þ bzransimÞ lnðHsimÞÞ ð4Þ

where asim is the un-centred intercept (calculated as shown in Eq.
(5)) and corrects for the use of mean centred predictive variables
diameter and height during model development (Section 2.2.2).

asim ¼ ðafixsim þ aransimÞ � ððbxfixsim þ bxransimÞ�xÞ
� ððbzfixsim þ bzransimÞ�zÞ ð5Þ

where �x and �z are the mean logged values of diameter and height
respectively from the harvest dataset. In order to account for resid-
ual uncertainty in biomass estimates; possible values of biomass
(ln(AGBEst)) were randomly sampled from a normal distribution
with mean equal to ln(AGBpred) and standard deviation equal to ry

(the standard deviation of r2
y) from model VIII. Values of ln(AGBEst)

were then back-transformed by taking the exponent; producing
10,000 estimates of AGB (in kg DW) for each tree. The estimates
for all trees within a plot were then summed at each iteration point
yielding a distribution of 10,000 possible estimates of total biomass
for each plot. The median was taken as the plot level biomass esti-
mate as this provided the most typical value from skewed distribu-
tions of the simulations. The quantiles from the distribution of plot
estimates were used for calculating the 95% prediction interval (95%
PI) at the plot level.

2.2.5. Calculation of regional level prediction intervals
In order to upscale biomass estimates from plot to regional le-

vel, plots were first grouped according to the mangrove regions
identified in the inventory dataset (Table 3). Plots within Lamu Dis-
trict were further sub-divided into those within Kiunga National
Marine Reserve (NMR) and those outwith the reserve (hereafter
‘‘South Lamu’’). Due to their close geographical proximity plots
from Shirazi, Ramisi, Funzi and Bodo were aggregated to form
the region ‘‘South Coast’’. The mean biomass estimate was calcu-
lated for each iteration (across all plots within a region) yielding
a distribution of 10,000 possible mean biomass estimates. The
mean of this distribution was taken as the regional level biomass
estimate (Mg ha�1) and provides the expected value of AGB taking
into account the whole scale of values present in a specific geo-
graphical area. The quantiles from the distribution were used to
calculate the 95% PI at the regional level.

2.2.6. Model validation
The predictive performance of model VIII was evaluated using a

harvest dataset from the Zambezi Delta, Mozambique (Table 1).
The simulation process detailed in Section 2.2.4 was repeated for
the 23 trees in the Zambezi dataset. For each tree the median fitted
value of AGB (kg) was obtained along with the 95% PI for the
median.

2.3. Forest inventory dataset

A summary of the forest inventory dataset is provided in Table 3,
recent estimates of mangrove cover by region are provided in Table 4
and the location along the Kenyan coastline of each region is shown
in Fig. 1. The cover estimates in Table 4 were derived from 2.5 m res-
olution SPOT remote sensing imagery acquired over the Kenyan
coastline during 2009–2011 (see Rideout et al., 2013 for further de-
tails). The inventory dataset is a combination of data collected by
this and other studies. All studies conducted prior to 2010/2011
had the objectives of characterising and investigating mangrove
structural variability and change in the southern coastal region.
However, in the current study sampling strategy was tailored (as

much as was practicable) towards facilitating both a statistical and
remote sensing based approach to biomass estimation along the en-
tire coastline. Thus studies within the inventory dataset differ in
terms of sampling strategy and plot size. There is also an obvious
bias in total sampling effort towards sites in the south coast
(Table 3).

In general all inventory studies followed a standardised meth-
odology of within-plot data collection. In all studies the species,
stem diameter and total height of all trees within each plot which
met the diameter measurement threshold were recorded. Stem
diameter was recorded to the nearest millimetre and was mea-
sured at 1.3 m aboveground (DBH) except in the case of Rhizophora
sp. where stem diameter was measured at �30 cm above the high-
est prop root if this occurred above 1.3 m. In cases where trees
branched below 1.3 m (common in Avicennia sp.) and branches
met the diameter measurement threshold; the diameter and
height of each branch was recorded separately. In the current study
total tree height was measured using an ultrasonic vertex hypsom-
eter (Haglöf, Sweden). In all other studies tree height was mea-
sured using a graduated pole.

2.3.1. Mida Creek and Lamu District
Forest inventory data from the Mida Creek area and Lamu District

was collected as part of this study during June–August 2010 and
2011. Mida Creek (3�200S, 40�000E) is situated mid-way along the
Kenyan coast �23 km south of the town Malindi in Kilifi District.
Some of the mangrove forest in this area falls within the boundaries
of Watamu Marine National Park (WNMP); however the majority is
outwith the protected area. Regardless of location (within or outside
of WNMP) harvesting of mangroves is currently prohibited in the
Mida Creek area. In total 14 plots within the Mida Creek area were
inventoried comprising nine 0.04 ha (20 � 20 m) plots, four
0.25 ha (50 � 50 m) plots and one 0.5 ha (100 � 50 m) plot. None
of the inventoried plots were located within the marine park.

The Lamu archipelago extends between 2�220S, 40�480E in the
South and 1�440S, 41�300E in the North and is part of Lamu District.
Lamu District currently holds the greatest proportion of remaining
mangrove cover in Kenya (Table 4). Mangroves in the extreme
north, close to the border with Somalia are part of Kiunga NMR
and are considered to be the only remaining examples of relatively
‘‘pristine’’ mangrove forest in Kenya. Forty-one plots within Lamu
District were inventoried comprising twenty-five 0.04 ha plots, fif-
teen 0.25 ha plots and one 0.5 ha plot. Within Lamu District sites
visited included: Kiunga NMR (n = 16 plots), Pate Island area
(n = 15) and Lamu Island area (n = 10).

Plots inventoried in Mida Creek (n = 6) and Lamu District (n = 8)
during 2010 were all 0.04 ha in size. Plots were positioned at ran-
dom within Rhizophora zones and all trees within each plot with
stem diameter P2.5 cm were measured. Plots inventoried during
2011 were a mixture of 0.04 ha plots (Mida Creek: n = 3,
Lamu District: n = 17) located at random within randomly chosen
map grid squares (grid resolutions of 500 � 500 metres and
1000 � 1000 m) and larger plots (0.25 ha and 0.5 ha) which were
positioned at random within larger areas pre-identified using
optical and radar remote sensing imagery. These pre-identified
areas were judged to be potentially distinct from each other in
terms of forest structure/biomass and also to broadly represent
the main levels of structural variation within the study region as
a whole. This more targeted plot location strategy was for the
purpose of facilitating future remote sensing work. All plots inven-
toried in 2011 included all trees within each plot which met the
criteria of having stem diameter P5 cm.

2.3.2. Gazi Bay
The Gazi Bay inventory consists of 116 plots in total. As part of

this study twenty-four 0.01 ha (10 � 10 m) plots were inventoried

974 R. Cohen et al. / Forest Ecology and Management 310 (2013) 968–982



during July 2010 and four 0.25 ha plots were inventoried during
August 2011. The smaller plots inventoried in 2010 were posi-
tioned randomly within the main identifiable mangrove zones
and included all trees DBH P 5 cm. The larger plots collected in
2011 were positioned using the same procedure as detailed above
for the large plots in Section 2.3.1 and included all trees within
each plot stem diameter P5 cm.

The remaining plot data (n = 88) from the Gazi Bay area were
collected in 2009 as part of two internationally funded short-term
projects. Eighteen 0.01 ha plots were inventoried in the area adja-
cent to Gazi village as part of a project entitled CAMARV (Capacity
Building for Mangrove Assessment, Restoration and Valuation in
East Africa) funded by the Natural Environment Research Council
(NERC) of the United Kingdom. Seventy 0.01 ha plots were invento-
ried as part of a UNDP-GEF Small Grants Programme project
co-ordinated by Gazi Womens Group. In both projects plots were
randomly positioned along a transect within each identifiable
mangrove zone and all trees within each plot were included in
the inventory.

2.3.3. Mwache and Mtwapa Creek
Mwache (4�20S, 39�330E) and Mtwapa Creek (3�570S, 39�430E) are

both examples of peri-urban mangroves due to their close proximity
to the city of Mombasa and the town of Mtwapa respectively. Both

areas are considered to be degraded due to a combination of sewage
pollution, timber over-exploitation and in the case of Mwache; the
heavy sedimentation and flooding associated with the El Niño event
of 1997–1998 (Kitheka et al., 2002). Inventory data from Mtwapa
Creek (n = 54) was collected in 2010 as part of a study by Okello
(unpublished results). Data from Mwache (n = 67) was collected in
2011 as part of a study conducted by Kaino (2013) and funded by
the Western Indian Ocean Marine Science Association (WIOMSA).
Both studies used plot sizes of 0.01 ha. Plots at Mtwapa Creek were
positioned along transects running perpendicular to the shoreline at
�50 m intervals and all trees with stem diameter P2.5 cm were
measured. At the Mwache site plots were positioned along transects
running perpendicular to the shoreline at 100 m intervals using a
stratified sampling scheme based on observed differences in forest
composition and structure. All trees with stem diameter P2 cm
within each plot were measured.

2.3.4. South Coast
Forest inventory data from the South Coast (Shirazi, Ramisi,

Funzi and Bodo) was collected in 2007 by KMFRI as part of a Kenya
government funded project. In total there are data from one hun-
dred and twenty-three 0.01 ha plots comprising; Shirazi (n = 43),
Ramisi (n = 22), Funzi (n = 24) and Bodo (n = 34). Plots were posi-
tioned at �20 m intervals along transects running perpendicular
to the shoreline and all trees with stem diameter P5 cm were in-
cluded in the inventory.

2.3.5. Vanga
Mangroves close to the Kenya–Tanzania border were invento-

ried by KMFRI during January 2012. Plots inventoried within the
Vanga mangrove system number 83 in total and are of variable size
(sixty-nine 0.01 ha, six 0.04 ha and eight 0.0025 ha (5 � 5 m)
plots). Plots were positioned within each identifiable mangrove
zone using a stratified random sampling strategy and all trees
P2.5 cm in diameter were recorded.

3. Results

3.1. Model VIII summary and key features

Overall, there is good correspondence between the fitted values
of AGB (as estimated from model VIII) and the original observed
values of AGB for trees in the harvest dataset (Fig. 3(a) and (b)).
The mean absolute error (MAE) in predictions of AGB from model

Table 3
Provenance and summary of mangrove forest inventory dataset.a

Region Study Date No. of plots Plot size (ha) Stem diameter range (cm) Height range (m)

Mida Creek This study 2010/2011 14 Variable (ranging from 0.01 - 0.5) 2.5–58 1.5–17.7
Lamu District:

South Lamu
Kiunga

This study 2010/2011
25
16

2.4–54
2–49.8

1.8–28.5
1.3–23.7

Gazi Bay This study 2010/2011 28 5–64 1.8–20.2
CAMARV 2009 18 0.01 0.5–51 0.6–15
UNDP 2009 70 0.01 2.2–63.3 2–21

Mtwapa Creek Okello (unpublished results) 2010 54 0.01 2.5–46.9 0.5–15
Mwache Kaino (2013) 2011 67 0.01 2–53 1–15
South Coast:

Shirazi
Ramisi
Funzi
Bodo

KMFRI 2007
43
22
24
34

0.01
0.01
0.01
0.01

5–47.5
5–48.4
5–43.2
5–60.5

2–16
2.5–15
1.5–15
2–14

Vanga KMFRI 2012 83 Variable (ranging from 0.0025 - 0.04) 2.5–72.5 1–25

a Study abbreviations are as follows; United Nations Development Programme (UNDP); Capacity Building for Mangrove Assessment, Restoration and Validation (CAMARV)
and Kenya Marine and Fisheries Research Institute (KMFRI).

Table 4
Mangrove cover estimates for inventory regions derived from high-resolution SPOT
satellite imagery.a

Region Mangrove cover estimate (ha) Proportion of total cover (%)

Mida Creek 1657.8 3.6
South Lamu 26609.1 57.1
Kiunga (NMR) 4763.8 10.2
Gazi Bay 589 1.3
Mwache 2667.1 5.7
Mtwapa

Creek
519.4 1.1

South Coast 2253.1 4.8
Vanga 3440 7.4
Kilifi� 640.2 1.4
Tana river� 3433 7.4

Total cover 46572.5

a Regions marked with asterisks’ do not feature in the forest inventory dataset.
For details of SPOT image processing and analysis see Rideout et al. (2013).
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VIII is 6.3 kg and the mean bias (observed-fitted) in predictions is
an underestimate of just 0.06 kg. The model performs well at val-
ues of observed AGB 6 50 kg (Fig. 3(b)) which comprise 85% of
the total dataset. There is some divergence from the reference line
for the few trees in the harvest dataset with higher AGB values
(Fig. 3(a)). Poorer model fit at higher AGB is likely due to the pau-
city of harvest data from larger trees with just 11 out of 337 trees
in the dataset having an observed AGB P 200 kg. Further diagnos-
tic plots (data not shown) revealed no systematic trend in model
residuals when plotted against the fitted values and against each
of the predictive variables.

Mixed-effects models partition the total variance in the re-
sponse variable (AGB in this study) between the main components
of the model (Fig. 4). The proportional contribution of the random
effects terms (r2

a, r2
bx, r2

bz) and the residual variance (r2
y) to the to-

tal variance was calculated for each term as:

% contribution ¼ ððr2
a=tot varÞ100Þ ð6Þ

where e.g. r2
a is the variance in the model attributed to between-

group differences in the intercept and tot_var is the total variance
from model VIII calculated as the variance of the logged values of
total above-ground biomass of the 337 trees in the harvest dataset.
Thus, the contribution to the total variance attributable to the com-
bined fixed effects terms was calculated as:

% contribution ¼ ðððtot var� ðsumðr2
a þ r2

bx þ r2
bz

þ r2
yÞÞÞ=tot varÞ100Þ ð7Þ

As expected, most of the variability in AGB was accounted for in
model VIII by the fixed effects terms (Fig. 4). Together the random
effects terms accounted for 41% of the variance in AGB. Between-
group variability in the slopes of the predictive variables diameter
and height was very similar accounting for 18% and 19% of the total
variance respectively. In combination the fixed and random effects
explained 94% of the variability in AGB leaving a relatively small
residual variance of 6% (Fig. 4).

The random effects represent the group-specific departures
(either ±) from the fixed effects estimate of the intercept and the
coefficients for diameter and height. There is clearly some be-
tween-group variability in the random effects for the eight spe-
cies_site groups occurring in Kenya (Fig. 5). The 95% PI around
the random effects is more constrained for groups with a larger
sample size (Fig. 5) and there is some degree of overlap in the pre-
diction intervals between most groups.

The random effects for most groups fall within the bounds of
the 95% confidence interval (95% CI) of the fixed effects estimate
of each parameter (Fig. 5). However, the predicted random effect
for the intercept of group Rhiz_Gaz and the coefficient of height
for group Avic_Gaz show no overlap with the fixed effects esti-
mates for these parameters. For group Sonn_Gaz there is a pro-
nounced departure from both the fixed effects estimates and
from the predicted random effects for the other groups. Such devi-
ation from the fixed effects estimates suggest that the allometry for
these species_site groupings may be distinct from that of the other
groups in the harvest dataset and highlights the general need for
the inclusion of group effects in regression models.

3.2. Model validation

For harvested trees in the Zambezi Delta predictions of median
AGB (±95% PIs) from model VIII correspond well with the original
observed values of AGB (Fig. 6). A linear regression between the
logged observed values and predicted median values of AGB was
used to further assess the predictive ability of model VIII
(R2 = 0.96, p = < 0.001). The 95% confidence interval for the
intercept includes zero (�0.23 ± 0.37) and for the regression slope

includes one (1.01 ± 0.09). The uncertainty around predictions is
well constrained for trees with lower AGB but increases with
increasing predicted AGB.

3.3. Plot level AGB estimates

Plot level estimates of mangrove AGB vary greatly within and
between regions (Fig. 7). Within each study region (except Kiunga)
there are two orders of magnitude difference between the smallest
and largest plot estimates. If the 95% PIs are considered then the
scale of maximum AGB across regions ranges between

Fig. 3. (a) Total above-ground biomass (AGB) in kg as measured for each tree in the
harvest dataset versus the corresponding fitted value (kg) from model VIII and (b)
as (a) but re-scaled to show in detail the correspondence between observed and
fitted values at the lower range of AGB. The reference lines shown in (a) and (b)
represent a 1:1 correspondence between observed and fitted values.

Fig. 4. Proportion of the total variability in AGB of harvested trees associated with
the fixed effects terms, the random effects terms (hatched bars) and the remaining
unexplained (residual) variance from Model VIII.
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�200 Mg ha�1 at Mida Creek to >2000 Mg ha�1 at Vanga. For each
region the uncertainty in estimates is tightly constrained for plots
with low values of AGB but there appears to be a general pattern of
larger prediction intervals around estimates for plots with higher
AGB (Fig. 7). For some regions there is considerable variation in
the PIs of plots with similar median AGB estimates (e.g. see
Mwache plots 45 and 46 in Fig. 7). It is likely that larger PIs around
the estimates of some plots is not associated with higher biomass
per se but is due to the presence of large diameter trees in these
plots for which the biomass has been estimated with relatively less
precision.

3.4. Regional level AGB estimates

As expected, estimates of mean AGB vary amongst the study re-
gions which span the entire Kenyan coastline (Fig. 8). There is a dif-
ference of >120 Mg ha�1 between the lowest estimate for
mangroves at Mtwapa Creek near Mombasa (73 Mg ha�1) to the
highest for mangroves within Kiunga NMR (200 Mg ha�1). How-
ever, there is a general overlap between the prediction intervals
of most regions and the estimates of mean AGB do not differ sub-
stantially between the regions Mwache, Gazi, South Coast, Vanga
and South Lamu. Uncertainty around the estimates of mean AGB
is reasonably well constrained with an absolute difference be-
tween upper and lower prediction limits of <50 Mg ha�1 for all
regions.

The regional level estimates of mean AGB (Fig. 8) and mangrove
cover (Table 4) were used in a basic up-scaling exercise in order to
give an indication of the total AGB of mangroves within each re-
gion and within Kenya as a whole (Table 5). Up-scaled values of to-
tal mangrove AGB in megatonnes (Mt) were calculated by
multiplying the regional level estimates of mean AGB (Mg ha-1)
shown in Fig. 8 by the corresponding estimate of total mangrove
cover (ha) for each region (Table 4). There was no inventory data
available for mangroves at Kilifi and Tana River therefore it was
not possible to estimate mean AGB for these regions. For the pur-
poses of up-scaling it was assumed that the mean AGB of man-
groves at Kilifi and Tana River lies somewhere between that of
Mtwapa Creek (the lowest regional mean) and Kiunga (the highest
regional mean). Thus for sites Kilifi and Tana River two sets of pos-
sible values of total AGB (‘Low’ and ‘High’) were calculated using
the lowest (Mtwapa Creek) and the highest (Kiunga) of the regional
level estimates of mean AGB. Consequently there are also two sets
of estimates of the total AGB of Kenyan mangroves; one in which
the lowest estimates for Kilifi and Tana River were added to the to-
tal AGB of the other regions (‘Kenya Low’) and one in which the

Fig. 5. Group-specific random effects (±95% PI) for the intercept and the coefficients of diameter and height. The solid line at zero represents no departure from the fixed
effects estimate for each parameter and the dashed lines on either side are the upper and lower limits of the 95% CI of the fixed effects estimate. Species_site groups
correspond to the first four letters of the species followed by the first three letters of the site (see Table 1). Numbers in parentheses denote sample size for each group.

Fig. 6. Total above-ground biomass (AGB) in kg as measured for each tree in the
Zambezi harvest dataset versus the corresponding median fitted value (kg ±95% PI)
from model VIII. The 95% PI is the difference between the 97.5% and 2.5% quantiles
of the simulated distribution of possible values of median AGB for each tree. The
reference line represents a 1:1 correspondence between observed and fitted values.
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highest estimates were used (‘Kenya High’). Lamu District (South
Lamu + Kiunga) holds the highest proportion (�69–75% dependent
on Kenya total) of mangrove AGB in Kenya (Table 5). Despite hav-
ing one of the lowest estimates of mean AGB the estimated total
AGB of mangroves at Mida Creek is more than double that of Gazi
Bay due to the higher mangrove cover at Mida Creek.

The uncertainty around the estimates of total AGB are generally
well constrained for all regions (Table 5). However, the Low and
High estimates of total AGB for Kilifi and Tana River differ by a fac-
tor of �2.7. This constitutes another level of uncertainty for these
regions and consequently the overall total for Kenya which differs
by �8% between Low and High estimates.

4. Discussion

4.1. Applicability and interpretation of Model VIII

This study used mixed-effects modelling to account for both
species and site variability in the allometric relationship for man-
groves producing a generic equation for Kenyan mangroves and a
set of species-site specific equations. The procedure for uncertainty
propagation employed in the current study ensures that estimates
of AGB at different spatial scales are accompanied by a realistic
measure of the total uncertainty. It is important to note that
although mangroves have been used as a case study here, the kind
of models and methodologies presented can be regarded as broadly
applicable to forests in general.

The practical application of the equations developed in the cur-
rent study is dependent on the target of inference. The set of spe-
cies-site specific equations are only applicable to four species
within the Gazi Bay region and simulations using these equations

account for the uncertainty in predicting the AGB of a new tree
within a pre-existing group. In contrast, the generic equation has
a much broader application as it can be used to predict the AGB
of new trees where there is no pre-existing knowledge of the spe-
cific species-site allometric relationship: the most commonly
encountered scenario in practical biomass studies. The generic
equation offers a far better solution than simply disregarding the
additional uncertainty involved in applying an equation that was
perhaps derived for a different species and/or a different site.

The predictions of AGB from model VIII show good correspon-
dence with the observed values of AGB used to fit the model
(Fig. 3). Perhaps more importantly, the median fitted values of
AGB (±95% PIs) from model VIII show good overall correspon-
dence with the observed values of AGB for trees within the
Mozambican validation dataset (Fig. 6). This would seem to indi-
cate that accounting for variance due to species and site effects in
biomass regression models is important if they are to be used
effectively elsewhere to predict AGB. Indeed, a large proportion
of the total variance in model VIII was attributed to between-
group variability in the coefficients of the predictive variables
diameter and height (Fig. 4). Both species and site specificity in
the allometric relationship for mangroves is indicated by the
group-specific random effects (Fig. 5). Most groups show some
overlap in predicted random effects but there are some differ-
ences between species at the same site (species_Gaz groups)
and between sites for the same species (Rhiz_site groups). How-
ever the use of a combined species_site grouping factor precludes
any conclusion regarding the relative contribution of each factor
(species and site) to the total variance in the allometric relation-
ship. It is also not possible to formally assess the potential contri-
bution of a study effect to the predicted random effects in this

Fig. 7. Estimated median above-ground biomass (AGB) of each plot within the forest inventory dataset (±95% PI). Plots have been grouped according to the eight regions
identified in the inventory dataset. For each region plots appear in ranked order from low to high estimated AGB. The 95% PI is the difference between the 97.5% and 2.5%
quantiles of the simulated distributions of possible values of median AGB for each plot.
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study. However, as mentioned in Section 2.2.2 any such effect is
assumed to be minimal due to the general agreement in method-
ology across studies included in the harvest dataset. The only
study which differed notably in methodology was that of Lang’at
(2008) where total above-ground biomass comprised stem weight
only (Table 1). In this case the sample size was fairly small (15
trees) and re-fitting model VIII after excluding this dataset did
not substantially alter the fixed effects estimates, predicted ran-
dom effects or residual variance.

In modelling the covariance of the distribution of random ef-
fects, the constraints imposed by the mixed-effects model used
in the current study on the estimated correlation parameters
may be considered too restrictive when more than two coefficients
vary by group (Gelman and Hill, 2007). Although outwith the scope
of the current paper; an alternative approach for future study
would be to use a scaled inverse-Wishart distribution as the prior
for modelling the covariance matrix of the random effects in a fully
Bayesian model (Dietze et al., 2008; Gelman and Hill, 2007).

Ideally regression models should not be applied outwith the
data range for which they were derived (Chave et al., 2005; Chave
et al., 2004). The lack of large tree harvest data means that extrap-
olation is often a practical necessity when estimates of AGB are
needed for large trees within forest inventory datasets. In this
study, it is assumed that the log-log linear relationship will hold
for trees beyond the original data range. It is, however, acknowl-
edged that this may not be the case and that the estimates of
AGB for trees outwith the data range recorded in harvest dataset
will include additional uncertainty due to extrapolation. Only a
very small proportion of trees in the inventory dataset (0.1%) had
a recorded diameter exceeding that found within the harvest data-
set and none exceeded the height range. However, the effect of
having limited information regarding the allometric relationship
for large trees is apparent in the poorer model fit at higher AGB val-
ues (Fig. 3). It is also apparent (to some degree) in the width of the
prediction intervals around the larger trees in the validation data-
set and the estimates of AGB at the plot, regional and landscape le-
vel. This is presumably due to the fact that by accounting for the
covariance of the predictive uncertainty at the single tree level in
producing estimates of AGB at aggregated levels (e.g. a plot) the
aggregated predictive uncertainty is realistically larger than if the
AGB of multiple trees had simply been summed (Wutzler et al.,
2008). In addition, the greater width of the PIs for larger trees is
an inevitable consequence of using a log-normal model where
the variability is related to the mean on the linear scale. An ap-
proach to consider for future study would be to investigate the
use of alternative distributions for the variability.

The 95% PIs in the current study are generally well constrained
given that measurement and predictive uncertainty have been
fully propagated to estimates. In addition, prediction intervals take
into account both the uncertainty in estimating the conditional
mean of the response and the variability in the conditional distri-
bution of the response and as such are generally larger than the
frequentist confidence intervals employed to represent uncertainty
in most other studies. However, for a few of the plots in the inven-
tory dataset the upper limit of the PI around the median estimate
of AGB is exceptionally high (Fig. 7) and exceeds the highest levels
of AGB previously reported for mangroves. The effects of both
extrapolation and small plot size could possibly explain these ex-
treme upper PI values for selected plots. All of the affected plots
measure just 10 � 10 m and contain two or more large diameter
trees which in some cases exceed the maximum diameter
(48.9 cm) found in the harvest dataset. The presence of a few large
trees in a small plot can skew results, however tree level and sam-
pling uncertainties tend to be reduced in larger plots (Chave et al.,
2004).

4.2. Comparison and interpretation of large-scale AGB estimates

Previous allometry/biomass studies conducted in Kenya have
focused on the development and application of species-specific
allometric equations to mangroves at a particular site. As a result
existing published estimates of AGB for Kenyan mangroves are
on a species by site basis and in many cases refer to monoculture
plantation forest established at Gazi Bay (Kairo et al., 2009; Kairo
et al., 2008; Tamooh et al., 2009). Estimates of AGB for natural
mangrove forest in Kenya vary considerably between sites but also
between studies conducted at the same site. Within the Mida
Creek area Gang and Agatsiva (1992) estimated the AGB of Rhizo-
phora forest as 11.8 Mg ha�1. However, their estimate is based on
the data from just one plot and there is no mention of how this
estimate was derived (Gang and Agatsiva, 1992). For the same spe-
cies at Gazi Bay Slim et al. (1996) and Kirui et al. (2006) produced
substantially higher estimates of mean AGB at 249 Mg ha�1 (± s.d.
40.1) and 452.02 Mg ha�1 respectively. Similar to the study by

Fig. 8. Estimated mean AGB (±95% PI) of mangroves within each region. The 95% PI
is the difference between the 97.5% and 2.5% quantiles of the simulated distribution
of possible values of mean AGB for each region.

Table 5
Estimated total mangrove above-ground biomass (AGB) for Kenya and for each region
within Kenya.a

Region 2.5% Quantile
of total AGB (Mt)

Mean of total
AGB (Mt)

97.5% Quantile of
total AGB (Mt)

Mtwapa Creek 0.032 0.038 0.048
Mida Creek 0.116 0.128 0.143
Mwache 0.237 0.272 0.331
Gazi Bay 0.055 0.060 0.070
South Coast 0.242 0.267 0.304
Vanga 0.388 0.449 0.556
South Lamu 3.260 3.486 3.749
Kiunga 0.851 0.951 1.073
Kilifi (Low) 0.039 0.047 0.059
Kilifi (High) 0.114 0.128 0.144
Tana River (Low) 0.211 0.250 0.315
Tana River (High) 0.613 0.685 0.774
Kenya Total (Low) 5.431 5.947 6.648
Kenya Total (High) 5.908 6.464 7.192

a 1 Megatonne (Mt) = 1 million tonnes. The uncertainty around estimates of total
AGB for each region is represented by the 2.5% and 97.5% quantiles of the mean.
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Gang and Agatsiva (1992) the estimate of AGB from Slim et al.
(1996) was based on the application of their allometric equation
to Rhizophora trees within one 20 � 20 m mono-specific plot and
therefore cannot reasonably be assumed to represent the variabil-
ity of Rhizophora forest within Gazi Bay. The highest estimate from
Kirui et al. (2006) is more akin to the level of AGB found in man-
groves in South East Asia (Komiyama et al., 2008) and it is not clear
how their mean estimate was derived. In contrast to previous stud-
ies, this study has focused on providing estimates of mangrove AGB
at varying spatial scales. This different approach means that the
estimates provided here are not readily comparable with those
from previous biomass studies conducted in Kenya. However, to
facilitate some kind of comparison the outputs of the simulation
procedure (Section 2.2.4) were sub-set to provide an estimate of
mean AGB for just Rhizophora forest at Gazi Bay of 134.5 Mg ha�1

(95% PI range 125.1–146.8 Mg ha�1).
Estimates of biomass density (mean Mg ha�1) at large spatial

scales such as those produced in the current study can be regarded
as a comparative tool by which to assess the level of AGB at differ-
ent sites/regions or between countries or forest types. Levels of
mean AGB have been found to vary considerably between man-
grove forests across the globe (see review by Komiyama et al.,
2008) ranging between 31.5 Mg ha�1 (± s.d. 2.9) for pioneer man-
grove forest in French Guiana (Fromard et al., 1998) to
536.6 Mg ha�1 (95% CI range 327.6–743.5 Mg ha�1) for mangroves
in Micronesia (Donato et al., 2012). Such broad-scale variability can
be attributed to differences in floristic composition, climatic condi-
tions, hydrology, geomorphology, successional stage and distur-
bance history (Fromard et al., 1998).

The regional estimates of mean AGB (±95% PI) shown in Fig. 8.
represent a best attempt at summarising the level of AGB within
different mangrove regions in Kenya. The two regions with the
lowest estimated mean AGB were Mtwapa Creek (72.8 Mg ha�1,
95% PI range 61.4–91.9 Mg ha�1) and Mida Creek (77.1 Mg ha�1,
95% PI range 69.9–86.2 Mg ha�1) and are comparable to the level
of AGB (71–85 Mg ha�1) found in mixed mangrove forests domi-
nated by R. mucronata and A. marina in Sri Lanka (Amarasinghe
and Balasubramaniam, 1992). The estimate for Mida Creek is
somewhat lower than expected and could be due to insufficient
inventory data from this region (n = 14 plots) but it is also likely
reflective of the level of forest degradation in this area due to illegal
and poorly managed logging practices (Kairo et al., 2002). The re-
gion with the highest estimate of mean AGB was Kiunga NMR
(199.6 Mg ha�1, 95% PI range 178.6–225.3 Mg ha�1). This level of
AGB is comparable to that reported for mangroves in Micronesia
(Donato et al., 2012; Kauffman et al., 2011) and mature coastal
mangroves in French Guiana (Fromard et al., 1998) and exceeds
the estimate by Donato et al. (2011) of 169.9 Mg ha�1 for oceanic
mangroves in the Indo-Pacific region.

Although the estimates of AGB produced in this study are statis-
tically robust, it is important to note the underlying assumption
that estimates at large spatial scales have been obtained using a
sample which is representative of the variability in forest compo-
sition and structure within the area in question (Chave et al.,
2004). The estimates of mean AGB in this study were derived using
all available current inventory data for each region. It seems rea-
sonable to assume that due to the sampling strategy employed
(stratified random) and the comparatively large sampling effort
(total number of plots sampled) that the mangrove areas in the
South of Kenya (Gazi Bay, Mwache, Mtwapa Creek, South Coast
and Vanga) have been adequately sampled. In addition, the large
within-region variability in estimates of median AGB at the plot le-
vel (Fig. 7) would suggest that there has been no sampling bias in
terms of plot location, for example by preferentially locating plots
in areas likely to yield high biomass and that the range of possible
biomass values within each region has been adequately captured.

The regional estimates for Mida Creek and Lamu District (South
Lamu and Kiunga) are based on relatively small inventory datasets
(n = 14 plots in Mida Creek, 25 in South Lamu and 16 in Kiunga)
due to the larger resource requirement and practical difficulties
(e.g. accessibility) associated with sampling areas in the North.
While the sampling strategies employed in these regions (random
and stratified random) are appropriate from a statistical point of
view; it is recommended that further data collection is undertaken
in order to increase sample size and ensure representivity in these
regions. This is particularly important in the case of Lamu District
which covers a large geographical area and is worthy of further
division into smaller sub-regions. For example, the mangroves of
Dodori Creek (Dodori National Reserve, Lamu District) were not
sampled in the current study but should probably be considered
as a distinct mangrove system.

In considering the regional and Kenya-wide estimates of total
AGB provided in Table 5 it is acknowledged that: (1) the estimates
of mean AGB (±95% PIs) used in up-scaling are assumed to be
regionally representative as discussed above and (2) the uncer-
tainty associated with the estimates of mangrove cover derived
from the remote sensing data has not been accounted for. Bearing
in mind these caveats the estimates (±95% PIs) shown in Table 5
can still be viewed as a useful comparative overview of the level
of total AGB stocks currently held within each region. There is
undoubtedly scope for large-scale estimates to be further refined
in the future. In particular there is a need for current inventory
data to be collected within the regions Kilifi and Tana River (as de-
fined in this study) not only to constrain the regional estimates but
also the Kenya-wide estimate of total AGB. In addition, if and when
future remote sensing work allows for the detailed mapping of
mangrove cover and structural characteristics in each region it
may become possible (and desirable) to produce large-scale esti-
mates of AGB based on up-scaling by forest strata.

The stratification of forest cover is recommended for the report-
ing of forest carbon pools (IPCC, 2006) and there are a variety of
stratification options still under consideration for future REDD
reporting (Maniatis and Mollicone, 2010). Mangroves are generally
considered to display species zonation and have traditionally been
stratified by such ‘zones’ (Hogarth, 1999). However, not all man-
groves display well-defined patterns of zonation (e.g. Mida Creek)
and other options for stratification for example based on structural
characteristics may be more appropriate in some situations. Vari-
ous remote sensing techniques have been used in recent years to
map mangroves at fine to large spatial scales (see review by
Kuenzer et al., 2011). Such techniques offer the potential for fast
and repeatable estimates of cover, and in the case of radar remote
sensing above-ground biomass to be made based on mangrove
structural parameters (Fatoyinbo et al., 2008; Held et al., 2003;
Lucas et al., 2007).

It is anticipated that if required and pending any further collec-
tion of new harvest data, the model and methodology for uncer-
tainty propagation presented in the current study could be used
to produce estimates of mean AGB for use in future up-scaling
exercises based on some stratification system with only minor
modification to the existing procedures.
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