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The Stationary Phase Approximation,
Time-Frequency Decomposition and

Auditory Processing
Bernard Mulgrew, Fellow, IEEE

Abstract—The principle of stationary phase (PSP) is re-exam-
ined in the context of linear time-frequency (TF) decomposition
using Gaussian, gammatone and gamma chirp filters at uniform,
logarithmic and cochlear spacings in frequency. This necessitates
consideration of the use the PSP on non-asymptotic integrals and
leads to the introduction of a test for phase rate dominance. Re-
gions of the TF plane that pass the test and do not contain sta-
tionary phase points contribute little or nothing to the final output.
Analysis values that lie in these regions can thus be set to zero, i.e.,
sparsity. In regions of the TF plane that fail the test or are in the
vicinity of stationary phase points, synthesis is performed in the
usual way. A new interpretation of the location parameters associ-
ated with the synthesis filters leads to: i) a new method for locating
stationary phase points in the TF plane and ii) a test for phase rate
dominance in that plane. Together this is a TF stationary phase
approximation (TFSPA) for both analysis and synthesis. The sta-
tionary phase regions of several elementary signals are identified
theoretically and examples of reconstruction given. An analysis of
the TF phase rate characteristics for the case of two simultaneous
tones predicts and quantifies a form of simultaneous masking sim-
ilar to that which characterizes the auditory system.

Index Terms—Method of reassignment, cochlear filters, gamma-
tone, gammachirp, simultaneous masking.

I. INTRODUCTION

T HE principle (or method) of stationary phase (PSP) [1]
is a result from asymptotics that can provide closed-form

approximations, in the limit as , to often intractable
oscillatory integrals of the form

(1)

where . There are two steps involved: PSP(i) recog-
nition that in the limit the integral will be almost zero every-
where in the interval except near values of
where the derivative is zero, the stationary phase points;
PSP(ii) the integrand in the vicinity of these stationary phase
points can be expressed in terms of the second derivative of
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the phase i.e., . Perhaps the most successful application of
the PSP in signal processing has been in the context of syn-
thetic aperture radar (SAR), where it is the starting point in
the development of many of the Fourier-based imaging algo-
rithms, cf. [2]. Application of the PSP is not without its pitfalls.
It is tempting to use the PSP in the non-asymptotic cases where

to find closed form approximations to integrals such as
Fourier transforms. The argument for this requires that the phase

is changing much more rapidly than the amplitude .
However, as pointed out in [3], a degree of care must be exer-
cised, particularly with PSP(ii).
The primary interest here is its application to linear time-fre-

quency (TF) decomposition [4]. The motivation is the recent
resurgence of interest in analogue filter banks both as part of a
synthetic cochlea and as a means to provide power efficient im-
plementations of analysis filter banks [5]. The desire with both is
to extract salient features from the TF decomposition using the
limited functionality associated with analogue circuitry. This
does not deny the considerable work that has been done on com-
putational modelling of the auditory system, typified by papers
such as [6] and the references therein. However the main pur-
pose of such work is to model and predict the response of the
auditory system to stimulus rather than to expose the signal pro-
cessing principles that might be at work.
The PSP is a natural place to start because of the prevalence of

oscillatory terms in TF decompositions and the hope that the sta-
tionary phase points may provide a means for identifying salient
features as well as a focus for sparse decompositions without the
need for the usual iterative re-synthesize steps, cf. [4] chapter
12. The PSP has been applied to linear TF decomposition for
both analysis, [7] and [8], and synthesis [9], the latter leading to
the method of reassignment. Subsequent developments of the
method of reassignment are documented in [10]. Reassignment
can provide improved estimates of the location of components
in the TF plane. Related methods such as [11] and [12] restrict
this improvement to the frequency direction alone. In particular
synchrosqueezing [13] can be viewed as a form of reassignment
that also facilitates sparse re-synthesis.
The objective here is to provide similar capabilities, i.e., lo-

cation accuracy and sparsity of representation, using the limited
functionality of analogue filter banks and, by doing so, to shed
some light on the principles that might be at play within the
cochlea which has similar limited functionality. The approach
adopted is to revisit [9] and to fundamentally re-interpret it to
provide a PSP-based approximation to the TF synthesis integral.
There is no attempt to either reassign [9] or relocate [13] compo-
nents in the TF plane because of the said limited functionality.

1053-587X © 2013 IEEE
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Another alternative would be to follow an amplitude-based ap-
proach such as ridgelets [14]. However this leads to algorithms
that are far from feasible with analogue circuitry and further,
ridges in the TF plane may not be appropriate when dealing with
auditory filters such as the gammatone [15] and gammachirp
[16] which have asymmetrical impulse responses and, in the
case of the latter, an asymmetrical frequency response. Concen-
tration on the synthesis rather than the analysis integral is ad-
vocated because: (i) most methods for sparse atomic decompo-
sition, cf. [4] chapter 12, are based on re-synthesis of the orig-
inal waveform; (ii) one of the main functions of the auditory
system is to code the incident waveforms and coding requires
at least some consideration of the potential for reconstruction
(even when reconstruction is not a requirement); (iii) smooth
variations of the magnitude and phase of the integrand are more
readily satisfied for the synthesis integral than the analysis inte-
gral (because the signal has already been filtered in the analysis
process).
The primary contribution of this paper is a TF stationary

phase approximation (TFSPA) for both linear signal analysis
and synthesis (Section IV). It reduces both the extraction of
salient features from TF analysis and the selection of com-
ponents for synthesis to simple tests that can be performed
instantaneously at the output of an analysis filter bank. Sup-
porting contributions include:
• A re-examination of the application of the PSP to non-
asymptotic integrals (Section III) that leads to the use of
PSP(i) without the need for PSP(ii). The subsequent intro-
duction of the concept of phase rate dominance that parti-
tions the interval into sets where the PSP can and cannot
be applied.

• A new interpretation of the time-location parameter asso-
ciated with the synthesis double-integral that leads to: (i)
the development of both a simple and a constant false alarm
rate (CFAR) test for stationary phase points in the TF plane
(Section IV); (ii) the extension of the phase-rate dominance
concepts from one to 2 dimensions (Appendix A) to pro-
vide a test for such dominance in the TF plane (Section IV).

In addition, the stationary phase points and phase-rate dom-
inance characteristics of elementary signals such as impulses,
phasors, chirps and decaying phasors are analyzed (Section V).
This analysis also serves to illuminate the results when TFSPA is
applied to a speech signal. Gammatone/chirp filters at cochlear
spacing [17] are used throughout to provide insight into auditory
processing (Section II). An example of this is the final contribu-
tion of the paper:
• An analysis of the performance of the simple stationary-
phase-point detector proposed here when two tones are ap-
plied simultaneously. This analysis predicts a form of si-
multaneous masking [18] similar to that which character-
izes the auditory system (Section VI).

Aspects of this work were reported briefly in [19].

II. PRELIMINARIES

Consider a linear TF analysis of a signal of interest
of the form:

(2)

where * denotes convolution and the impulse response of a
single filter in the analysis filter bank is given by:

(3)

Each filter is formed using a prototype filter , a nominal
bandwidth and a frequency location . The frequency re-
sponse of the analysis filter is related to the frequency re-

sponse of the prototype, i.e., ,

where . When dealing
with these prototype filters the following notation is used to in-
dicate the derivatives of their impulse and frequency responses,
i.e., and respectively.
Gaussian, gammatone and gammachirp prototypes are consid-
ered here. While a Gaussian prototype is a common [4] and
analytically convenient choice for TF analysis, the gammatone
[15] and gammachirp prototypes [16] more closely model the
cochlea in the ear. The prototype filters are normalized such
that . This property and multiplication by the nominal
bandwidth in (3) normalizes the maximum gain of each
filter to unity at rad/s. A re-synthesis, , of the signal of
interest is performed using filters matched to . Thus for
real signals of interest

(4)

with integrand and where is a
constant and and denote ‘real part of’ and ‘imagi-
nary part of’ respectively. The time variable is suppressed in
this definition of the integrand to emphasize that the integration
is respect to and the filter bank variable . The latter lies in
the range and is a monotonic function of . It provides a
convenient way of dealing with a number of possible filter bank
spacings. A value indicates the lower edge of the filter
bank and indicates the upper edge. The frequency at
which the filters gain is a maximum is a function of and the
bandwidth of the filter is proportional to the derivative ,
i.e., . Hence the total number of filters required to just
cover the band of interest is given approximately by . In
the following is nominally the lowest frequency covered
by the filter bank and is the maximum. For a uniformly
spaced filter bank and hence

, the

nominal bandwidth is a constant and . For logarithmi-
cally spaced filter banks, similar to wavelets [4],
where and hence ,

the nominal bandwidth is proportional to and is a con-
stant. For a cochlear spaced filter banks, based on the approx-
imation of [17] for low sound pressure levels,

, where and hence

and is a constant. For
all the above filter banks, the equivalent rectangular bandwidth
(ERB) [18] and the 3 dB bandwidth are related to the nominal
bandwidth in a straightforward way.
As indicated, the Gaussian, gammatone and gammachirp pro-

totype filters all have a maximum gain of unity at zero fre-
quency. They are scaled in time and modulated in frequency
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to form the various filter banks. A Gaussian prototype has a
non-causal impulse response with a peak

at , a group delay of 0 and a derivative . Its

frequency response is with derivative
. An order gammachirp prototype, with chirp rate

parameter , has a causal impulse response defined in terms of
the complex gamma function as

and otherwise. This is a minor modification to the
gammachirp filter of [16] in order to decouple the dependency
between the location of the peak gain in the frequency response
and the chirp rate parameter . The time derivative is

(5)

The gammatone prototype is a specific case of this when the
chirp rate parameter, , is zero. The gammachirp prototype has
frequency response

the derivative of which is

The peak in the magnitude of the impulse response occurs at
while the group delay of the filter at is
, where indicates the phase of . The gam-

machirp prototype, like the Gaussian, is scaled (in time) and
modulated to give the analysis filter of (3). The chirp rate param-
eter is unaffected by the time scaling because of the action of the
logarithm function i.e., . The time
scaling adds a phase shift to the impulse response. Thus
values of can be used interchangeably with [16]. From (5), the
phase derivative of the impulse response is: ,
which is zero at the group delay of . Likewise
at the group delay.

III. THE PSP AND NON-ASYMPTOTIC INTEGRALS

Consider the integral (1) evaluated over an interval
. Assuming that the function

is well approximated by its Taylor series over this
interval, gives

The derivatives can expressed as

and

In the asymptotic case, at a suitably large value of

and and hence the integral

is dominated by the phase derivatives and . Thus, at a
stationary point, where , the integral can be evaluated
in terms of without reference to derivatives of . For the
non-asymptotic case where , these approximations are
also dependent on the relationships between the derivatives of
the magnitude and phase of the integrand. Thus
provided, as in [7], that

(6)

and provided also that

(7)

If the amplitude and phase derivatives are available then at every
value of it is possible to test for what might be called first order
or second order phase-rate dominance using (6) or, (6) and (7),
respectively. The approach adopted here, where a closed form
approximation to the integral is not required, is to circumvent
the difficulties associated with PSP(ii) by simply not using that
step.
Let the set of stationary phase points be denoted by

(or more compactly ) and let the
interval that contains the th stationary phase point be

. Fur-
ther, the inequality (6) defines a set that is the union of
intervals of where PSP(i) is valid and the compliment to that
set where it is not. The integral over the whole real line, (1),
can then be replaced by an integral over the union of intervals
such as and , i.e., an integral over .
It is also worth noting that for (6) to be satisfied at or near a
stationary phase point, would also require that as

. Thus the normalized amplitude rate must go to zero
more rapidly than the phase rate, i.e., (7) must apply. Thus there
are liable to be intervals where and for these intervals
there is no need to identify and .

IV. A TIME-FREQUENCY STATIONARY PHASE APPROXIMATION

The PSP can be extended to double integrals such as (4)
with the result defined in terms of the gradient and Hessian
of the phase of the integrand, cf. [1], pg. 478. However, as in
Section III the full form of the PSP is not used here. Specif-
ically, the gradient is used in PSP(i) to identify the stationary
phase points but the Hessian of PSP(ii) is not used to form an ap-
proximation to the integral in the vicinity of these points. A test
similar to (6) is developed for double integrals in Appendix A to
identify regions of phase-rate dominance in the TF plane where
the PSP is applied by numerical integration in the vicinity of
the stationary phase points. As in Section III, it is convenient
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to define normalized time- and frequency- derivatives of the in-

tegrand , i.e., and
respectively, where

(8)

and

(9)

where

(10)

Both and are additions of a signal dependent term, e.g.,

, and a signal independent term, e.g., . The
former is a function of the pair whereas the latter is a
function of the pair . Note that and are
themselves parameters of the filter, specifically, the frequency
where the filter has maximum gain and the delay be-
tween the input and output of the filter. In contrast to the method
of re-assignment derived in [9], the delay term is inter-
preted here as the group delay

(11)

of the filter (3) at frequency . Simple expressions for the group
delay are given in Section II in terms of the group delays of the
prototype filters at zero frequency. The justification for the use
of (11) in (8), (9) and (10) proceeds as follows: is the
delay between the input signal and the output of the anal-
ysis filter ; since each filter is tuned to have a maximum
gain at a particular frequency , the delay through the filter is
also tuned to the rate of change of the phase response at the fre-
quency where the gain is maximum. A particular filter is thus
jointly labeled with both its frequency and the group delay at
that frequency . Thus (8) and (9) can be written as

(12)

and

(13)

respectively, where . Then because
for all three filter types including the complex

gammachirp (cf. Section II), the time derivative of the phase of
the integrand is

(14)

and the frequency derivative is

(15)

Time and frequency derivatives of the analysis integral (2) are
constructed using the derivative filters and
respectively, cf. [20], [9]:

(16)

(17)

Alternatively, as suggested in [9], they can be derived from the
output of (2) by direct differentiation of to obtain (16)
and by using neighboring analysis filters to obtain an approxi-
mation to (17). Stationary phase points are solutions
to:

(18)

The derivative filters can be expressed in terms of the prototype
filter and its derivative . Expressions for the deriva-
tive of the Gaussian and gammachirp filters can be found
in Section II. From (18) there are two conditions that must be
satisfied simultaneously for a stationary phase point to occur at

, specifically:

1) the frequency, , observed at
the output of filter at time , is equal to the centre frequency
of the filter;

2) the delay, , observed at the
output of the filter at frequency , is equal to the group
delay of the filter at that frequency.

Together these define a signal matching condition: at the
frequency and delay observed at the output of the filter must
match the designed centre frequency and group delay of that
filter.
Locating stationary phase point requires a grid search over
for a bank of analogue filters or over both and , for a

discrete-time filter bank. Such a grid search is not onerous since
it is implicit in the implementation of the analysis integral. With
a grid search there is always the risk of missing the pair
that satisfy (18). This risk can be reduced by: (i) defining a phase
gradient vector

(19)

where the superscript indicates matrix transpose; (ii) using the
Euclidean norm of this vector to construct a test for stationary
phase points, i.e.,

(20)

where the threshold is a small positive real constant. The Eu-
clidean norm is used here for analytic convenience when dealing
with deterministic signals. Other vector norms may be appro-
priate and may have desirable properties with respect to ease of
implementation.
In noisy environments any detector will make type I errors

(false alarms) and it is common to design the detector to op-
erate at a specified false alarm rate [21]. In [19], closed form
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expressions for the probability density function (PDF) and cu-
mulative distribution function (CDF) of and are
developed under the null hypothesis that is Gaussian white
noise. Based on this a CFAR detector for stationary phase points
is proposed here using the test:

(21)

where indicates the logical “AND” operation. Details of
the evaluation of the thresholds and together
with the assumptions used in their derivation are provided in
Appendix B. For a non-uniform filterbank the values of the
thresholds required to achieve a particular false alarm rate are
dependent on the frequency location of the filter and thus these
thresholds are denoted as functions of .
In addition to finding stationary phase points, (12) and (13)

can also be used to test for phase-rate dominance in the TF plane.
For phase-rate dominance the inequality

(22)

must be satisfied, where the amplitude gradient vector is

(23)

and the threshold is a positive real constant greater than or
equal to one. The projection term

(24)

is formed from the sum of the projection of the phase rate
vector in the direction of the normalized amplitude rate, i.e.,

, plus the projection in the orthogonal direction, i.e.,

and hence . The test is

derived in Appendix A. Thus the PSP divides the TF plane into
two regions: a region where (22) is satisfied and the rest of
the TF plane where it is not.
Given the stationary phase points that are solu-

tions to (18), the stationary phase approximation is invoked by
replacing (4) by:

(25)

where is a subset of the TF plane defined as
is the neighborhood of the th stationary phase point such that

and contains all points in the TF plane that
satisfy (20) (or (21)). Equation (25) promises sparsity directly
from analysis without the computationally expensive re-syn-
thesis step associated with most methods for sparse atomic de-
composition. The atomic decomposition of (25) is sparse in the
sense that , the coefficient is implicitly set
to zero. However there are no guarantees about the degree of
sparsity that can be achieved or the quality of reconstruction that
might be expected apart from the usual ones that might be ex-
pected from a well-designed snug or tight frame [22]. This will
be explored in the following section. Together the analysis steps
of (2), (12) and (13), the selection inequalities (20) or (21) and
(22) and the synthesis equation (25) form what might be called
a time-frequency stationary phase approximation (TFSPA).

V. ELEMENTARY SIGNALS

This Section is devoted to a consideration of the stationary
phase regions of the TF plane associated with some important
elementary signals and also in identifying regions of phase-rate
dominance. Because of the elementary nature of the signals
there is some hope that closed form solutions are possible. These
elementary waveforms are: an impulse; a single tone; a linear
chirp; a decaying phasor. Closed form solutions that define the
stationary phase points are derived. Within the constraints of
the available space results of the numerical evaluation of these
regions are also provided to confirm and expand upon the theo-
retical results. Unless otherwise stated, the results relate to order

gammatone and gammachirp filter banks
at the cochlear spacing described in Section II. Numerical eval-
uation considers a frequency band from rad/s
to rad/s at a sampling rate of 20 kHz. For the
gammatone, and and for the gammachirp,

and . These values are commensurate with
ERB figures for the cochlea, cf. [17]. The spacing of the filters
in frequency is such that there are 4 filters with their maximum
gain within the ERB of each filter [22]. In this case 103 filters are
used to cover the stated band. The combined frequency response
of the analysis and synthesis filters banks has a linear phase and
is flat to within a fraction of a dB over the band. Thus, over the
band of interest, the combination of analysis and synthesis filter
banks, (2) and (4), is effectively distortionless. All filters are ap-
proximated by simply truncating them at a suitable point to give
finite impulse response (FIR) filters. Anticausal filters (e.g., syn-
thesis filters) are simulated by incorporating suitable delays. For
the purposes of display and comparison, the scaling factor in
(25) is evaluated using a least squares fit to the signal.
For the inequalities ((20) and (22)), and .

These values are used in all simulation results presented in this
section. The former was found experimentally to provide a good
indication of the stationary phase regions for the filter bank de-
scribed above and for all combinations of filter spacing and pro-
totypefilter described inSection II.The latter is an extremevalue.
The inequalities, (22) of Section III and (48) ofAppendixA, sug-
gest a larger value suchas .However avalueofunitywas
chosen because: (i) it makes clear the boundary in the TF plane
between regions where the projection is greater than the
norm ; (ii) it reflects a desire to test the degree of spar-
sity that could be obtained. Thus (22) becomes

(26)

Studies of ridgelets and skeletons as in [14] suggest that for
asymptotic signals, very sparse representations are possible.

A. An Impulse

The impulse is obviously important because it is an extreme
example of a transient signal. Further it is not an asymptotic
signal in the sense considered in [7] and as such illustrates the
advantages of applying to PSP to the synthesis integral rather
than the analysis integral. For an impulse the anal-
ysis of (2) yields . Fromwhich, (12) and
(13) give

(27)
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and

(28)

For a Gaussian prototype and .

For a gammachirp prototype and
, cf. Section II. Thus, for all three

filter types, at the filter spacing considered, the stationary phase
region is defined as , i.e., a contour in the TF plane
at the group delay.
As to phase-rate dominance, the most straightforward case

to consider is a uniform filterbank constructed from Gaussian
filters for which

and . Using (22) and (24), the test for phase
dominance becomes

(29)

Recalling that for uniform filter banks , gives

In the following sub-section this result will be considered again
and contrasted with a related result involving the response to a
single phasor.
For a gammachirp prototype (27) and (28) become

(30)

and

(31)

respectively. Clearly both and and hence
are not dependent on . Fig. 1(a) illustrates the

relationship between and for a single filter in
a filterbank where and rad/s for
3 values of the filter parameter . The stationary phase point
is at whereas the peak magnitude of the impulse
response occurs is at , cf. Fig. 1(b). As pointed
out above, is identical for all values of . On the
other hand increasing the value of increases the region of
where phase rate dominance can be achieved. Fig. 2 shows

both the complete TF response and results for TFSPA for
and . The stationary phase points that satisfy (20) are
indicated in red on Fig. 2(b). This stationary phase contour is
not co-incident with the peak response or ridge but rather lies
at the group delay of each filter as shown earlier. Fig. 2(b) is
obtained by only plotting at points in the TF plane
where (26) is not satisfied. As expected from Fig. 1, the leading
edge of the response has been removed. Reconstructions of the
input waveform are shown in Fig. 3 using both full TF plane

Fig. 1. Impulse response of gammachirp filter at 1 kHz: (a) comparison of
and at various values of chirp rate parameter ; (b) response.

Fig. 2. Response a gammachirp cochlear-spaced filter bank to single impulse:
(a) in dB; (b) TFSPA—stationary phase points in red.

Fig. 3. Reconstruction of impulse using full TF plane of Fig. 2(a) and TFSPA
of Fig. 2(b).

and TFSPA. In this case they are almost identical despite the
removal of the leading edge of the response.



62 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 1, JANUARY 1, 2014

B. A Single Phasor

Apply a single tone of rad/s to the analysis filter bank i.e.,
, where is the step function at the origin.

In the steady state for this gives

where , with and

(32)

Thus for all filters considered at any of the filter spacings
considered the stationary phase point occurs when
since, by definition, the group delay of the filter at is

. As to phase-rate dominance,
the most straightforward case to consider is again a uniform
filterbank constructed from Gaussian filters. For a Gaussian
prototype, and . Thus

and

Noting that is purely imaginary and is purely real,
and , the inequality (22),

reduces to

(33)

For uniformly spaced filters, this will be satisfied if .
Note that this in direct contradiction to (29) and hence it is not
possible to design a Gaussian filter bank that exhibits phase-
rate dominance in response to both impulse and phasor inputs.
For a gammachirp prototype,

and . Thus

and

Fig. 4(a) illustrates the relationship between and
for a single filter in a filterbank described in

Section V.A. The norm is approximately constant
and virtually independent of . The projection is ap-
proximately linear in and much less dependent on than the
response to an impulse. For these examples, (26) is satisfied
and phase rate dominance is achieved outside the nominal
bandwidth of the filters, i.e., for . The implication is
that the output of an analysis filter at rad/s, in response to a
phasor at rad/s, contributes little to the output of the synthesis
filter bank if . Further, (26) can be used to locate
the vicinity of the peak in the response .

Fig. 4. Steady state response of gammachirp cochlear-spaced filter bank to
1 kHz tone: (a) rate; (b) gain.

Fig. 5. TF response of a gammachirp cochlear-spaced filter bank to a 1 kHz
tone applied at time zero: (a) in dB; (b) TFSPA - stationary phase
points in red.

Fig. 6. Reconstruction of 1 kHz tone applied at time zero.

Fig. 5 shows both the complete TF response and the results
for TFSPA. The stationary phase points are indicated in red on
Fig. 5(b). The remaining values of that are plotted are
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Fig. 7. Probability of false alarm for cochlear-spaced gammatone filter bank:
theoretical and simulated performance of both (a) deterministic detector of (20)
and (b) CFAR detector of (21).

at points in the TF plane where (26) is not satisfied. The steady
state behavior is well predicted from the theoretical consider-
ations above as illustrated in Fig. 4. The horizontal red line at
1000 Hz corresponds with the stationary phase point on Fig. 4.
There is only a small region around in Fig. 4 where (26) is
not satisfied. This region is just visible on Fig. 5 as a horizontal
band in red at 1000 Hz. The transient behavior has similarities
to that of the impulse response of Fig. 2(b). Specifically the sta-
tionary phase points, on Fig. 2(b) at the group delay, are present
at most frequencies on the left hand side of Fig. 5(b) apart from
a band of frequencies around the applied one. Fig. 6 shows the
reconstruction achieved both with the whole TF plane and with
TFSPA. The transient response of TFSPA introduces an ampli-
tude modulation that dies away before matching the steady state
response. This modulation is evident for ms, the group
delay of the filter, after which the stationary phase points at 1000
Hz is established.
In noisy environments, any detection system such as (20) or

(21) will make type I errors [21]. In [19] a method for calcu-
lating the probability of false alarm of stationary phase point
detectors such as (20) was presented. The related contribution
proposed here is the CFAR detector of (21). Its performance is
verified by simulation in Fig. 7. This detector is designed to have
a false alarm rate of at all frequencies of a cochlear-spaced
gammatone filterbank. For reference the theoretical and mea-
sured performance of the deterministic detector of (20) is also
included. The false alarm rate of the latter varies with frequency.
These results confirm the validity of the independence assump-
tion used in Appendix B to design the CFAR detector.

C. Linear Chirp

Consider a linear chirp with a rate of rad/ , i.e.,
. The response to this chirp is

. In the steady state, when
and , this simplifies to

This integral is intractable and is often approximated using the
PSP. However it might appear imprudent to proceed with re-
peated application of that principle. The approach adopted here
is to approximate the integral by more explicit means. First,
assume that the instantaneous frequency, , of the quadratic
phase term is constant over the temporal extent of .
This approximation is valid if . Then, replace the

quadratic phase term with a linear phase term whose frequency
is identical to that of the quadratic phase term at a time equal to
the group delay, i.e., . This gives

This the envelope has a peak of unity on the line
in the TF plane. The stationary phase points, on the

other hand, are defined as the solution to (18), which leads to

(34)

and

respectively, where . Combining these two ex-
pression to remove leads to the conclusion that
the stationary phase points line on the line

(35)

in the TF plane. For a Gaussian prototype,
and hence the stationary phase points are coincident with the
peak in response. For gammatone and gammachirp prototypes,

and hence . Then, since
and typically , the denominator

is approximately one. Thus the stationary phase points are ap-
proximately co-incident with the peak in the response.When the
chirp rate is low, i.e., provided , the behavior of the

and can be inferred from Fig. 4. There will be
a band in the TF plane around the stationary phase line where
the inequality (26) is not satisfied.
Fig. 8 illustrates these points. The applied signal is the sum

of two linear chirps. The first is a down-chirp (
rad/s/s) which can be observed in Fig. 8(a) as a continuous
ridge from top left to bottom right. A second lower amplitude
up-chirp ( rad/s/s) produces a ridge from bottom left
to upper right. The down chirp produces a series of stationary
phase points (in red) from top left to bottom right. The posi-
tion of these points is well predicted by (35), shown as red dots,
apart from bottom right where the inequality, , does
not hold. As expected there is a region of the TF plane around
the stationary phase lines where (26) in not satisfied. The lower
amplitude up-chirp is depicted in a similar manner (including
stationary phase points) apart from the region where the two
chirps cross. In this region the larger amplitude chirps hides the
trajectory of the lower amplitude chirp. This is a form of si-
multaneous masking that will be explored more thoroughly in
Section VI. Finally there is a low amplitude artifact that lies be-
tween the two chirps. This artifact does not contain stationary
phase points and could be ignored on that basis in applications
where signal analysis was the primary objective. The outputs
from the synthesis filter banks are shown in Fig. 9 at the point
where the two frequencies cross. TFSPA produces some distor-
tion in the reconstruction when compared with that produced
using the whole TF plane.
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Fig. 8. TF response of a gammatone cochlear-spaced filter bank to two linear
chirps (a) in dB; (b) TFSPA—stationary phase points in red—equa-
tion (35) for downchirp (white dots against red and black).

Fig. 9. Reconstruction of chirps in the cross-over region using: (a) full TF plane
of Fig. 8(a); (b) TFSPA of Fig. 8(b).

D. A Decaying Phasor and Voiced Speech

Voiced speech can be viewed as a signal of the form
where is the pitch pe-

riod and are the complex formant frequencies
with centre frequencies and time constants

are the complex amplitudes of this
atomic decomposition. Because of the relationship to speech
it is informative to consider the stationary phase points as-
sociated with a single atom of this decomposition, i.e., when

with a single complex frequency .
This gives

To proceed further consider the case where and thus
restrict consideration to Gaussian and gammatone prototypes.
The normalized time derivative is

Note that since is real, the first term on the right hand side
is also real if at which point: , cf. (12).
In a similar manner

which is purely imaginary for Gaussian and gammatone proto-
types. Thus setting for gives

(36)

cf. (13).While it is unlikely that closed form solutions of (36) for
can be found, nevertheless it is still possible to infer something
about the nature of the solutions. Because
and , no solution exists for .
For the integral can be split into two terms, i.e.,

. The first term is a negative
constant. The second is a nonnegative monotonically increasing
function of because .
Thus, if a solution exists it will be the only solution. Such a solu-
tion will obviously be dependent on the value of the bandwidth
of the analysis filter for which and the time con-

stant of the applied pulse. Thus it may be possible to
infer both the frequency and time constant of the applied pulse
from the position of the stationary phase point.
To further explore the response of TFSPA to decaying pha-

sors and to provide an example of its application, a short seg-
ment of voiced speech is used. In this case the signal is
the first utterance of the phoneme from the first record
of the Timit Database at [23]. The voice is a US male speaker
sampled at 16 kHz. A gammatone cochlear-spaced filter bank is
used for the analysis. For this experiment the spacing of the fil-
ters in frequency is such that there are 16 filters per ERB. This is
commensurate with the frequency accuracy of the human audi-
tory system which is known to be a fraction of the ERB [18]. To
allow for the possibility of noise in the recorded data the detector
of (21) is used with a false alarm rate of 1/500. From Fig. 10(a)
it is clear that the signal is quasi-periodic in time and consists
of a number of formant frequencies [18]: a formant just above
3 kHz which changes in frequency with time; a formant just
below 2 kHz; a formant just below 1.5 kHz; up to 4 resolvable
frequency components below 500 Hz. The corresponding result
for TFSPA is shown in Fig. 10(b). The representation is notably
sparser. The formant structure is clearer, particularly over the
frequency range 1–3.5 kHz. As predicted from (36), there is a
single stationary phase point in response to the onset of each
decaying phasor in the speech waveform. This is particularly
evident for the formant just above 3 kHz but is also evident for
the formants just below 2 kHz and below 1.5 kHz. Another fea-
ture is predicted by the theoretical consideration in Section V-A
and is also visible in Figs. 2(b) and 5(b). Specifically there is a
line of stationary phase points one group delay after the start of
each period of the applied waveform. This is visible in the band
500–1500 Hz, particularly on the left of Fig. 10(b).
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Fig. 10. TF response of a gammatone cochlear-spaced filter bank to phoneme
from record 1 of the Timit Database [23]: (a) in dB; (b) TFSPA

- stationary phase points in red.

VI. SIMULTANEOUS MASKING

Simultaneous audio masking is the well studied process
whereby the presence of one tone prevents the detection of
a second tone [18]. In this section it is shown that the use
of the test (20) leads to a form of simultaneous masking. In
particular, if the test (20) is used to indicate the presence or
otherwise of a tonal component at , the amount by which
that test is de-sensitized by the presence of a second tone at
is dependent on: (i) the frequency separation of the tones

; (ii) the relative amplitude of the tones; (iii) the
magnitude frequency response of the filter at .
Consider a signal made up of two tones
at and , where , the relative amplitude, is positive real.
The steady-state response of the analysis filter at is

where and is the normalized
frequency separation with derivative .
The time derivative follows:

as does the frequency derivative:

where . It is convenient to rewrite (14) as

(37)

and (15) as

(38)

with denominator

(39)

and numerator of (37) as

(40)

where and . The angle
variable indicates the position in time with respect to one
period of the beat frequency . In (38), the term

is

(41)

Consider a gammatone prototype for which

and . Hence

and from which
the normalized frequency derivative is obtained using (41).

(42)

After some manipulation this yields (47), where

(43)

(44)

The numerator of (47) is the sum of two oscillatory terms in .
Assuming that the filterbank is such that

, then the first oscillatory term, from , is larger
than the second term, from . To obtain an approximation
to the norm, first consider , in which case the de-
nominator of (47) is a constant. For

(i.e., small and finite) and . Thus the
numerator is the sum of two oscillatory terms proportional to

. Thus the minima of the norm are, approx-
imately, at . For
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Fig. 11. Numerical and approximate evaluation ofminimum of phase rate norm
of cochlear spaced gammatone filter: filter frequency 1 kHz and .

and and hence the two oscillatory terms are ap-
proximately out of phase and thus the minima of the numer-
ator can again be found at the zeros of the larger term, i.e.,

. Substitution in (47) yields

(45)

For the first term does not go to zero. Given that
this time derivative term much larger than the frequency deriva-
tive term, an approximation to the norm is obtained by assuming
that the latter term is negligible and hence

This function of angle has minima at , which are:

(46)

Together (45) and (46) approximate the behavior of the minima
of the norm as a function of the frequency separa-
tion and the amplitude of the second tone as observed at the
output to the filter . When two tones are present the norm
will not go to zero. However, despite that, the test (20) may be
satisfied for a given threshold twice per period of the beat
frequency at and thus indicate that a region
of stationary phase is present. It is also evident from (45) and
(46) that the behavior of the norm changes significantly at the
point where . See (47) at the bottom of the page.
Fig. 11 illustrates as a function of for

a particular filter and a frequency separation, . The min-
imum value of the norm is evaluated both by numerical mini-
mization of (47) and using the approximations of (45) and (46).
There is a clear discontinuity in the first derivative at
as might be expected from the development of the approxima-
tions. The approximations are generally a good fit to the minima
evaluated numerically. For this example the most significant er-
rors can be observed around . It is also clear from
the numerical evaluation that the minimum of the norm is a

Fig. 12. Detection threshold of gammatone cochlear-spaced filter bank for
; 0 dB masking tone at 1 kHz; response of filterbank to masker also

shown for reference.

montotonically increasing function of and as such is in-
vertible. Thus if a particular value of the threshold in (20) is
chosen to detect stationary phase points a corresponding value
of can be calculated that will just achieve a minimum of
. Together (45) and (46) are not guaranteed to provide a mon-

tonically increasing function. Howeverminor adjustments in the
vicinity of the discontinuity can overcome this and together they
provide a simple means of inverting the function. Fig. 12 illus-
trates how adoption of the stationary phase test (20) leads to a
simultaneous masking effect. A 0 dB masking tone at 1 kHz
is introduced that corresponds to the interferer at rad/s. For
each filter frequency rad/s, (45) and (46) are used to calculate
the amplitude of a tonal component at rad/s that would pro-
duce a value of minimum norm equal to the threshold value of
. This amplitude is converted to decibels to give the detection

threshold. For reference, the response of each of the filters, i.e.,
, to the masking tone alone is shown. When a

single tone is present and the results of Sub-Section V.B apply.
The norm will go to zero at and thus the test will be satisfied.
There is a region around where the detection threshold in-
creases as increases. However outwith that region the
detection threshold follows the same trends as and, as
such, this masking effect is not symmetrical and affects filters
above more than below it.

VII. CONCLUSION

The starting point for this paper was an examination of the ap-
plication of the PSP to non-asymptotic integrals in general and
TF synthesis in particular. The conclusion was that only one as-
pect of the PSP, location of stationary phase points, is required.
The second aspect, approximation of the integral through use
of the second derivative of the phase of the integrand, is only
needed when closed form expressions that approximate the inte-
gral are required. When this requirement is removed, the second
aspect can be replaced with a test for phase rate dominance.
Regions of the TF plane that pass the test and do not contain
stationary phase points contribute little or nothing to the final
output. Analysis values that lie in these regions can thus be set

(47)
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to zero. In regions of the TF plane that fail the test or in the
vicinity of stationary phase points, synthesis is performed in the
usual way. In re-examining the application of the PSP to the TF
synthesis integral, a new interpretation of the location param-
eters associated with the synthesis filters leads to: (i) tests for
locating stationary phase points in the TF plane; (ii) a test for
phase rate dominance in that plane. With this formulation the
stationary phase regions of several elementary signals have been
identified theoretically and it has been shown that sparse recon-
structions of tones and chirps are possible. An analysis of the TF
phase rate characteristics for the case of two simultaneous tones
predicts and quantifies a form of simultaneous masking similar
to that which characterizes the auditory system.

APPENDIX A

Consider a complex function of a vector
with . The gradient vector is

. Thus

where and

. The integral of the function around a

point over an interval with
radius is . Assuming that
the function is well approximated by its first order Taylor
series over this interval and making a change of vari-
able , where is a orthonormal rotation ma-
trix chosen such that and

, gives

Given that the interval is circular

, the integral becomes

By definition, the rotation matrix is given by,

, where . Thus

the integral over the interval will be dominated by the phase
variations if , where

and . Therefore a test for first order phase rate

dominance is

(48)

APPENDIX B

Under the null hypothesis, no signal of interest is present
and is zero-mean complex white Gaussian noise with vari-
ance . Consequently and
are zero-mean complex Gaussian random variables whose vari-
ances and cross-correlations can be evaluated using the filter re-
sponses and and the input noise vari-
ance . In [19] (using [24]), closed form expressions for the
PDF, , and the CDF, , of the ratio are given
where and are jointly-Gaussian zero-mean complex random
variables with variances and respectively and with cross
correlation coefficient . These results are similar to
those obtained in [25] where a closed form expression for the
PDF of the reassignment vector is obtained for Gaussian noise
and a real symmetric window . Other aspects of the effects
of noise on reassignment are addressed in [26] and [27]. From
[24], the CDF has the form

where is the location parameter and

is the spread parameter. Expressions for the
PDF and CDF of both and can be constructed
from these using the appropriate parameters, i.e., and for

and and for . As in [25], the parameters
of this distribution are functions of the ratio . Therefore
the distribution is not dependent on the noise variance
and knowledge of that variance is not required in specifying
the false alarm rate of a detector. Assuming that and

are independent1, the probability of false alarm
for the test (21) can be expressed in terms of the two positive
thresholds and , i.e., where

To eliminate one of the variables and equalize the sensitivity of
the test in the two dimensions of time and frequency, set
. Thus can be inverted to specify all thresholds

for a particular filterbank design.

1This assumption is justified empirically in [19] for gammatone filters by
using it to reliably predict the false alarm rate of the simple detector of (20).
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