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Abstract

Background

Corticotropin-releasing factor type 2 receptors (CRFR2) aygesied to facilitate successful
recovery from stress to maintain mental health. They are abund#ime midbrain raph
nuclei, where they regulate serotonergic neuronal activity and b@ee demonstrated [to
mediate behavioural consequences of stress. Here, we describminethand serotonergjc
responses consistent with maladaptive recovery from stressful chaheGgé-R2-null mice

D

Results

1)
==

CRFR2-null mice showed similar anxiety levels to control nhefore and immediately aft
acute restraint stress, and also after cessation of chroegs.stdowever, they show
increased anxiety by 24 hours after restraint, whether or not ithdybeen chronical
stressed.

1%
<Q

Serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) contentsevgeiantified and the
level of 5-HIAA in the caudal dorsal raphe nucleus (DRN) waseased under bagal
conditions in CRFR2-null mice, indicating increased 5-HT turnover. ntyw®ur hours
following restraint, 5-HIAA was decreased only in CRFR2-null mmgggesting that they
had not fully recovered from the challenge. In efferent limbigcttires, CRFR2-null mige
showed lower levels of basal 5-HT in the lateral septum andwubicand again showed a
differential response to restraint stress from controls.

Local cerebral glucose utilization (LCMRglu) revealed desmdaneuronal activity in the
DRN of CRFR2-null mice under basal conditions. Following 5-HT recejigonist
challenge, LCMRglu responses indicated that 5AHEceptor responses in the DRN were
attenuated in CRFR2-null mice. However, postsynaptic 5-HT receggpomses in forebrajn
regions were intact.

Conclusions

These results suggest that CRFR2 are required for proper futityion®-HT 14 receptors in
the raphe nuclei, and are key to successful recovery from skresslisrupted serotonerdic
function in CRFR2-null mice likely contributes to their stress4iseesphenotype. The 5-H[T
content in lateral septum and subiculum was notably altered. These ae important for
anxiety, and are also implicated in reward and the pathophysiofoggdiction. The role qf
CRFR2 in stress-related psychopathologies deserves further considerati

Keywords

5-HT1a receptor, anxiety, corticotropin-releasing factor type 2 receptor, raphes,nucl
serotonin, stress



Background

Serotonin (5-HT) is a key neurotransmitter in the control of mood. the major target of
current antidepressant medications, and often also of treatmerasxiety disorders [1,2].
The principal sources of 5-HT neurons projecting to the forebrairthee midbrain dorsal
(DRN) and median (MRN) raphe nuclei [3,4].

Corticotropin-releasing factor (CRF) is a key mediator of shress response [5-7], and
anxiety and affective disorders have been associated with CR¥erdayivity [8].
Corticotropin-releasing factor receptors are abundant in both DRINVERN [9-11], where
they are expressed in serotonergic and non-serotonergic neurons, nigichedulatory
GABAergic neurons [12,13], suggesting the potential for complexaictiens between CRF
and serotonergic systems. Electrophysiological studies show dhagenous CRF
administered to the raphe modulates serotonergic neuronal firiingtya¢l14-16], and
therefore CRF receptor-mediated effects on stress-relatedibals may be mediated via 5-
HT invivo [17-20].

Type 1 (CRFR1) and type 2 (CRFR2) CRF receptors [21-23] are @néfdly activated by

CREF or urocortin neuropeptides (Ucnl, Ucn2, Ucn3), respectively [24-28)aphe nuclei

receive inputs from both CRF and Ucnl expressing neurons [14,15,29-31], andtalbote
important role for the CRF system in controlling 5-HT neurons here is emerging

CRFR2 is expressed at high levels in the raphe nuclei, whileRCR$=expressed at lower
levels in the raphe nuclei in rats and appears to be absent fardhi in mice and human
beings [9-11]. Exogenously administered CRFR2 agonists induce c-passson in DRN
5-HT neurons, increase their firing rate, and increase 5-HBselin efferent stress-related
nuclei [32-36]. In pharmacological studies, CRFR2 activation in the OQRMnNtiates
immediate fear responses [35], fear conditioning and escape sig#ditours later in a model
of learned helplessness [37,38], and decreases exploratory behaviourm [df]ents.
Recently, altered anxiety-like behaviour in Ucn-knockout or Ucn-oveesgprg mice has
been linked to disturbances in serotonergic activity in the neircalitry controlling anxiety
[39-41]. The Ucnl/Ucn2/Ucn3 triple knockout mouse phenotype suggests that CR#R2 a
particularly Ucn3 are involved in successful recovery from stf4%]. This interaction with
the 5-HT system may provide a major link between the two mais af the central stress
response; the CRF/Ucns peptidergic pathways and the sympathetic mono@rsiystegn.

5-HT;a receptors (5-HIaR) are also particularly associated with modulating anxiety [42]
and pharmacological stimulation of CRF receptors in the raphe maddieen demonstrated
to regulate serotonergic neuronal firing here [43,44]. Thus, CRFinomaneuronal
projections from the central amygdala (CeA) to the raphe nuti¢inhay modulate activity
at postsynaptic 5-HkR by directly regulating activity of efferent 5-HT projects or may
have wider-ranging effects on 5-HT function via altered raphd HdRl autoreceptor activity.
Conversely, 5-HTaR activity can influence CRF-induced changes in behaviour; HRFT
selective agonists can attenuate CRF-induced grooming [46]. We leweusty shown that
5-HT14R responsiveness plays a key role in stress-related behavisacsagsd with chronic
activation of CRFR2 [39] and that interaction is further explorethénstudies presented
here.



Activation of CRFR2 affects anxiety-like behaviour under stekssmnditions [47-49] and
CRFR2-null mice have an anxiogenic phenotype [50,51]. This raisegutstion of what
role CRFR2 might play in the pathophysiology of anxiety-relaied affective disorders in
human beings. To further investigate the mechanisms underlyiag wiei examined the
anxiety phenotype of CRFR2-null mice in detail, and characterthed serotonergic
responses to stress.

Methods

Animals

Mice were housed in temperature- and lighting-controlled rooms (lgghtd2 h) with free
access to laboratory chow and water. CRFR2-null mice, as prividescribed [50], and
control littermates (C57BL6 x 129) were the adult male offgpaf parents heterozygous for
the knockout allele. For CRFR2 mRNA studies, adult male wild typdC&3 mice (Harlan
Laboratories) were used. Mice were group housed, except fonitheic variable mild stress
(CVMS) protocaols, for which they were singly housed. Principlelodratory animal care
(NIH No. 85-23, 1985) were followed. All procedures were approved by Thenvian
Institute Animal Use and Care Committee or the United KingdonmaAls (Scientific
Procedures) Act, 1986.

Behavioural testing

Tests were carried out during the dark phase of the light cyckdoih male mice (2 to 4
months). Mice were habituated in the home cage in a dark roomHour® prior to each
behavioural test. Separate groups of mice were tested undérada) conditions with no
stress applied prior to testing,= 12 for control groupn = 14 for CRFR2-null group; (b)
immediately following 30 min of acute restraint stress (ARS} 13, both groups; (c) 24 to
48 hours following ARSn = 5 for control groupn = 8 for CRFR2-null group (light/dark
transfer test performed at 24 hours post-stress, open-field at 48gustnstress); (d) 3 to 4
days following a 4-week CVMS protocol, (light/dark transfer fmtformed at 3 days post-
stress, open-field at 4 days post-streas¥, 10 for control groupn = 11 for CRFR2-null
group. The mice of group d were then retested 3 weeks later, wh&R% was applied and
testing was performed at 24 to 48 hours. Figure 1 shows the tinodlithe experimental
protocols with stress procedures.

Figure 1 Schematic representation of experimental protocols and timelines. (Aeparate
cohorts of CRFR2-null and control mice were tested for anxiety-like behaviour in the
light/dark transfer and open-field tests: under basal conditions; immegdiateiving ARS;
following CVMS and again 24 to 48 h after an ARS applied 3 weeks after the end of CVMS;
24 t0 48 h following ARS(B) CRFR2-null and control mice were exposed to no stress, ARS
or CVMS, and mRNA expression of stress-related genes and serotonin tran(§ioiRE)
binding were quantified 12 h after the end of stress. 5-HT/5HIAA content in brain nuclei
were guantified in unstressed mice and 24 h after ARSLCMRglu was measured in
CRFR2-null and control mice one hour after administration of saline or 5-HTR agbnist.
CRFR2 mRNA levels in brain were quantified over a 48-h time course following ARS or
days after CVMS in control mic’\ , ARXXAX\ | CVMS:; d, days; w, weeks.




Open-field (OF) test

The apparatus and experimental conditions were as previouslybaes¢si0]. Mice were
placed in the centre of the apparatus to initiate a 10-mirséssion. Visits to, and distance
travelled and time spent in the inner zone of the arena were fipchosing a video tracking
system (VideoMot2; TSE Systems, Bad Hamburg, Germany).

Light/dark transfer test (LDT)

Apparatus and experimental conditions were as previously describedjadjg a 5-min
test session, visits to, and distance travelled and time spem iight compartment were
measured.

Stress procedures

Mice were subjected to 30 min ARS in a ventilated 50 ml plastitrifuge tube. The CVMS
regime was modified from Ducottetal. [52]. Mice were singly housed and a variety of mild
stressors were applied on an unpredictable schedule, 2 to Sostreer day for 4 weeks;
these included disruptions to the light-dark cycle, cage shift toqpomaously inhabited by
another male, cage tilt, damp bedding, low-intensity stroboscopicinlétion, white noise,
restraint stress, short periods of food or water restrictiad, lousing with no bedding
followed by water in the cage. Controls were housed under stress-free conditions.

In the CVMS paradigm, mice were behaviourally tested 48 hours foliptermination of
the last stressor, which was standardized and was 24 hours of ctigktdiot all mice ( =
10 or 11). Forn-situ hybridization and 5-HT transporter (SERT) binding studies, nmceq
for control basal groum = 8 for CRFR2-null basal group,= 7 for all stress groups) were
killed 12 hours after ARS, or after the last variable stressodeloapitation within 15 s of
disturbing the home cage. The brains were removed, rapidly frozen acedand stored at
—80°C until analysis.

Local cerebral glucose utilization (LCMRglu)

Local cerebral glucose utilization (LCMRglu) was determined described previously
[39,53]. Mice @ = 8, all groups) were injected (intraperitoneally) with eitb@rmg kg* 8-
hydroxyN,N-dipropyl-2-aminotetralin (8-OH-DPAT), 25 mg Rg 1-(2,5-dimethoxy-4-
iodophenyl)-2-aminopropane (DOI) or vehicle (0.1 ml 0.9% NacCl). At 10 after 8-OH-
DPAT, or 20 min after DOI, &Ci [*"C]-2-deoxyglucose in 0.4 ml 0.9% NaCl was injected
intraperitoneally. After 45 min, mice were decapitated and themin®ranalyzed by
guantitative autoradiographic imaging, as described previously [54,55].

Analysis of tissue concentrations of 5-HT and 5-HIA

Mice (n = 7 for unstressed groups= 6 for ARS groups) were killed by decapitation under
basal conditions or 24 hours following ARS. Brains were stored at —801Caunatysis.
Areas selected for microdissection were identified by compangith a standard mouse
brain stereotaxic atlas [56]. To ensure accuracy, we useereoisticroscope to visualize
neuroanatomical landmarks for use as reference points in idegti§pecific nuclei and
subdivisions of the DRN. Small diameter microdissection tools (310 touAl@iameter)



were used to restrict dissections to the subregion of interegih-piessure liquid
chromatography analysis of 5-HT and 5-hydroxyindoleacetic acidABHwas performed,
as previously described [57].

CRFR2 mRNA gPCR analysis

Quantitative PCR for CRFR2 mRNA expression was carried opteagously reported [40]
in brain taken from naive mice (controls), or 3, 6, 12, 24 or 48 hours aR8& Ar, for
CVMS mice, one week after the end of the stress protacoB(all groups)

In-situ hybridization (ISH) histochemistry

Coronal brain sections (1im) were cut on a cryostat, thaw-mounted onto silanized glass
slides, and stored at —80°C until use-situ hybridization procedures and probes were as
previously described [58-60]. Plasmids (generous gifts from Profbssdolmes and Dr V.
Bombail) containing cDNA fragments for glucocorticoid recept®R), mineralocorticoid
receptor (MR), 5-HTa R, 5-HT,cR and tryptophan hydroxylase 2 (TPH2) were used to
generate®S-UTP-labelled specific antisense probes to mRNAs. Followiky tfdes were
dipped in Kodak Autoradiography Emulsion (Molecular Imaging Systeraw, Xork, USA)

and exposed at 4°C for between 24 h and 6 weeks, depending on the probe, developed
counterstained. The hybridization signal for each brain area etasmined using computer-
assisted grain counting software (Zeiss KS 300 3.0, Carl ZesmenyiGmbH). For each
animal, silver grains were counted in a fixed circular area ®@verl0 individual neurons per
subregion. The background, counted over areas of white matter, wasteubtPaalysis was
carried out blind to treatment group.

5-HT transporter (SERT) binding

Serotonin transporter (SERT) binding was determined on brain sectitress above, using
(®H)-paroxetine (Perkin Elmer, UK) as previously described [61]. Slidere then exposed
to (°H)-sensitive film (Amersham Hyperfilm MP, GE Healthcdi) at —80°C for 6 weeks.

Analysis of autoradiographs was performed by measuring thel sigeiathe area of interest
with densitometry software (MCID Basic 7.0, Imaging Redeainc.). The background was
subtracted.

Statistical analyses

Statistical analyses employed the two-tailed Studértest or two-way analysis of variance
(ANOVA) with post-hoc analysis using Fisher’s protected Isggtificant difference test as
appropriate, with the exception of time course of CRFR2 expressibarewone-way
ANOVA with Dunnett’'s post-hoc analysis was used. Data are pegeas mean * standard
error of the mean (SEM). Differences were considered statligtgighificant atP < 0.05.



Results

CRFR2-null mice show increased anxiety 24 to 48 Htar acute restraint stress
(ARS)

Under basal conditions, where mice were not exposed to stresstf@hehat caused by the
test itself), CRFR2-null mice and littermate controls showed fiierences in anxiety-related
behaviour in two well-validated behavioural tests, the LDT (Figuen@)the OF test (Figure
3), compared with littermate controls.

Figure 2 CRFR2-null mice exhibit increased anxiety-like behaviour 24 hours after RS

in the LDT. Under basal condition®\), immediately following ARSB), or after CVMS

(©), no differences were observed in behaviour between CRFR2-null mice and controls.
However, when CVMS mic€D) or naive mic€E) were exposed to ARS and tested 24 to 48
hours later, CRFR2-null mice showed increased anxiety-like behaviour cahpiin

control mice. Data expressed as mean + SEM.10 to 14 folA-D,N=5to 8 forE. * P <

0.05, * P < 0.01, P =0.53, compared with control.

Figure 3 CRFR2-null mice exhibit increased anxiety-like behaviour 48 hours after RS

in the OF test.Under basal condition®\), immediately following ARSB), or after CVMS
(©), no differences were observed in behaviour between CRFR2-null mice and controls.
However, when CVMS mic€D) or naive mic€E) were exposed to ARS and tested 24 to 48
h later, CRFR2-null mice showed increased anxiety-like behaviour compahedontitol

mice. Data expressed as mean = SEM-. 10 to 14 forA-D, N =5 to 8 forE. * P < 0.05, **

P <0.01, ** P <0.001, P=0.085, compared with control.

Because this finding contrasted with previous reports [50,51], we lisgined that stressful
challenge was required to reveal the role of CRFR2 in anxietgth&r group of mice was
tested immediately following 30 min ARS. Again, no effect of gepetgn anxiety-like

behaviour was observed (Figures 2 and 3). A further cohort of mice exfm§2/MS was

tested 3 to 4 days after the end of the protocol, to allow for recdrarythe final acute

stressor, and again no differences were observed between control BR@ @fce in either

behavioural test.

However, 3 weeks later, these same CVMS mice were exposesirigl@ 30-min ARS, and
24 to 48 h later the CRFR2-null mice showed significantly ineetaadices of anxiety
compared with controls, with fewer visits tboX 3.022,P = 0.007,n = 10 or 11), shorter
distance travelled int & 2.360,P = 0.029,n = 10 or 11), and a trend to less time spent in the
light chamber in the LDTt(= 2.062,P = 0.053,n = 10 or 11) (Figure 2), and fewer visits to
the centre oft(= 2.271,P = 0.036,n = 10 or 11) and less time spent in=(2.231,P = 0.039,

n =10 or 11) the centre and a trend to less time spent in thesDE= 1.825,P = 0.085n =

10 or 11) (Figure 3).

We then examined whether this delayed effect of ARS on ignwias dependent on prior
CVMS by subjecting a further cohort of mice to ARS alone, andrebde¢he same increased
anxiety-like behaviour 24 to 48 hours post-stress (Figures 2 and Bg LD, CRFR2-null
mice spent less time £ 2.650,P = 0.023,n = 5 to 8) and travelled a shorter distance (
2.833,P =0.016,n =5 to 8) in the light chamber. In the OF test, CRFR2-nulerapent less



time in ¢ = 2.675,P = 0.022,n = 5 to 8) and made fewer visits to the centre 8.604,P =
0.004,n =10 to 11), and travelled a shorter distanee5.078,P = 0.0004n = 10 to 11).

Serotonergic function is altered in the raphe nucleof CRFR2-null mice

CRFR2 in the raphe nuclei modulate 5-HT activity, with consequermestress-related
behaviours [32-38]. Therefore serotonergic functions were examined HRZRull and
control mice. Neuronal metabolic activity, as measured by LAOMRwgas lower in both the
DRN (t = 2.626,P = 0.048,n = 8 for 8-OH-DPAT experiment,= 2.804,P = 0.036,n = 8 for
DOI experiment) and median raphe nucleus (MRN) 2.472,P = 0.049,n = 8 for 8-OH-
DPAT experimentt = 2.785,P = 0.038,n = 8 for DOI experiment) of CRFR2-null mice as
compared with controls under basal conditions (Figure 4).

Figure 4 Serotonergic function is altered in the raphe nuclei of CRFR2-null mee. (A-E)
LCMRglu in the dorsal raphe nucleus (DRN) and median raphe nucleus (MRN) ishower
CRFR2-null mice than controls under basal conditiohsC) 8-OH-DPAT or (B,D) DOI
administration decreased LCMRglu in the (A,B) DRN or (C,D) MRN only in controbmi
(E) Colour-coded autoradiograms from coronal brain sections at the level of theimidbra
raphe. ‘Warm’ colours represent high levels’8€]-2-deoxyglucose accumulation while
‘cold’ colours represent low tracer accumulation. Images were selegtedafiimals with
matched plasma tracer and glucose concentrations. 5-HIAA and 5-HT contentFf the
dorsal andG) caudal subdivisions of the DRN showed that the 5-HIAA:5-HT ratio was
higher in CRFR2-null mice under basal conditions in the dorsal DRN (DRD) and was
lowered by ARS only in CRFR2-null mice in both DRD and caudal DRN (DRC). Data
expressed as mean + SENI= 8 for LCMRglu, ANOVA criticalF (1 2g) value = 4.196 foP <
0.05, 7.636 foP < 0.01, 13.500 foP < 0.001.N = 6 or 7 for 5-HIAA and 5-HT content,
ANOVA critical F(1 20y values = 4.301 foP < 0.05, 7.945 foP < 0.01, 14.380 foP < 0.001.

* P <0.05, *P < 0.01 in post-hoc analysis.

Following challenge with the 5-HIR-specific agonist 8-OH-DPAT, a main effect of
treatment (ANOVA:F(12¢) = 4.558,P = 0.044), and an interaction between genotype and
treatment was observed in DRN (ANOVA 25 = 5.953,P = 0.021) (Figure 4). Post-hoc
analysis revealed that controls responded with decreased LCMRbhthinthe DRN 1 =
3.235,P =0.0124n = 8) and the MRNt(= 2.520,P = 0.047 n = 8) as expected, whereas the
raphe nuclei of CRFR2-null mice were unresponsive to bsRBgonist. Following 5-HIR-
specific agonist DOI challenge, only a main effect of genotyps seen in both the DRN
(ANOVA: F(1,28)= 5.224P = 0.030) and the MRN (ANOVAE 1 28)= 5.333,P = 0.029). The
pattern of responses was, however, the same as for 8-OH-DPAT.

Studies to date have largely concentrated on the role of the DIRI$pect to behaviour and
anxiety. Therefore, we measured 5-HT and 5-HIAA within subregiortkedDRN (Figure
4). Within the caudal DRN, there was a main effect of genatype-HIAA (ANOVA: F 22
= 7.094,P = 0.014) and a genotype X ARS interaction on 5-HIAA:5-HT ratio QAM:
F.22 = 6.153,P = 0.021). Post-hoc analysis revealed an increase in 5-HIAA3(472,P =
0.002,n = 7) and 5-HIAA:5-HT ratiot(= 3.242,P = 0.004,n = 7) in CRFR2-mice under
basal conditions, indicating increased serotonin turnover here. 24 hoawsirigllARS, both
the caudalt(= 2.759,P = 0.011,n =6 or 7) and the dorsal £ 4.087,P = 0.0005n =6 or 7)
DRN showed decreases in 5-HIAA:5-HT ratio in CRFR2-null micghven associated
decrease in 5-HIAA in the caudal DRN of CRFR2-null mice 2.554,P = 0.018,n = 6 or
7), whereas controls showed no effect of ARS on these parameters.



5-HT responses to stress and 5-HTR agonists are eléd in efferent brain
regions of CRFR2-null mice

Following challenge with the 5-HER-specific agonist 8-OH-DPAT, there was a main effect
of treatment throughout the forebrain (ANOVRAg 25 = 4.196 forP = 0.05) (Table 1) with a
genotype x 8-OH-DPAT interaction observed in some extrapyraramtillimbic structures.
Post-hoc analysis revealed that while controls had decreased ¢lGMResponse to 8-OH-
DPAT in extrapyramidal regions as expected, CRFR2-null nfiogved no response. These
areas receive projections from the DRN but lack their own BRTindicating that this
reflects attenuated DRN response to 5-ARragonist.



Table 1LCMRglu in efferent brain regions of control and CRFR2-null mice in response to 5-HTaR or 5-HT ;R agonist

Control CRFR2-null Control CRFR2-null

Saline 8-OH-DPAT % Saline 8-OH-DPAT % Saline DOI % Saline DOI %
Neocortex
Frontal 46+3 33+3* -28 473 42+3* -21° 47+3 38x2* -19 45%2 30 +2* -33%"
Anterior cingulate 48+3 35+%2* -27 492 39+4* -35° 50+3 40+2* -15 51+3 34 +2* -33°
Prefrontal 47+3 35+ 3* -26 4713 42+2 -6° 503 39+3* -22 50+3 30+2* -40°
Somatosensory 556+2 33+4* -40 51+4 45+3* -22° 56 +2 53+3 -5 55+4 44 +3* -20°
Parietal 53+2 35+2* -34 50+4 43+3 -21° 55+2 45+1* -18 54 +3 37 +2x -31*"
Hippocampus
Subiculum 40+3 26+3* -35 45+3 23 +3* -49° 42+2 433 2 43+3 33+3* -23
Dentate gyrus 26+3 16 +3* -38 30+2 15%3* -50° 28+3 18+2* -36 27 +3 16 +2* -14°
CAl 37+3 22 +4* -41 38+3 16+%2* -58° 36+3 26+3* -28 37+2 26 +2* -30°
CA2 353 20+£3* -43 363 19+2* -47° 353 34+3 -3 36+3 29+£2* -19
CA3 38+2 20+2* -47 41+2 17+ 2* -58° 36+2 28+3 -22 36+2 22 +3* -39°
Extrapyramidal areas
Medial striatum 43+3 33+2* -23 42+3 39%3 -7° 45+3 34+2* -24 463 29 + 2% -37°
Lateral striatum 46+3 29+3* -37 44+3 41+3 -7°¢ 46+4 30+3* -35 48 + 4 31+3* -35°
Globus pallidus 33+£2 202 -39 32+2 33%2 -3ab' 32+2 30+2 -6 35+2 23 +3* -34%¢
Substantia nigra 303 20+1* -27 27+3 25%4 -7 284 30x2 7 28+2 18+4 -36
Limbic areas
Medial septal nucleus 41+3 30+%2* -27 39+3 22+2* -443 45+2 31x2* -31 48 + 3 30+2* -38°
Lateral septal nucleus 38+3 27+3* -29 40+2 18%2* -55%¢  37+3 28+3 -24 404 27 +3* -33°
Bed nucleus of the stria terminalis 27 +4 18 + 2* -33 31+2 16+3* -48° 30+4 20+2 -33 30+2 18 +3* -40°
Basolateral amygdala 36+3 26+3* -28 362 15+2* -58%P' 38+2 27+4 -29 38%2 24 + 4% -37°
Central amygdala 262 20+2* -23 25+3 15+2* -40° 25+2 17+2 -32 24 +£3 15 +2* -38°

Local cerebral glucose utilization (LCMRglu), shown as me&®EM and percentage change in LCMRglu in 8-OH-DPAT or DOIlpared
with saline-treated micen = 8.*Main effect of drug’main effect of genotypégenotype X drug interaction in 2-way ANOVA, where critical
F(,28)value was 4.20 foP < 0.05. *P < 0.05 vs saline in post-hoc analysis.



In limbic areas, both genotypes decreased LCMRglu significafdllgl€¢ 1), but the genotype
X 8-OH-DPAT interaction in lateral septum (ANOV/A 128 = 4.654,P = 0.040) and
basolateral amygdala (BLA) (ANOVA: (1 28y = 4.654,P = 0.040) revealed that the CRFR2-
null mice had a greater response to 5tARragonist in these areas. Following DOI challenge,
there was again a main effect of treatment throughout the forgBdfdOVA: F1 25 = 4.196

for P = 0.05) (Table 1). Post-hoc analysis revealed that many begions showed a
significant response to DOI in CRFR2-null mice but not controls €rdl)] suggesting
greater postsynaptic 5-HR responsiveness throughout the forebrain in CRFR2-null mice.

We then analyzed 5-HT and 5-HIAA content in the components of an amziatgd
amygdala-subiculum-septal circuit (Figure 5). There was an reiect of ARS on 5-HT
content in the intermediate part of the lateral septum (LSNOMA: F(122) = 15.41,P =
0.0008) and of genotype on the 5-HIAA:5-HT ratio (ANOWAi 22) = 19.460,P = 0.0002).
There was also a genotype x ARS interaction in subiculum on both BdNDVYA: F1 20y =
5.196,P = 0.033) and 5-HIAA:5-HT ratio (ANOVAF 1,22 = 10.87,P = 0.004), and a main
effect of genotype on 5-HIAA:5-HT (ANOVAFE(1 22) = 4.585,P = 0.045).

Figure 55-HT responses to stress are altered in efferent brain regions of CR2Rull

mice. 5-HIAA and 5-HT levels as well as 5-HIAA/5-HT ratios are shown in(&je

subiculum (S)(B) intermediate part of the lateral septum (L8D) medial septum (MS),

(D) basolateral amygdala (BLA) aii@) central amygdala (CeA). CRFR2-null mice showed
differences in basal levels of 5-HT and or 5-HIAA:5-HT ratio in the S and b8laga
differential response to stress in the LS| and BLA. Data expressedaastn®&=M.N = 8 for
LCMRglu, ANOVA critical F(1 28y value = 4.196 foP < 0.05, 7.636 foP < 0.01, 13.500 for

P <0.001.N = 6 or 7 for 5-HIAA and 5-HT content, ANOVA critic&; 22 values = 4.301

for P<0.05, 7.945 foP < 0.01, 14.380 foP < 0.001. *P < 0.05, *P < 0.01, ** P < 0.001

in post-hoc analysis.

Post-hoc analysis revealed that under basal conditions the 5-HIAR&tid was increased
in CRFR2-null mice (subiculunt;= 3.846,P = 0.001,n = 6: LSI;t = 4.657,P < 0.0001n =

7). However, in contrast with the DRN, this was due to lower 54tibiCulum;t = 2.474,P
=0.022,n = 6-7: LSI;t = 2.759,P < 0.012,n = 7) with unchanged 5-HIAA. In response to
ARS, 24 h later there was an increase in 5-HT in the LSI ofR2R#ull mice {= 3.878,P =
0.0009,n = 6 or 7) and a decrease in the 5-HIAA:5-HT ratieg 2.516,P = 0.020,n = 6 or
7). The genotype x ARS interaction in the subiculum was such thaAA:BHHT was
increased by ARS in controls£ 2.569,P = 0.018,n = 6 or 7), but decreased in CRFR2-null
mice ¢ = 2.094,P = 0.049,n = 6 or 7). In the CeA, there was a main effect of ARS
(ANOVA: F,22)=17.71P = 0.004) to increase 5-HT content in both genotype?(838,P
=0.010,n =6 or 7 for controlst = 3.113,P = 0.005 for CRFR2-null micey= 6 or 7). 5-HT
levels also increased in the BLAX 2.168,P = 0.041,n = 6 or 7) of CRFR2-null mice in
response to ARS (Figure 5).

Serotonergic and corticosteroid receptor gene expssion are altered in
response to stress in CRFR2-null mice

To investigate which factors potentially involved in the processes of adaptaticnte stress
might be differentially regulated in CRFR2-null mice as congbasith controls, SERT
protein levels (ligand binding) and mRNA levels of serotonergic gandscorticosteroid
receptors (ISH) were quantified in apposite brain nuclei fohgwWARS or end of CVMS. A
time of 12 h post-stress was chosen as appropriate, as aignession of these factors at



this time has previously been observed by many investigatorsteSults are in Additional
file 1; only key significant differences are presented here.

In agreement with responses to 8-OH-DPAT, 5:ARFrmRNA expression did not differ with
genotype in the hippocampus or amygdala (Additional file 1). No effeg¢notype or stress
was seen in the DRN (Figure 6), but a genotype x stress imberg8NOVA: F( 36 = 3.328,
P = 0.048) whereby decreased expression in control compared with CRARRicrilt =
2.181,P = 0.036,n = 7) was seen in the MRN following CVMS, and there were trémds
ARS to reduce 5-HlR expression in CRFR2-null mice1.702,P = 0.098,n = 6 or 7) but
not controls, and for CVMS to reduce 5-HR expression in controls alone= 2.020,P =
0.052,n = 6 or 7). There was no appreciable effect of genotype on ,gFRHMRNA
expression (Additional file 1).

Figure 6 Serotonergic and corticosteroid receptor expression are regulated

differentially in response to stress in CRFR2-null mice. (AlNRNA expression of 5-
HT1aR in the(B) dorsal raphe nucleus (DRN) a(@) median raphe nucleus (MRNP)
tryptophan hydroxylase 2 (TPH2) mRNA (&) DRN and(F) MRN; (G) serotonin
transporter (SERT) protein expressior{i) hippocampal CA1({) CA2 and(J,K)

subiculum (S)(L) glucocorticoid receptor (GR) mRNA expressior{M) CA1, (N) CA2
and(O,P) the paraventricular nucleus (PVN). Data presented as mean £ SEM for mRNA
levels or densitometry signal (SERN= 6 to 8. ANOVA criticalF 3¢ value = 3.259 foP
<0.05, 5.248 foP < 0.01, 8.420 foP < 0.001.” P < 0.05," P < 0.01,”*P < 0.001 for

effect of stress across genotype®. <« 0.05, *P < 0.01, *** P < 0.001 in post-hoc analysis.
ARS increased CRFR2 mRNA expression in whole brain of mice at all times ppind 48

h post-stres@Q), whereas CVMS decreased CRFR2 expression 7 days after the end of the
CVMS protocol(R). Data presented as mean + SEWE 8. ANOVA critical F (s 42)value =
2.438 forP < 0.05, 3.488 foP < 0.01. *P < 0.05, **P < 0.01 as compared with O hours in
post-hoc analysis or with control group.

There was a main genotype effect on TPH2 mRNA expression in WRIKDVA: F( 36 =
5.311,P = 0.027), with increased levels in CRFR2-null mice. Post-hoc asalggected this
as significant only between ARS groups=(2.080,P = 0.045,n = 6 or 7) (Figure 6). There
was a main effect of stress on TPH2 in DRN (ANOVRy 36) = 3.684,P = 0.036) across
genotypes.

In the hippocampus, there was a main effect of stress on SERSinpexipression (CA1l
ANOVA: F36 = 4.106,P = 0.027; CA2 ANOVA:F(2 36 = 4.387,P = 0.020; subiculum
ANOVA: Fp 36 = 8.474,P = 0.001), owing to increased expression after the end of CVMS,
only reaching statistical significance in CRFR2-null micA1G@ = 2.151,P =0.038n=7 or

8; CA2t=2.139,P = 0.026,n = 7 or 8; subiculunt = 3.490, P = 0.0013,= 7 or 8) and not

in controls (Figure 6). There were no effects of genotypéresson SERT expression in the
amygdala (Additional file 1).

Expression of GR mRNA showed differential effects between yegjions and genotypes
(Figure 6). In the dorsal hippocampus, there was a trend towards @ghexpression in
CRFR2-null mice (CA1 ANOVAF ;36 = 3.976,P = 0.054; CA2 ANOVAF 35 = 4.008,P

= 0.067). There was a main effect of stress (ANO¥A:36) = 7.312, P = 0.002) with both
ARS and CVMS reducing expression in CAl of CRFR2-null mice (ARS2.420,P =
0.021,n =7 or 8; CVMSt = 2.962,P = 0.005,n = 7 or 8), but only CVMS had a significant
effect in controlst(= 2.962,P = 0.043,n = 6 or 7). In CA2, only CVMS had an effect to



reduce GR expression, and this was only significant in CRFR2-na# th= 2.725,P =
0.010,n = 7 or 8). In the paraventricular nucleus (PVN) there was a eifaot of genotype
(ANOVA: F(236 = 6.788,P = 0.003) with CRFR2-null mice having lower GR mRNA
expression, although this was not significant within treatment groupsst-hoc analysis.
There was a main effect of stress (ANOVA: 36y = 4.974,P = 0.032); post-hoc analysis
showed increased GR following CVMS, but only reaching significam¢&&RFR2-null mice
(t =2.341,P = 0.025,n = 7 or 8). Expression of MR mRNA was not regulated by stress or
genotype in any brain region examined (Additional file 1). Fin&RFR2 mRNA levels, as
guantified by qPCR, were increased over a time period of 3 to 48 hairaRE (ANOVA:
Fs,42)= 3.750,P = 0.007) but were decreased following CVMS-(2.164,P = 0.047,n = 8)
(Figure 6).

Discussion

This study extends the evidence regarding the importance of CRFRZediating the
processes towards successful behavioural recovery in the periodirigl stress, and
moreover demonstrates that CRFR2 is engaged in the control afreegit function during

the same time frame. It further characterizes the stassitive phenotype of CRFR2-null
mice [50,51,62] and reveals fundamental disturbances within components of thei
serotonergic system.

In contrast with original reports of increased basal levels oiegnjc0,51], in our hands,
similar to the findings of Costet al. [62], CRFR2-null mice do not show increased anxiety-
like behaviour compared to controls until 24 h after exposure to agmime stressor. This
discrepancy could be due to differing phenotypes of the three indeperglamghated strains
of CRFR2-null mice, or factors such as age or husbandry. Howevenjdben this study are
the same strain as reported with increased anxiety by &adk. [50] and an anxious
phenotype was described for both group- [50] and singly [51] housed CRFR&toeilfrom
9 [40] to 24 [50] weeks of age, but not at 16 weeks [62], meaning thee fhetors are
unlikely to explain the inconsistency. This study indicates the nee@ forior stress for
increased anxiogenesis in CRFR2-null mice, so an alternativanatign is that mice in
previous studies might have been inadvertently previously stressezkaimple, by a prior
behavioural test. This time course of the behavioural effects of IA&R8s to conclude that
CRFR2 has a key role in the processes leading to behavioural megotiee hours following
exposure to a stressor.

While CRFR2-null mice in our study appear to be in a maladaptate st 24 hours
following an acute stress, CRFR2-null mice exposed to CVMShairenore anxious than
controls. It could be interpreted from this that CRFR2-null miceehthe ability to cope
successfully with this more chronic stress, but it is moreylikeht both CRFR2-null mice
and controls are affected adversely by CVMS, while CRFR2-nigkk show an exaggerated
response to a single acute stressor. Such stressors megger€RF sufficient to recruit
CRFR2 [20], which mediate successful stress coping in normal [8Rje Alternatively,
increased CRFR1 signalling in response to stress might oocoeased CRF expression in
the amygdala and PVN of CRFR2-null mice has been reported [S0p\Wowthe time frame
of delayed anxiogenesis in CRFR2-null mice does not correlate thé expected rapid
release of CRF in response to acute stress and its subsequdiventegalback. The time
interval required for CRFR2-null mice to acquire this anxiety swaggests that the processes
are indirect, and the serotonergic system is an obvious candidate.



Exogenous CRF administered to the DRN inhibits firing of 5-HT orsirvia CRFR1
[15,18], while Ucns or higher levels of CRF increase firing @WRFR2 [32-36]. The raphe
nuclei receive inputs from both CRF and Ucnl neurons [14,15,29], which mayotkeref
regulate serotonergic raphe function physiologically. In support sfhypothesis, CRFR2-
null mice show altered 5-HT/5-HIAA content in the DRN, LSI, suhiou| CeA and BLA 24
h after ARS, whereas control mice showed a clear change obHWdih content of the CeA.
Recent studies of mice with genetically altered Ucn levels sdown that 5-HT function is
dysregulated in these models [39-41] and that CRFR2-null mice steategisensitivity to
elevation of 5-HT levels by pharmacological means, an observatioestedgo be linked to
their stress-sensitive phenotype [64]. Notably, mice deficientlithede Ucns do indeed
show a similar phenotype [41] to our observations in CRFR2-null miah, wecreased
anxiety-like behaviour and dysregulated activity within 5-HT cic@4 h following ARS,
again evidencing the importance of CRFR2 here.

Interestingly, CRFR2-null mice show decreased basal neuronabalie activity in the
raphe nuclei. This is typically interpreted as evidence of decreasedisifigjTactivity levels,
as while both 5-HT and GABAergic neurons are important funciyprere, GABAergic
neurons are present at only 10% of the number of 5-HT neurons [65].sTars unusual
finding under basal conditions in our experience and could be due to edregshe 5-
HT.aR inhibitory autoreceptor activity, altered 5-HAR modulation of raphe GABAergic
interneurons that express both CRFR2 and 5%sRT or by inhibition from forebrain
postsynaptic receptors including 5-HR and 5-HER [66-69]. Increased sensitivity of
structures throughout the forebrain to 5JRTagonists and to 5-HAR in some limbic
structures in CRFR2-null mice suggests that postsynaptic recepsponsiveness is
increased, and thus the latter mechanism may be significantiftAt@vards unopposed
CRFRL1 activity in the raphe nuclei of CRFR2-null mice could alsa brgnificant factor in
mediating these effects or directly inhibiting 5-HT neuroraivay. Uncontrollable stress,
which activates DRN serotonergic neurons [38], is associatett wit functional
desensitization of 5-HRR [70]. We observed no significant differences in 5-HTR
expression in the DRN of CRFR2-null mice and so it is likelyt thase effects are also
mediated by decreased internalization and desensitization of aexcdi], providing a
mechanism for potentially very dynamic responses to stregaildakeelectrophysiological
studies would be required to resolve the mechanism further.

In contrast with forebrain structures, the lack of LCMRglu responsiee raphe nuclei to 5-
HTR agonists in CRFR2-null mice suggests tonic inhibition of neuraxctality here may be
close to maximal under basal conditions. The response to JRHAgonist in extrapyramidal
brain areas receiving projections from the DRN [72,73] but lacking twen 5-HT;aR
[74,75] was also attenuated. Thus CRFR2 appear to be required for maghtearmal basal
neuronal activity in the raphe nuclei and, in particular, for thanga of 5-HTAR function
here.

CRFR2 are present in both the DRN and the MRN [11,13]. However, stotlissess
biology have largely concentrated on the DRN, and so to relataltbried raphe function to
the CRFR2-null behavioural phenotype, we examined 5-HT responsesstisttte DRN
and associated anxiety-related nuclei. Concentrations of 5-HIAAhen8-HIAA:5-HT ratio
were elevated in CRFR2-null mice under baseline conditions withipaieal subregion of
the DRN (DRC), and these effects approached significandeeiadjacent dorsal subregion
(DRD). The DRD and DRC mediate CRF receptor responses andoaseélared to be
anxiety-related subregions of the DRN based on anatomical andohalatriteria [76,77].



For example, they are activated by anxiogenic drugs [78], CRtedepeptidesn vivo
[33,79] andin vitro [80], inescapable shock [70], noise stress [80], social defeat [&l], t
avoidance task on the elevated T-maze [82], acoustic startle [83reety due to prior
experience of intimate partner violence [84]. In support of theifspgcof these anxiety-
related effects on DRD/DRC serotonergic systems, in none sé gtadies were serotonergic
neurons in the adjacent ventrolateral part of the DRN activatedatiton of 5-HIAA and 5-
HIAA:5-HT ratios in the DRC could be due to an organizational diffeeein 5-HT systems
as a consequence of CRFR2-null phenotype, or to differential adtiatydevelops later in
life. In either case, DRC neurons appear to have altered basglintyan adult CRFR2 null
mice, which may reflect a vulnerability to increased anxiety states.

Despite lower 5-HT content in efferent stress-related nurider unstressed conditions in
CRFR2-null mice, stress had a greater effect on their 5-Hlebat 24 h, in keeping with
their stress-sensitive phenotype. This was particularly evidentSI, which receives
significant 5-HT projections from the caudal DRN [85,86], in the@aubm and, to a lesser
extent, in the CeA. The subiculum is a key structure in inhibttieghypothalamic-pituitary-
adrenal axis (HPAA) during termination of the stress responseaj@¥]so altered function
here might relate to the higher responsiveness of the HPARKFR2-null mice following
acute stress [50,62].

Not all anxiety-related nuclei examined showed such changes. We found no diferetiee
LCMRglu of the bed nucleus of the stria terminalis (BNSTyeenh control and CRFR2-null
mice at either baseline or in response to 8-OH-DPAT or DOllerige. This was
unexpected, given the pivotal role of the BNST in the control of anxiety state$l[@8¢ver,
the serotonergic dysregulation in CRFR2-null mice may be dovamstod the BNST which
projects strongly to the DRD/DRC region [89], where CRFR2 aendant [12,13].
Overexpression of CRF in the BNST induces a decrease in CRR&Bdselectively in the
DRD/DRC [90] and so it may be that the observed effects iIRRERull mice are primarily
mediated here.

5-HT firing activity is generally increased by stress [@80f negative feedback to the DRN
ultimately restores balance [66-69,71], as evidenced by essentmhanged 5-HT and 5-
HIAA levels in control mice at 24 h following ARS. It has hegreviously reported that
CRFR2-null mice show greater sensitivity to 5-HT modulation @sstinduced behaviours
[64]. The pattern of increased responses in CRFR2-null mice to boih rHand 5-HER
receptor agonists in areas expressing postsynaptic recepiargeeping with this finding.
The LSI and BLA are key components of the limbic stress ciyculiat were more
responsive to 5-HikR agonist in CRFR2-null mice. This might therefore relatehtrt
stress-sensitive phenotype and indicate a role for these structuressretmery.

The MRN has been implicated in mediating a delayed coping resgoheeing fear
behaviour induced by CRF in the DRN [35,91]. A delayed increase in BrHife mPFC
mediated by CRFR2 in MRN is associated with cessation of-Dftld CRF-induced
freezing behaviour [91] and is therefore proposed to mediate stsnce effects [92]. In
CRFR2-null mice, the CRFR2-mediated surges in 5-HT neuronal framg DRN and MRN
cannot occur, and unopposed CRFR1-mediated inhibition in DRN might fadhgibute to
this [15,18]. The normal 5-HT response in mPFC occurs one to two hoersnafa-DRN
CRFR2 receptor activation [35,91], and we infer that the maladaptite ist CRFR2-mice
develops after the peak of this CRFR2-induced increase in miHFCand by 24 h after the
stress. Thus, we propose that this delayed activity in effereft Beldrons, which is critical



for successful adaptation to acute stress, is disrupted in CRFR#2ioel The consequences
for CRFR2-null mice beyond 24 h are unknown, but unlike controls, 5-HTsletehis time
point are increased from basal levels in several limbic nucticating that homeostasis has
not been restored It is feasible that a lack of negative fekdittn the 5-HT system due to
the failure of CRFR2-mediated 5-HT activity might contribute to this.

Therefore, we propose that a rapid and highly regulated increaSRRR2 signalling in
response to acute stress, the resultant increase in efferehtagtiity and subsequent
negative feedback to restore homeostasis are important for a remchauccessful coping
response. The delayed increase in 5-HT in mPMC is of key impertaiithout this
orchestrated response, CRFR2-null mice do not respond to stress apgsoarat there is
prolonged anxiety that might account for their well-recognized eiyxphenotype. This
proposed model is presented in Figure 7. There is significant eeidl@na role for the MRN
in stress recovery [91,92], and this model is consistent with our oliserttzat LCMRglu is
lower under basal conditions in the MRN of CRFR2-null mice wiiéerobust elevation of
TPH2 mRNA in CRFR2-null MRN might be a compensatory responseldack of CRFR2
activation here. More detailed analysis of the dynamics of GRIF5aHT processes in this
time frame and beyond in appropriate subregions of the raphe nuclei, amtkaiien of the
roles of other mediators of the stress response in CRFR2-null, rieerequired to
substantiate this further.

Figure 7 Proposed model for development of prolonged anxiety following acute stress i
CRFR2-null mice. Following acute stress in control mi@&) CRF acting at CRFRL1 in the
limbic forebrain produces immediate anxiety. High levels of CRF and poteriatiy

activate CRFR1 and more abundant CRFR2 in the DRN with a net effect to promote early
firing of efferent 5-HT neurons to limbic nuclei. Activation of CRFR2 in the MRN [@tes
delayed 5-HT release in the mPFC at 1 to 2 h, which acts at 5-HT1AR to mediatsfslicces
coping and anxiolysis by 24 h. Negative feedback in the 5-HT system restores tasimeos
by 24 h.(B) In CRFR2-null mice, the CRFR2-mediated increase in 5-HT firing cannot occur
and unopposed CRFR1 activity might inhibit 5-HT neuronal firing in limbic nuclei even
further. Absence of negative feedback within the 5-HT system contributes toribesied 5-

HT levels observed in limbic areas at 24 h. The temporal dynamics of the 54tdihsys
following acute stress are dysregulated and homeostasis has not been resioraty,, the
delayed 5-HT activity in mPFC is disrupted and successful coping has not occlsuéichge

in prolonged anxiety.

Owing to the number of mediators involved in stress responses anohtipéer interactions
among them, other factors in addition to the serotonergic systelkeyeto be modified in
CRFR2-null mice in the hours following stress exposure, which nhghé implications for
the longer term. Indeed Ucnl expression in the Edinger-Westphal nun@Rd in CeA
(but not the PVN) are increased in CRFR2 mice [50], which may lukevelopmental
compensatory change that is also responsible at least in p#reiiophenotype. Expression
of CRFR1 is, however, unaltered. We found that changes in serotonedgeosicosteroid
receptor gene expression in response to stress were gemgeeatygr in CRFR2-null mice,
again in keeping with their stress-sensitive behavioural phenotypleRZ-null mice have
normal basal HPAA activity, but higher responsiveness followiogtea stress [50,62].
Hence, changes such as the observed greater stress-inducadesénehippocampal SERT
levels in CRFR2-null mice may be mediated by glucocorticoids [93¢&#t]ing potentially
further complexity to the relationship between CRFR2 and 5-HTtifumcStress also
downregulated hippocampal GR mRNA to a greater degree in CRFR@&ueell potentially



reflecting this expected HPAA hyperactivation. CRFR2-null nals® had lower basal GR
expression in the PVN, possibly reflecting chronically higher AP#ne, and CVMS
unexpectedly increased this. Discordant regulation of GR exprasdioa hippocampus and
PVN has been reported previously [95,96], with upregulation of GR bys Stegjested to
maintain glucocorticoid signalling to limit HPAA responses dunmmglonged stress. 5-HT
also regulates GR expression, and this may be mediated through adsidty, in order to
regulate HPAA activity [97]. Both TPH2 and 5-kFhR mRNAs in MRN were differentially
expressed in CRFR2-null mice. TPH2 mRNA levels in MRN werédrign CRFR2-null
mice, and there may be altered afferent control of DRN actikaty here [98], suggesting
that the MRN should be more carefully considered in future studies of CRFR2 function.

Given this proposed role of CRFR2, we might expect expression togbkaterl by stress
exposure. We found expression to increase, reaching a maximuto 423 post-ARS and
subsequently declining, an effect similar to that seen for CRHRI acutely exposed to
ligand [99], while chronic stress decreased CRFR2 mRNA expresstars and a previous
study [100]. Others have observed lower CRFR2 expression in adulsubjscted to
maternal deprivation or in genetically stress-sensitive rodeains [101,102], suggesting
that CRFR2 downregulation has the potential to be permanent in anxistress-sensitive
animals. The interesting exceptions are where CRFR2 is indrégsehronically elevated
levels of CRF [103] or corticosterone [104], or in a model of maladapat-traumatic
stress disorder-like behaviour [105]. We hypothesize that whileasedeCRFR2 activity is
required for successful recovery from stress and subsequent dowhoegidaa normal
adaptive response associated with healthy coping, that ongoingabiyypiey of CRFR2
might be associated with a maladaptive stress response. EhefrGIRFR2 in mediating
learned helplessness in response to uncontrollable stress has edpliedtR2 activity in the
development of maladaptive behavioural responses [38,79]. However equBlIRR2C
upregulation might be an appropriate secondary adaptation to a chresE. Sthis issue
requires further investigation, to assess whether CRFR2 is itipbtarget in stress-related
psychiatric disorders.

In this study, 5-HT function in the lateral septum and subiculung kitked with anxiety as

well as the neural circuitry of reward and addiction [106-108]s warticularly altered.

Dysregulated serotonergic function has long been linked to s&kedsd psychopathologies
[109,110] and direct effects of Ucns on CRFR2 in LSI have been observedeim models

of these disorders; hence, CRFR2 may play an important role in these prot&$sEE3).

Conclusions

While the role of CRFR2 in stress recovery was proposed soraeatm|[63,114], this study
provides new information regarding the mechanisms by which thys bmamediated and
highlights the importance in the immediate post-stress period.h&ismplications for the
pathophysiology of psychiatric conditions associated with acugssséixposure, such as post-
traumatic stress disorder, reactive depression and relapse tansgbabuse. As evidence
continues to emerge that CRFR2 may mediate its effects ess gtrimarily through 5-HT,
the potential for involvement in further mood disorders and ultimaialytherapeutic
targeting is clear.
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