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Measurement of blood flow by cine phase-contrast MRI is a valuable technique in the study of arterial
disease but is time consuming, especially for multi-slice (4D) studies. Compressed sensing is a modern
signal processing technique that exploits sparse signal representations to enable sampling at lower than
the conventional Nyquist rate. It is emerging as a powerful technique for the acceleration of MRI
acquisition. In this study we evaluated the accuracy of phase-contrast carotid blood flow measurement in
healthy volunteers using threefold undersampling of kt-space and compressed sensing reconstruction.
Sixteen healthy volunteers were scanned at 1.5 T with a retrospectively gated 2D cine phase-contrast
sequence. Both fully sampled and three-fold accelerated scans were carried out to measure blood flow
velocities in the common carotid arteries. The accelerated scans used a k-t variable density randomised
sampling scheme and standard compressed sensing reconstruction. Flow rates were determined by
integration of velocities within the manually segmented arteries. Undersampled measurements were
compared with fully sampled results.
Bland–Altman analysis found that peak velocities and flow rates determined from the compressed sensing
scans were underestimated by 5% compared with fully sampled scanning. The corresponding figure for
time-averaged flow was 3%.
These acceptably small errors with a threefold reduction in scan time will facilitate future extension to 4D
flow studies in clinical research and practice.
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1. Background

Carotid arterial blood velocity mapping can be used for the
diagnosis and management of the progression of carotid artery
atherosclerosis, which is one of the major causes of ischaemic stroke
[1]. Time-resolved flow rates in carotid arteries provide useful in-
formation on cerebral circulation and are also used as boundary
conditions for computational fluid dynamics models [2,3]. Flow
measurements in other major arteries are also of clinical interest. As
with other dynamic imaging techniques, the 2D cine phase-contrast
MRI sequence used for flowmeasurement is slow due to the coverage
of the extra temporal and velocity encoding dimensions of the signal,
requiring a trade-off between spatial and temporal resolution.
Extending the technique to multiple slices leads to long scan times
(tens of minutes) that introduce measurement errors from patient
motion and physiological variation, and are infeasible in a clinical
setting. The availability of robust, accelerated scanning is therefore
necessary before these techniques can be used clinically. Methods to
accelerate MRI acquisition include parallel imaging [4,5], lattice-
based kt-undersampling such as UNFOLD [6] and kt-BLAST [7], and
compressed sensing (CS) [8–11]. Compressed sensing is a framework
of undersampling and reconstruction methods for recovering sparse
signals sampled at a rate lower than the Nyquist rate. Most MRI
datasets are sparse in the Fourier (k-space) domain, withmost of the
signal power lying near the centre of k-space. Angiograms are sparse
in the image domain itself, with relatively few pixels contributing to
the image. Recent studies have reported promising results for various
compressed sensing applications, including contrast enhanced
angiography [11], cardiac imaging [12], cardiac output measurement
[13], and blood flowmeasurement in hepatic veins [14] and the aorta
[15]. Preliminary implementation of the CS framework in carotid
velocity mapping has also demonstrated good undersampling
performance [16], but to date the technique has not been properly
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Fig. 1. Sampling patterns. (A) Fully sampled and (B) Compressed Sensing (CS)
sampling patterns in kt-space. Each dot represents a frequency encoding line. The
CS pattern has 20 central rows densely sampled, whilst the remainder of kt-space is
sampled randomly with a uniform density such that the overall acceleration factor
is three.
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validated in these vessels. Clinically, it is highly desirable to
understand the accuracy and reliability of such a strategy before it
could be used to guide treatment. However, current CS theory does
not provide quantitative guidance as to how much error should be
expected for specificMR applications. In this study, we applied the CS
method to accelerate carotid velocity and flow rate measurements in
healthy volunteers. The CS results for peak and time-averaged flow
were compared with measurements from corresponding fully
sampled scans. To the best of our knowledge this is the first in vivo
validation of CS for carotid flow measurement.

2. Methods

2.1. Design of undersampling pattern

Central to undersampling techniques is the design of a suitable
k(-t) undersampling pattern. Although there is no comprehensive
theory for the design of k-t sampling patterns, it is well known that
full sampling near the centre is advantageous [17,18] because the
majority of the signal power lies in the central region. Furthermore,
compressed sensing undersampling factors in the range 2–5 appear
to give acceptable results for phase-contrast applications [13–16],
and for compressed sensing reconstruction the sampling pattern
should be incoherent [8–11]. Therefore, we designed a sampling
pattern similar to those used previously [15,16], having an overall
acceleration factor of three with full sampling of the central 20 rows
of k-t space and the remaining k-t space being sampled with a
uniform density, randomised pattern. This pattern is shown in Fig. 1
together with the fully sampled pattern. Preliminary simulations
(data not shown) based on undersampling the fully sampled signal
from one volunteer confirmed that the pattern was suitable, with a
performance comparable to the more complex patterns used by
Kim et al [14]. Furthermore, different randomisations with the same
sampling density gave near-identical results.

2.2. Cine phase-contrast scanning

Sixteen healthy volunteers (nine female and seven male, age
38 ± 9) were recruited for the study. Informed consent was ob-
tained from all volunteers and the protocol for the scans was
approved by a Local Research Ethics Committee. All imaging used a
1.5T GE Signa Horizon HDX scanner operating under a research
collaboration with GE Medical Systems (Milwaukee, WI, USA) and
fitted with a four-element phased array carotid surface coil
(Machnet, Netherlands). The manufacturer’s standard 2D cine
phase-contrast pulse sequence program (with alternating velocity-
compensated and velocity-encoded acquisitions) was modified to
incorporate the compressed sensing pattern. After localiser scans
and a Time of Flight angiographic scan to visualise the carotid
arteries, 24 time frames of a single axial slice (matrix 192 × 192)
located approximately 2 mm below the lower of the two carotid
bifurcations were collected in each phase-contrast acquisition.
Retrospective gating used a pulse oximeter attached to the right
index finger of the volunteer. Velocity encoding was applied only in
the Superior/Inferior direction (S/I), with phase encoding in the
Anterior/Posterior direction (A/P, defined as y) and frequency
encoding in the Left/Right direction (L/R, defined as x). Other
parameters were field of view 12 cm, slice thickness 2mm, VENC 100
cm/s, acquisition bandwidth 15.63 kHz, repetition time 16 ms, echo
time 7.8 ms and flip angle 25º. Each volunteer had three scans in the
same visit, consisting of two fully sampled scans separated by the CS
scan. The three scans were run back-to-back without changing
the scanner’s shim or gain settings. Each fully sampled scan took
147 seconds, and the CS scan took 49 seconds. Trigger pulses from
the oximeter and the scanner were logged by an event recorder
(Cambridge Electronic Design, Cambridge, UK). Raw k-space data
was saved for offline reconstruction.

2.3. Image reconstruction and analysis

Data was reconstructed offline according to the pulse sequence
timing and the gating record from the pulse oximeter. For each
volunteer and each common carotid artery, the signal from the
closest coil element was used. Velocity-compensated and velocity-
encoded signals were reconstructed separately. For reconstruction
of the fully sampled scans, regridding of the data to 24 time frames
by cubic interpolation was carried out at each phase encoding
position, followed by 2-dimensional Fourier transformation into
image space. For reconstruction of the CS scans, the L1 norm was
minimized in y-f space (Fourier transform of k-t space) using the
SPGL1 package [19]. Each of 18 locations in the x-direction, span-
ning the region occupied by a carotid artery, was processed
separately, and the process was repeated for right and left arteries.
In each reconstruction, regridding of the undersampled signal pro-
vided an initial estimate for the SPGL1 algorithm. The computation
used Matlab (MathWorks, Natick, MA, USA) running on a PC
(3.2GHz Intel Xeon CPU with 2 GB RAM). The reconstruction for
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each CS scan took approximately 5 minutes. All carotid arteries
were segmented manually by the same observer to ensure con-
sistency. This was done independently for each scan of each
volunteer. Pixel-by-pixel velocities were calculated for all pixels
included in the vessel segmentations, and any phase wraps around
the time of peak flow were automatically corrected. Vessel flow
rates were determined by summing the velocities within the
arteries and multiplying by the pixel area. For each volunteer and
each artery the peak velocities, peak flow rates and time-averaged
flow rates from the two fully sampled scans were averaged and
used as a reference for comparison with the results from the
undersampled CS scan in between. Since the differences between
the CS results and the reference include real physiological
variations between scans in addition to any errors due to under-
sampling, the differences between the two fully sampled measure-
ments were also evaluated. Bland-Altman analysis was also carried
out on the flow rates.

3. Results

One volunteer moved excessively during scanning and the
images were judged to be of poor quality. The remaining 15 volun-
teers were included in the subsequent analysis. A representative
Fig. 2. Common carotid artery images and pixel-wise velocity waveforms. Representative r
images of the entire neck together with zoomed views of the common carotid artery (CCA)
interpolated for the display purposes. The lower panel shows pixel-wise velocity waveform
only for those pixels within the segmented arteries. The velocity scale is from −30 cm/s
neck image, together with zoomed views of the common carotid
arteries and pixel-wise velocity waveforms, are shown in Fig. 2.
Velocity waveforms for the fully sampled and compressed sensing
scans are shown for the central 5 × 5 pixels of the RCCA in Fig. 3(a),
and the corresponding flow waveform in Fig. 3(b). This volunteer
had a high flow rate (9.8 ml/s time-averaged) compared with the
more “typical” value of 6.0 ml/s shown in Fig. 3(c) and the low value
of 4.5 ml/s shown in Fig. 3(d).

Velocity and flow results are summarised in Table 1 and illus-
trated in Figs. 4 and 5. Peak velocities were slightly underestimated
by the CS scan but the difference reached significance (p b 0.05) only
for the LCCA (3.8 cm/s or 5% underestimation). Fig. 4(a,b) show the
differences in flow waveforms between the CS results and the
average of those from the two fully sampled scans. Around peak
flow, the differences (averaged over all volunteers) were approxi-
mately -1 ml/s but with large standard deviations (2 ml/s) reflecting
the fact that peak flow did not occur at the same time point for
all volunteers. During diastole, the differences were less than
(0.03 ± 0.4) ml/s. Flow differences between the results from the
two fully sampled scans are also presented in Fig. 4(c,d) to indicate
the level of scan to scan variation. Between the two fully sampled
scans, the mean differences were less than 0.5 ml/s at peak flow
and 0.1 ml/s during diastole. Again, the standard deviations at peak
esults from a subject with high carotid artery flow. The upper panel shows magnitude
regions of interest (outlined in yellow in the neck image). The CCA images have been
s in the arteries, corresponding to the first fully sampled scan. Waveforms are shown
to 110 cm/s. The red outline depicts the central pixels displayed in detail in Fig. 3(A
).



Fig. 3. Velocity and flowwaveforms in representative subjects. (A) Pixel-wise velocity waveforms for the central region of the right CCA as depicted by the red outline in Fig. 2, in a
subject with relatively high carotid flow rates. In all panels of this figure, the first fully sampled scan FS1 is shown with a blue line, the threefold undersampled compressed
sensing scan CS is shown with a red line and the second fully sampled scan FS2 is shown with a black line. The velocity scale is from −30 cm/s to 110 cm/s. (B) RCCA flow
waveforms for the same subject; (C) RCCA flow waveforms for a subject with moderate flow rates; (D) RCCA flow waveforms for a subject with low flow rates. Flow was
determined by summing the individual pixel velocities within the arteries and multiplying by the pixel area.
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flow are approximately 2 ml/s. Fig. 5 shows Bland-Altman plots
comparing the CS and fully-sampled results for (a) peak flow and (b)
time-averaged flow. In this figure, data for right and left CCA are
plotted on the same axes, but they are reported separately in Table 1.
There was a significant bias (underestimation) in peak flow
measured using the CS scan compared with the mean fully sampled
scans of (0.77 ± 1.03) ml/s for RCCA and (0.73 ± 1.14) ml/s for
LCCA. Time-averaged flow rates measured by the CS scans were
underestimated by approximately 0.18 ml/s compared with the
mean fully sampled scans, but the difference reached significance
able 1
ummary flow results.

FS1 FS2 FS1-FS2 CS CS- b FSN

Peak velocity (cm/s) RCCA 74.4 ± 19.5 76.2 ± 17.0 -1.7 ± 5.8 73.5 ± 14.2 -1.8 ± 8.2
Peak velocity (cm/s) LCCA 74.4 ± 16.5 75.8 ± 19.9 -1.5 ± 12.1 71.3 ± 15.3 -3.8 ± 5.8
Peak Flow (ml/s) RCCA 14.2 ± 5.2 14.5 ± 4.8 -0.23 ± 1.27 13.6 ± 4.3 -0.77 ± 1.03
Peak Flow (ml/s) LCCA 14.5 ± 4.9 15.0 ± 4.9 -0.57 ± 1.11 14.0 ± 4.4 -0.73 ± 1.14
Time-averaged flow (ml/s) RCCA 6.21 ± 1.48 6.39 ± 1.46 -0.18 ± 0.36 6.10 ± 1.32 -0.19 ± 0.23
Time-averaged flow (ml/s) LCCA 6.47 ± 1.47 6.59 ± 1.55 -0.12 ± 0.36 6.36 ± 1.41 -0.17 ± 0.34

ommon Carotid Artery (CCA) peak velocities (cm/s), peak and time-averaged flow rates (ml/s) measured with fully sampled and threefold accelerated cine-PC scans. All values
re mean (± standard deviation) for n = 15 subjects. FS1, first fully sampled scan; FS2, second fully sampled scan; CS, threefold undersampled scan with compressed sensing
econstruction; bFSN, mean of FS1 and FS2. Values in bold are significantly different from zero (p b 0.05). See also Figs. 4 and 5.
T
S

C
a
r

only for the RCCA. Linear regression analysis of the Bland-Altman
plots revealed weak but significant (p b 0.01) negative correlations
between flow rate differences (CS-mean fully sampled) and the
mean fully sampled flow rates (R2 = 0.31 for peak flow and 0.23 for
time-averaged flow).

4. Discussion

Common carotid artery flow waveforms were successfully
measured using threefold accelerated CS. Waveform shapes

image of Fig.�3


Fig. 4. Compressed sensing versus fully sampled flow waveforms. The differences in measured common carotid artery (CCA) flow waveforms between (A, B) the threefold-
accelerated CS results and the average of those from the two fully sampled scans, and (C, D) between the two fully sampled scans. Results for the right CCA are shown in (A)
and (C), and results for the left CCA in (B) and (D). Each error bar shows one standard deviation above and below the mean difference, calculated over all 15 volunteers.
See also Table 1.
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(Fig. 3) and flow rates were similar to previous work [20,21] and the
waveforms from the CS scans showed good agreement with the
waveforms from the fully sampled scans.

The groupmean underestimation of approximately 1ml/s at peak
flow for the CS scans had a spread of ± 2 ml/s that arises partly
because the time of peak flow did not occur at the same time point
for all volunteers and all scans, as can be observed in Fig. 3. When the
individual peak flow rates are used (regardless of exact timing in the
waveforms), as in the Bland-Altman analysis, the underestimation is
0.75 ml/s with a standard deviation of just over 1 ml/s, i.e. less
variation than for group means. Although significant (p b 0.05), this
underestimation amounts to only 5% of the typical peak flow rate of
14.5 ± 5ml/s. This underestimation probably arises because smaller
coefficients (relating to higher frequency signal components) tend to
be underestimated during the compressed sensing reconstruction.
This in turn leads to reduced temporal resolution resulting in a
broader but smaller peak in the flow waveform. Since velocities are
extracted from the phase of the voxels, it can be shown that the same
mechanism may also lead to underestimation of the time average of
waveforms having a distinct pulsatile peak such as those studied
here. This probably explains the underestimation of 0.18 ml/s (3%)
observed in the time-averaged flow rates.

When selecting patients for carotid surgery, important thresh-
olds for (internal) carotid artery disease are 50% and 70%
(diameter) stenosis, for which the observed peak velocities will
be approximately four and eleven times healthy values respectively.
In this context, a 5% underestimation of velocities will have
negligible effect on diagnosis, and it may be that higher acceleration
factors are achievable.

We used a relatively thin imaging slice of 2 mm thickness. The
high inflow intensity in the common carotid arteries led to adequate
signal to noise and velocity to noise ratios. This may not be the case
in regions of lower flow velocity, such as downstream of the carotid
bifurcation, for which more sophisticated compressed sensing tech-
niques may be necessary to ensure adequate phase reconstruction
[22]. The time saving of approximately 100 seconds for the single
slice in this study may seem rather modest in the context of an
MRI examination. However, our interest is in exploring the flow
patterns in extended arterial regions for which a multi-slice or
3-dimensional approach will be appropriate. Extending the exam-
ination to measure all three components of velocity in a stack of
slices (“4D acquisition”) leads to clinically unfeasible examination
times unless some form of acceleration is employed. With the
threefold acceleration demonstrated here, each slice takes approx-
imately 50 s to acquire, so that a stack of, say, 12 slices covering the
carotid bifurcation region could be achieved in a comfortable ten
minute scan. It is expected that the compressed sensing reconstruc-
tion would benefit from the 3D structure in such data.

In the current implementation, the general form of the
compressed sensing method was used to exploit the general sparsity

image of Fig.�4


Fig. 5. Bland Altman diagrams of peak and time-averaged flow rates. The difference
in measured common carotid artery (CCA) flow rates between the threefold
accelerated CS results and the average of those from the two fully sampled scans
Results for peak flow are shown in (a) and for time-averaged flow in (b). Mean biase
are shown with dashed lines, whilst dotted lines represent ± two standard
deviations. Data points for RCCA are shown in grey and for LCCA in black.
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of the signal. No prior information or modelling of the signal was
used in the reconstruction.

We used the Fourier Transform (FT) as the sparsifying transform.
Although it has been reported that a Principal Components Analysis
(PCA) transform may give better results [14], the reconstruction
times would have been much greater. The relative merits of FT and
PCA still need to be exploredwith a pool of fully sampled in vivo data
such as the current study has generated. We did not use Total
Variation (TV) regularisation in the reconstructions [22] because TV
has a smoothing effect. This aspect was noted by Kwak et al [15] who
were interested only in time-averaged volume flow. In our work we
specifically wanted to retain spatially resolved velocity waveforms
for further haemodynamic analysis.

Improvements in performance might be possible by using a joint
reconstruction of the velocity-compensated and velocity-encoded
signals [14] or by explicitly using the sparsity of the complex
difference images [15]. Further acceleration would be possible by
combining compressed sensing with parallel imaging [14], but we
wanted to establish the baseline performance of CS alone. Further-
more, the phased array carotid coil used in this work behaved
effectively as separate surface coils since signals from the left carotid
artery were hardly detectable with the right-sided coil elements and
vice versa. Future work would also explore different sampling
density distributions and/or levels of acceleration, different sparsify-
ing transforms, and a comparison with the kt-BLAST technique. The
fully sampled data collected in the current study could be used for
simulations of such undersampling Finally, in addition to healthy
volunteers, patients with abnormal carotid blood flow should be
included in future work prior to establishing routine clinical studies.

5. Conclusions

Threefold accelerated compressed sensing scans produced
accurate measurements of time-resolved velocities and flow rates
in common carotid arteries of healthy volunteers. Peak (time-
averaged) flow rates were underestimated by 5 (3) % compared with
fully sampled scanning, with a time saving of 100 seconds per slice.
Such a reduction in scan time will facilitate the extension to multi-
slice (4D) flow studies in clinical research and practice.
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