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ORIGINAL ARTICLE

Innate and adaptive type 2 immune cell responses
in genetically controlled resistance to intestinal
helminth infection

Kara J Filbey1, John R Grainger1,4, Katherine A Smith1,5, Louis Boon2, Nico van Rooijen3, Yvonne Harcus1,
Stephen Jenkins1,6, James P Hewitson1 and Rick M Maizels1

The nematode Heligmosomoides polygyrus is an excellent model for intestinal helminth parasitism. Infection in mice persists

for varying lengths of time in different inbred strains, with CBA and C57BL/6 mice being fully susceptible, BALB/c partially so

and SJL able to expel worms within 2–3 weeks of infection. We find that resistance correlates not only with the adaptive

Th2 response, including IL-10 but with activation of innate lymphoid cell and macrophage populations. In addition, the titer

and specificity range of the serum antibody response is maximal in resistant mice. In susceptible strains, Th2 responses were

found to be counterbalanced by IFN-c-producing CD4þ and CD8þ cells, but these are not solely responsible for susceptibility

as mice deficient in either CD8þ T cells or IFN-c remain unable to expel the parasites. Foxp3þ Treg numbers were comparable

in all strains, but in the most resistant SJL strain, this population does not upregulate CD103 in infection, and in the lamina

propria the frequency of Foxp3þCD103þ T cells is significantly lower than in susceptible mice. The more resistant SJL and

BALB/c mice develop macrophage-rich IL-4Ra-dependent Type 2 granulomas around intestinal sites of larval invasion, and

expression of alternative activation markers Arginase-1, Ch3L3 (Ym1) and RELM-a within the intestine and the peritoneal

lavage was also strongly correlated with helminth elimination in these strains. Clodronate depletion of phagocytic cells

compromises resistance of BALB/c mice and slows expulsion in the SJL strain. Thus, Type 2 immunity involves

IL-4Ra-dependent innate cells including but not limited to a phagocyte population, the latter likely involving the action of

specific antibodies.

Immunology and Cell Biology advance online publication, 4 February 2014; doi:10.1038/icb.2013.109
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Immunity in the gut has evolved to minimize immune reactivity to
commensal bacteria and food antigens, while remaining alert to
incoming pathogenic organisms.1–3 Many helminth parasites are
adept at entering this environment, as is evident from the fact that
42 billion people are currently infected with intestinal hookworm,
whipworm and ascarid nematodes.4 A major challenge for global
health, therefore, is to understand how parasites engage with the
finely balanced homeostatic system of the gastrointestinal tract in
order to establish themselves for long-term infection.

Studies in both mouse and human populations strongly indicate
that immunity to gastrointestinal nematode parasites requires a
strong Th2 responsiveness profile5–8 with the canonical type 2
cytokines IL-4 and IL-13 critical in mobilizing a raft of innate
effector mechanisms that disable and expel gut helminths.6,8–12

Interestingly, human populations show a spectrum of responses to
helminth infection, varying from effective resistance through
hyporesponsiveness and tolerance to hyperreactivity and
pathogenesis.13 Allelic variation at key loci controlling type 2
cytokines and their signals is an important genetic factor
influencing the outcome of helminth infection,14,15 and likewise
different strains of mice can display contrasting patterns of
susceptibility or resistance to helminth parasites. Hence, mouse
models can provide new insights not only into immunological
mechanisms of protection but also the genetic basis for variation in
the efficacy of those mechanisms.

In one well-used model, the rat parasite Nippostrongylus brasiliensis
is rapidly expelled by Th2-dependent mechanisms in all immuno-
competent strains of mice.16 A more balanced picture is seen with the
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cecal-dwelling Trichuris muris, in which Th2-dependent immunity
is directly antagonized by the degree of Th1 responsiveness.10

Thus, blocking IFN-g responses enables a susceptible mouse to
clear infection,9 whereas exogenous IL-12 prolongs infection in a
genotypically resistant animal.17 A further layer of complexity is
observed with the duodenal parasite Heligmosomoides polygyrus,
which generates a significant regulatory T-cell population that
inhibits Th2 immunity.18–22 Recent data implicate similar regulatory
effects in human intestinal helminth infections,23–26 suggesting that
H. polygyrus may offer a valuable system to model such interactions.

H. polygyrus is a natural mouse parasite that is able to establish
primary infections in most laboratory mouse strains of mice.27,28

Drug-mediated worm clearance of susceptible mice, however, results
in protective immunity against secondary infection, acting against
the larval stage, which enters the gut wall for B8–10 days before
emerging into the lumen as mature adults.27 Resistance to reinfection
operates through an IL-4R-dependent population of alternatively
activated macrophages that populate granulomatous cysts around
larvae in the intestinal wall.12,29 In addition, secondary immunity
requires IgG1 antibody responses, and a level of protection can be
conferred by passive transfer of this isotype.30–34

A further model of immunity in H. polygyrus, exploits the fact that
inbred strains differ markedly in their ability to expel primary
infections.28,35–38 Resistant mouse strains such as SJL show faster
and stronger antibody and Th2-type responses,39,40 but as yet few
details are available that compare T cell subsets or innate immune
components between strains with differing capacity to reject primary
infection. In addition, while resistance in previously immunized mice
is associated with the formation of granulomas around encysted
larvae,12,29 the role of granulomas in primary immunity has not been
evaluated. We accordingly set out to compare the immunological
phenotypes in four well-characterized strains of mice that offer a
spectrum of susceptibility to H. polygyrus, demonstrating that
intensity of both innate and adaptive type 2 cell responses correlate
with the resistant state, while susceptibility is associated with
increased Treg activation, IFN-g expression by CD4þ and CD8þ

T cells, as well as the production of IgE.

RESULTS

Graded resistance associated with early reduced fecundity and
granuloma development
In primary infection with the gastrointestinal nematode H. polygyrus,
larvae first invade the duodenal wall and emerge 8–10 days later
as adult worms into the lumen of the gut. Inbred mouse strains
are known to vary significantly in their susceptibility to this
parasite,28,35–38 and in comparing four strains we noted three
critical features of differential immunity. First, luminal adult worms
were present in all groups at day 14, soon after emergence (Figure 1a),
and only subsequently did genetically determined differences in
expulsion become apparent. Thus, by day 28 resistant strains had
expelled most of the adult parasites, with BALB/c and SJL mice
carrying the lowest numbers, whereas C57BL/6 and CBA retained
significantly higher loads (Figure 1b).

Secondly, at the earlier time point the stronger immune phenotype
was clearly manifest in terms of egg production, which at day 14 was
much lower in relatively resistant SJL mice than in the fully
susceptible CBA and C57BL/6 strains (Figure 1c). As the total number
of adult worms in the gut lumen was similar in all groups at this time
point (Figure 1a), this phase of immunity represents a reduction in
worm fitness as reflected by their fecundity. By day 28, egg production

more closely mirrored adult worm loads with CBA and C57BL/6 mice
excreting the most, and BALB/c and SJL the fewest (Figure 1d).

Thirdly, the more resistant strains showed more extensive develop-
ment of macroscopic granulomas in the intestinal wall (Figures 1e–g),
which although numerous in the more resistant genotypes are sparse
in the fully susceptible mice (Figure 1h). The abundance of
granulomas shows, in this comparison, an inverse relationship with
worm fecundity (Figure 1i), suggesting that they may impair fitness of
the parasite while in the intestinal wall.

Resistance follows a gradient of higher Type 2 responses and lower
Type 1
Cellular immune responses were first assessed at day 7 post infection
using both polyclonal and antigen-specific assays. In vitro stimulation
of draining mesenteric lymph node (MLN) cells with anti-CD3
antibody elicited high levels of IL-4, IL-10 and IL-13 from SJL and
BALB/c MLN cells (MLNC; Figures 2a–c). In the same assays,
susceptible C57BL/6 and CBA mice mounted weaker Th2 responses,
while expressing higher levels of IFN-g (Figure 2d). A similar picture
emerged from intracellular staining of CD4þ T cells for IL-4
(data not shown) and other type 2 cytokines (Supplementary
Figures 1A–C).

Antigen-specific T-cell responses in all four strains of mice were
evaluated by in vitro stimulation with H. polygyrus excretory-secretory
antigen (HES). At day 7 post infection, all strains mounted type 2
cytokine responses that were sustained past day 14 only in the
more resistant strains and suppressed in the susceptible strains
(Supplementary Figures 2A–C). The association with resistance was
more evident for IL-4 and IL-10 than for IL-13. In contrast, Th-17
responses were variable and did not associate with resistance
phenotype (Supplementary Figure 2D) and only susceptible strains
generated early and sustained IFN-g production in response to HES
stimulation (Supplementary Figure 2E). IFN-g responses were also
present within a substantial proportion of CD8þ MLNC (Figure 2e;
Supplementary Figure 1F) from the susceptible strains.

Notably, the strength of the IL-10 response, both at the polyclonal
level (Figure 2b; Supplementary Figure 1B) and in terms of HES-
specific cytokine release (Supplementary Figure 2B) was strongly
associated with resistance, with maximal levels in the most resistant
SJL strain at all time points assayed. However, no differences
were seen in IL-9 responses following HES challenge in vitro
(Supplementary Figure 2F), although over-expression of IL-9 has
been reported to promote expulsion of H. polygyrus.10

We then measured the profile of key innate cell populations during
infection. Within the peritoneal cavity, a major site of macrophage
activation,41 CD11bþF4/80þ macrophages expanded dramatically in
all strains, but significantly more so in the two resistant strains
(Figure 2f). Only SJL mice recruited large eosinophil numbers to this
site (Figure 2g). At day 7, variable numbers of IL-5 and 13-expressing
type 2 innate lymphoid cells (ILC2s lacking CD3, CD4, CD8a,
CD11c, CD19, DX5, F4/80, Gr1 and MHC class II) were observed
in the SJL, which did not achieve statistical significance (data not
shown). However, a more robust difference was noted by day 10
between the resistant BALB/c and susceptible C57BL/6 mice in the
number of ILC2s, when defined by expression of ICOS, T1/ST2 and
CD127, and staining for intracellular GATA3 as a marker of ILC2
commitment, as illustrated in Supplementary Figure 3.42,43 Notably,
while ILC2 numbers were significantly higher in the BALB/c strain
(Figure 2h) in both genotypes these showed similar expansion to total
cell numbers in the MLN (Figure 2i).
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Resistance requires IL-4R signaling, but susceptibility is not
dependent on CD8þ T cells or IFN-g
It is well established that resistance to gastrointestinal nematodes
requires IL4R-mediated signaling in both hematopoietic and non-
hematopoietic cells.16,44 To test whether granuloma development
was similarly dependent, BALB/c and congenic IL-4Ra-deficient
mice were infected. Very clearly, no granulomas developed in the
IL-4Ra�/� animals (Figure 3a) and, as expected, IL-4Ra-deficient
mice were highly susceptible to infection with increased fecundity per
worm (Figure 3b); they also failed to expel adult parasites by day 28
(Figure 3c).

In the susceptible backgrounds, we questioned whether high levels
of IFN-g expression within the CD4þ and CD8þ T cell subsets were

responsible for their failure to expel H. polygyrus, as depletion of this
cytokine from Trichuris muris-infected mice is sufficient to confer
resistance in normally susceptible animals.9 First, we depleted CD8þ

T cells from C57BL/6 mice with monoclonal antibody YTS169; as
shown in Figure 3d, this resulted in modest reductions in egg counts,
which did not attain statistical significance, while adult worm
numbers were unchanged at day 28 (Figure 3e). Secondly, we infected
IFN-g-deficient mice on the C57BL/6 background: this genotype
shows reduced worm loads at 28 days post infection45 but at the
earlier time point of 14 days, no difference was observed in adult
worm numbers (Figure 3f). Unlike earlier experiments,45 egg
production at day 14 was also unaltered (Figure 3g), indicating that
the effect of IFN-g deficiency is not profound in the C57BL/6 setting.
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Hence, IFN-g alone contributes to susceptibility but in contrast to the
T. muris system, does not fully account for the failure of resistance in
the susceptible mice.

Activation of Foxp3þ Treg is subdued in resistant mice
H. polygyrus has previously been reported to expand the numbers of
Foxp3þ regulatory T cells in C57BL/6 and BALB/c mice,19,21 and in
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particular to stimulate a significant rise in CD103 expression within
the Foxp3þ T reg compartment.19 The induction of CD103 is
considered an activation marker for Tregs46 and is strongly TGF-b-
dependent in H. polygyrus-infected mice.45 Furthermore, interfering
with TGF-b signaling in chronically infected mice has been shown to
increase worm expulsion,22 although depletion of Tregs in Foxp3–
diphtheria toxin receptor mice did not alter the worm burden at
day 14.47

We therefore examined Foxp3þ T cell populations in different
mice: perhaps surprisingly, the strain that exhibited the clearest
increment in the percentage of MLN Foxp3þCD4þ Tregs as

measured by flow cytometry was the most resistant SJL (Figure 4a).
However, when this subset was further analyzed for the expression of
CD103, it was notable that the SJL mouse showed much lower levels
in the steady-state uninfected lymph nodes (as independently
reported elsewhere48) and did not upregulate CD103 on infection
in the same manner as BALB/c mice (Figure 4b). Similarly, fewer SJL
Tregs upregulated GATA3 in response to infection (Figure 4c),
which may be important as GATA3 has been found to be required
for functional Treg suppression in the gut.49 These data argue
that although there is no correlation between susceptibility and the
overall numbers of Foxp3þ Tregs, a qualitative distinction may exist
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in the suppressive capacity of these cells in the most resistant SJL
genotype.

We next examined lamina propria (LP) Treg populations, focussing
on a comparison of SJL and C57BL/6 mice. Again, total frequencies of
Foxp3þ Tregs did not differ significantly between the strains and
showed little proportional change as a result of infection (Figure 4d).
However, while CD103 expression levels among uninfected LP Tregs
were broadly similar in the two strains, by 7 days following infection
CD103 expression within the Foxp3þ compartment was more than
twofold higher in the susceptible C57BL/6 mice than in the resistant
SJL (Figure 4e).

As CD103 induction is associated with TGF-b stimulation, and the
known importance of TGF-b in de novo conversion of peripheral T
cells to a regulatory phenotype, we also compared the ability of SJL
and C57BL/6 T cells to convert from Foxp3– to Foxp3þ T cells on
incubation with mammalian TGF-b, or with HES which contains a
functional mimic of TGF-b.22 As shown in Figure 4f, both C57BL/6
and SJL T cells were able to upregulate Foxp3 expression, although the
proportional increase was less marked in cells from the resistant SJL
strain.

Resistant mice mount faster and broader specific antibody
responses
Specific IgG1 antibodies are known to be protective against
H. polygyrus infection,30–34 and their titer correlates with genetic
resistance to this parasite.50 We assayed serum antibody responses to
parasite excretory–secretory products (termed HES) that are known
to be the primary targets of serum antibodies in infected mice.51 Anti-
HES IgG1 antibody titers were found to be 10-fold higher in the
resistant SJL strain (Supplementary Figure 4A), with a broader
repertoire of antigen recognition (Supplementary Figure 4B), com-
pared with the other strains. Surprisingly, specific IgE production
was significantly higher in the most susceptible strain, CBA
(Supplementary Figure 4C) and relatively low, as previously noted,52

in resistant SJL mice. No difference in anti-HES IgA titers were
observed between strains (data not shown). H. polygyrus infection has
also been reported to stimulate hyper-IgG and -IgE serum levels
reflecting polyclonal antibody stimulation.30,53,54 We noted that while
total serum IgG1 levels rose 410-fold in infected mice of all strains
(Supplementary Figure 4D), SJL mice showed almost no increment
in serum IgE concentrations, unlike the other three strains
(Supplementary Figure 4E). Overall, these data reinforce the conclu-
sion that IgG1, rather than IgE, is the critical isotype required for
immunity to H. polygyrus.33

Resistance to primary infection is associated with alternative
activation of macrophages
Many helminth infections drive a specialized functional program in
macrophages termed as alternative activation, associated with expres-
sion of distinct gene products including Arginase-1, Chitinase-3-like
protein 3 (also known as Ym-1) and Resistin-like molecule-a
(RELM-a, otherwise FIZZ-1).55 These markers of alternative
activation were strikingly elevated among the expanded peritoneal
macrophage populations in the SJL and BALB/c strains, in which
20–40% expressed Chi3L3 or RELMa within 7 days of infection
(Figures 5a and b). These gene products were also upregulated in
intestinal tissue, as found for RELM-a protein both by ELISA
(Figure 5c) and RT-PCR (Figure 5d). Similarly, Arginase-1 mRNA
levels were highest in the SJL strain (Figure 5e). Expression of
RELM-b, which has been reported to exert a direct anti-parasite
effect on H. polygyrus,56 was also maximal in infected SJL mice,

although in this case all strains induced expression following infection
(Figure 5f). Other myeloid phenotypes are also expanded in the
peritoneal cavity of infected mice, including CD11bþGr1þ cell
populations (data not shown), again displaying a gradient matching
the resistance status of the host.

Granulomas in resistant mice have high levels of alternative
activation
A notable feature of H. polygyrus infection in the more resistant
animals is the development of numerous macroscopic granulomas in
the gut wall by day 14 (Figure 1e). Similar granuloma-like structures
have been reported following secondary challenge of susceptible mice
that have been cleared of primary infection by curative drug
treatment,11,29,57 as well as in resistant mice within the course of
primary infection itself35; these granulomas have been reported
to be macrophage-rich with a significant influx of neutrophilic
granulocytes.58 Histological analysis of the duodenal wall showed
that at day 14 post infection, some granulomas in SJL mice still
contained parasites although the great majority had emerged into the
lumen (Figure 6a). At this time point, all parasites in the other strains
were found in the lumen.

To assess the level of alternative activation in situ, sections of gut
wall (containing granulomas in the appropriate strains) were probed
with antibody to the Chi3L3 (Ym1) protein product. As also shown
in Figure 6b, SJL mice showed high levels of Ym1 protein both in and
around the granuloma, often associated with large mononuclear cells
(Figure 6d arrows). No significant staining was observed in the two
more resistant strains, or in gut tissues taken from uninfected mice of
any genotype (data not shown).

Clodronate depletion of macrophages inhibits intestinal
granulomas but does not completely negate immunity
Clodronate liposome administration was then used to deplete
phagocytic immune cells in vivo during the first week of H. polygyrus
infection. In BALB/c mice, clodronate treatment, which showed
480% depletion of circulating CD115þ monocytes (Supplementary
Figure 5), significantly impaired immunity as shown by increased
adult worm (Figure 7a) and egg (Figure 7b) numbers at day 28. At
this later time point, few granulomas were present in clodronate-
treated mice (Figure 7c). Similarly, clodronate-treated SJL mice
formed a reduced number of intestinal granulomas (Figure 7d), but
continued to repress egg production (data not shown), while adult
worm expulsion was only slightly delayed (Figure 7e). Hence, the
strength of the contribution of clodronate-sensitive phagocytes
to protection against helminth infection depends on the genetic
background of the host.

DISCUSSION

Immunity to gastrointestinal helminth infections requires the appro-
priate and co-ordinate responsiveness of the innate and adaptive
immune systems.8,11,59 The degree to which immunity successfully
excludes the parasite varies, however, according to the genetic status
of the host; thus, comparisons of genetically susceptible and resistant
genotypes can identify key components and mediators that are
required for most effective immune protection.

In this study, we have focussed on the helminth H. polygyrus,
which is a natural parasite of the mouse, and to which different
mouse strains show diverse patterns of susceptibility to infection,36,38

with resistance clearly associating with strength of Th2
responsiveness.40,60,61 Our new data highlight the significance of
early events in infection, as by day 14 post inoculation, dramatic
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differences were apparent in worm fecundity between the strains,
which preceded subsequent worm expulsion in the resistant
genotypes. Those strains able to limit egg production and curtail
infection display a suite of enhanced Type 2 responses, including in
particular T cell production of IL-4 and IL-10, eosinophilia and
alternatively activated macrophages. Previous studies have highlighted
such components in individual strains, for example showing rapid
T-cell-independent type 2 cytokine responses in infected BALB/c
mice62 but these have not previously been correlated to the differential
susceptibility of inbred mouse strains.

The positive correlation between levels of the cardinal type 2
cytokines IL-4 and IL-13, and early expulsion of H. polygyrus, is
entirely consistent with published reports on the strength of Th2
responses in resistant mice. More surprising however is that IL-10 not

only parallels the major Th2 cytokines but shows a more extreme
polarization: thus, the more resistant strains express the highest IL-10
when judged by elevated intracellular cytokine staining and by
antigen-specific recall responses in vitro. Poor, or slow, IL-10
production could permit higher IFN-g levels among both CD4þ

and CD8þ T cells in the susceptible mice (and possibly IL-17 in the
C57BL/6 mouse), which feed back to dampen the Th2 response more
broadly. An interesting possibility is that IL-10 acts in mice in a
manner similar to that in helminth-infected humans, promoting an
IgG isotype (IgG1 in mice, IgG4 in humans) while suppressing IgE. In
contrast to the clear association of IL-10 responsiveness with
resistance, IL-17 expression did not correlate with any infection
outcome in this study, suggesting that in primary infection at least,
this compartment of the immune system is not a critical factor.
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Figure 5 Expression of alternative activation genes in infected animals. All results are from two experiments pooled with 4–6 mice per group represented as

mean values with standard error. (a, b) RELM-a and Chi3L3 (Ym1) expression by peritoneal macrophages of naive and d7 infected mice. (c) Expression of

RELM-a protein in duodenal tissue homogenate of naı̈ve and d7 infected mice by ELISA. (d–f) Quantification of RELM-a, Arginase-1 and RELMb in
duodenal tissue of naı̈ve and d7-infected mice by real-time PCR, relative to the housekeeping gene GAPDH. Statistically significant differences are

indicated; *Po0.05; **Po0.01; ***Po0.001.
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Perhaps the most striking feature of the BALB/c and SJL strains is
the extensive number of macrophage-rich granulomas in the intest-
inal wall that (as shown in SJL mice) envelop the larval stage of the
parasite. Such granulomas appear to be similar to those described in
secondary infection, in which it was suggested that AAMs in the
granulomas had a key role in mediating parasite killing11,12,29; the
granulomas have also been reported to require IL-21.63 We established
that the primary granulomas are similarly macrophage-dependent,
and associated with alternative activation, by three independent
approaches. First, clodronate depletion reduced granuloma
formation; secondly, gene expression of AAM markers Arginase-1,
Chi3L3 (Ym1) and RELMa was maximal in the resistant SJL strain.
Finally, granulomas were absent in the IL-4Ra-deficient setting, in
which alternative activation of macrophages does not occur in
response to helminths.64,65

A further factor in the resistance of SJL mice may be a subtle defect
in the activation of regulatory T cells; this may not be evident solely in
helminth infection, as the SJL mouse is also prone to a series of
autoimmune conditions, and indeed defective T-cell suppression has
long been noted in this strain.66 At this stage, our data are purely
indicative of a correlative link between Treg activation and the
response to infection, although such an association has been found
in a recent study of H. polygyrus infection in IL-6-deficient BALB/c
mice.67 If SJL mice are deficient in inducible Tregs, this may allow
them to more rapidly deploy alternatively activated macrophages, as it
has recently been reported that mice lacking the conserved nucleotide
sequence CNS-1 in the Foxp3 gene (which allows TGF-b-mediated
signals to stabilize Treg function), and lacking inducible Tregs, dis-
play uncontrolled accumulation of Chi3L3-expressing alternatively
activated macrophages.68 Future studies should explore the role not

only of Tregs in this setting, but regulatory B cells that were previously
found to be active in H. polygyrus infections of the more susceptible
C57BL/6 strain.69

An additional cell type that has been proposed to be important
in immunity to H. polygyrus is the mast cell,70 albeit as a source
of cytokines rather than through a direct killing mechanism.
As IL-9 over-expression is associated with enhanced immunity to
H. polygyrus,10 we measured levels of the key cytokine IL-9 between
the strains, but found no difference. Possibly, as noted previously,
mast cells in SJL mice are more active than in other genotypes,71 and
this feature remains to be further investigated. Finally, our data show
that innate lymphoid cells can expand and produce type 2 cytokines
following infection, and are present in the MLN of more resistant
genotypes. Previously, in studies of H. polygyrus-infected C57BL/6
mice, such cells were reported to be absent from the MLN but
detectable in the LP70; in our own unpublished studies we found LP
ILC2s in both infected SJL and C57BL/6 mice but at similar levels to
those in naive controls, indicating that a key difference between
the strains may be the expansion of these cells in the draining
lymph node.

A key question now is whether protective immunity can be
successfully mediated towards H. polygyrus after it has emerged from
its tissue-dwelling phase. As demonstrated, resistant strains of mice
were able to negatively affect worm fecundity early in infection. It is
likely that once they have emerged into the lumen, adult worms are
no longer susceptible to attack by macrophages and other myeloid
cells. This is supported by studies in which secondary protection to
H. polygyrus could be circumvented if adult worms were directly
planted into the duodenum.72 However, the damaging effect of
macrophages in the granuloma may be manifest first only as

Figure 6 Primary resistance to H. polygyrus infection is associated with granuloma-like formation in the gut wall expressing Chi3L3. Histological sections

of granulomas and normal intestinal tissue from H. polygyrus-infected mice. All images in (a–c) were captured and are presented at the same magnification.

(Row a) Hematoxylin and eosin staining of sections from mice 14 days following infection; note presence of trapped larvae in granuloma from SJL mouse.

Scale bars show 200mm. (Rows b, c) Staining with anti-Chi3L3 and control antibodies in sections from the same mice. Scale bars show 200mm. (Row d)

Staining with anti-Chi3L3 in SJL and BALB/c mice; note both staining of diffuse protein within the granuloma and within large mononuclear cells

(indicated by arrows). Scale bars show 200mm. A full colour version of this figure is available at the Immunology and Cell Biology journal online.
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reduced fecundity, but eventually leads to death and/or expulsion of
the adult worms some days later. This model would be consistent with
multiple mechanisms of attack, including macrophage-independent
effects as were evident in clodronate-treated SJL mice in our study
and also in clodronate-treated BALB/c immune mice, which although
unable to expel adult worms, still reduced fecundity in the parasite
population.29 However, as the luminal adults are immunosuppressive,
if they are not sufficiently degraded by the time of emergence, they
may survive through their strong immuno-regulatory effects as seen
in a number of chronic infection settings.18,73,74

In conclusion, the perspective we present here is one of broad type
2 activation being required, extending to macrophages and ILC2 cells
as well as conventional CD4þ T lymphocytes, within a strongly
quantitative setting in which the rapidity and peak level of the type 2
response are critically important for the establishment of immunity.
However, the gradient of immune effects over genotypes and over
time also reflects an incremental character to anti-helminth immunity
that could usefully be targeted by interventions designed to boost
protection in the infected host, an objective that would be
enormously valuable to the treatment of helminth infections
worldwide.

METHODS

Mice
CBA, C57BL/6, BALB/c, and SJL mice, IL-4R–/– BALB/c mice75 and IFNg–/– B6

mice were bred in-house and housed in individually ventilated cages according

to UK Home Office guidelines. Infections employed 200 L3 larvae of

H. polygyrus bakeri maintained as previously described.51

Clodronate treatment and antibody depletion
Clodronate liposome treatment was conducted as described elsewhere,29,76

administering 200ml clodronate i.v. on days 0, 1, 3 and 6 of infection, with

peripheral blood sampling at day 7. For CD8þ T-cell depletion, C57BL/6 mice

were injected with 200mg anti-CD8a clone YTS169 i.p. on days �1, 0, 2, 5, 7,

9, 12, 14, 16, 19, 21, 25 and 27, before experimental harvest at day 28. Control

mice received rat IgG (Sigma, Gillingham, Dorset, UK).

Lymphocyte recovery, in vitro culture
MLN cell suspensions were prepared directly by passage through 70mm nylon

filters (BD Biosciences, Oxford, UK) and placed in complete RPMI1640

medium (cRPMI) containing 10% FCS, 100 U ml�1 penicillin, 100mg ml�1

streptomycin and 2 mM L-glutamine. Peritoneal exudate cells were collected by

washing the peritoneal cavity with cRPMI using a 23-gauge needle.
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Figure 7 Clodronate depletion of macrophages in BALB/c and SJL mice infected with H. polygyrus. All results are pooled from two experiments and bars

represent the mean and standard error. Data showing the efficacy of clodronate depletion are presented in Supplementary Figure 5. (a) Adult worm burdens

from female BALB/c mice treated i.v. with either PBS or clodronate liposomes and infected for 28 days with H. polygyrus. (b) Egg burden in feces from

female BALB/c mice treated i.v. with either PBS or clodronate liposomes, at day 14 and 28 after infection with H. polygyrus. (c) Intestinal granuloma

counts from female BALB/c mice treated i.v. with either PBS or clodronate liposomes and infected for 28 days with H. polygyrus. (d) Intestinal granuloma

counts from female SJL mice treated i.v. with either PBS or clodronate liposomes and infected for 28 days with H. polygyrus. (e) Egg burden in feces from

female SJL mice treated i.v. with either PBS or clodronate liposomes, at day 14 and 28 after infection with H. polygyrus. (f) Adult worm burdens from

female SJL mice treated i.v. with either PBS or clodronate liposomes and infected for 14 or 28 days with H. polygyrus. Statistically significant differences

are indicated; *Po0.05; **Po0.01; ***Po0.001.
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For isolation of LP cells, following removal of Peyer’s Patches, intestines

were opened longitudinally, rinsed and transferred to ‘3% buffer’ (RPMI with

100 U ml�1 penicillin, 100mg ml�1 streptomycin, 20 mM HEPES and 2 mM

EDTA). Intestines were sliced into B1 cm pieces, which were disrupted by

shaking by hand for 30 s, after which the buffer was poured off and replaced

with fresh media. This was carried out three times after which the gut pieces

were incubated at 37 1C in 20 ml 3% buffer containing 10% FCS, 5 mM EDTA

and 0.145 mg/ml DTT (Sigma). The shaking and washing steps were repeated

after which the intestine was homogenized with scissors into 10 ml RPMI

containing 100 U ml�1 penicillin, 100mg ml�1 streptomycin, 20 mM HEPES,

1% NEAA, 1% sodium pyruvate, 2 mM L-glutamine, 0.1% 2-mercaptoethanol,

5 mg Liberase TL (Roche, Burgess Hill, West Sussex, UK) and 25 mg DNAse 1

(Sigma). After 25 min of incubation with stirring at 37 1C, cells were pushed

through a 70-mm filter followed by a 40-mm filter to remove debris.

Cells were then either stained for flow cytometry or restimulated in cRPMI

with 1mg ml�1 H. polygyrus adult Excretory-Secretory (HES) antigen,77 anti-

CD3 or medium alone for 72 h at 37 1C, and cytokine production measured by

ELISA.

Cytokine assays
Cytokine levels were detected in culture supernatants by ELISA using

monoclonal capture and biotinylated detection antibody pairs as follows: for

IL-4, 11B11 and BVD6-24G2; IL-10, JES5-2A5 and SXC-1; IL-9, D8402E8 and

D9302C12; IL-13, eBio13A and eBio1316H; IL-17, TC11-18H10 and TC11-

8H4.1; IFN-g, R46A2 and XMG1.2. All were purchased from BD Biosciences

or eBioscience (Hatfield, UK), except 11B11 and R46A2, which were produced

in-house. Standard ELISA conditions were employed, and following develop-

ment of plates with streptavidin-alkaline phosphatase and p-nitrophenyl

phosphate substrate, cytokine concentrations were determined by reference

to a standard curve of doubling dilutions of a reference standard.

Flow cytometry
Flow cytometry analyses were performed with PBS containing 0.5% bovine

serum albumin (BSA) (Sigma) and 0.05% sodium azide (Sigma). Cells were

stained in 96-well round-bottomed plates. Prior to FACS antibody staining of

cells, Fc receptors were blocked in 50ml of FACS buffer containing 100mg ml�1

of naive rat IgG (Sigma) for 20 min at 4 1C. Samples were then washed in

200ml of FACS buffer and surface stained for 20 min in 20ml of FACS buffer

containing a combination of the following antibodies: CD4 (RM4-5 or GK1.5;

Biolegend, Cambridge, UK), CD8 (53-6.7; Biolegend), CD11b (M1/70;

Biolegend), F4/80 (BM8; Biolegend), SiglecF (E50-2440; BD), CD115

(AFS98; eBioscience), CD103 (M290; BD), ICOS (15F9; eBioscience), CD3

(17A2; Biolegend), CD5 (53-7.3; Biolegend), CD11c (N418; Biolegend), CD19

(6D5; Biolegend), CD127 (A7R34, Biolegend), T1/ST2 (DJ8; MD Bioproducts)

and Ly6C (HK1.4; Biolegend). To measure intracellular cytokines, cells were

first stimulated for 4 h at 37 1C in the presence of PMA (50 ng ml�1) (Sigma),

Ionomycin (1mg ml�1) (Sigma) and Brefeldin A (10mg ml�1) (Sigma).

Following surface staining, cells were permeabilized for 30 min at 4 1C in

Cytofix/Cytoperm solution (BD), and then washed twice in 200ml of Perm/

Wash (BD). Cells were stained for intracellular cytokine expression in the same

manner as for surface markers but substituting perm/wash for FACS buffer.

Intracellular cytokine stains used were IL-4, 1B11 (Biolegend); IL-10, JES5-

16E3 (BD); IL-17, TC11-18H10 (BD); IFN-g, XM6-1.2 (Biolegend); IL-13,

eBio13A (eBiosciences) or appropriate isotype controls.

For Foxp3, GATA-3, RELM-a and Ym-1 samples were stained for surface

markers after which cells were permeabilized for up to 12 h at 4 1C in Fix/Perm

solution (eBioscience Foxp3 staining set), and then washed twice in 200ml of

Perm/Wash (eBioscience Foxp3 staining set). Cells were stained for Foxp3

(FJK-16 s; eBioscience), GATA-3 (L50-823; BD), RELM-a (226033; R&D, and

rabbit IgG AF647 labeling reagent kit; Invitrogen) and Ym1 (biotinylated goat

anti-mouse Chitinase 3-like 3; R&D, and Streptavidin-PeCy7; Biolegend)

expression in the same manner as for surface markers but substituting

Perm/Wash for FACS buffer.

After staining cells were washed twice in 200ml of FACS buffer before

acquisition on the LSR II or Canto flow cytometer (BD Bioscience), and

subsequently analyzed using FlowJo (Tree Star, Ashland, OR, USA).

Histology and immunostaining
Transverse sections were made from 2 cm of paraffin-embedded small

intestine, at a thickness of 4mm using a microtome. Sections were directly

stained with hemotoxylin and eosin or processed for immunostaining with

anti-Ym1 antibodies. Briefly, sections were deparaffinized by immersing slides

in Histoclear (Brunel Microscopes Ltd) for 5 min, and then hydrated through

100%, 95% and 70% ethanol successively. Antigen retrieval was carried out by

immersing slides in citrate buffer (20 mM citric acid, 0.05% Tween 20 at pH

6.0) warmed to 95 1C for 20 min. Slides were washed twice in 1� PBS,

sections ringed with a wax pen and 200ml block (1� PBSþ 1% BSA, 2%

normal rabbit serum, 0.1% Triton X-100 and 0.05% Tween 20) added for

30 min at room temperature.

Rat a-mouse Ym1 (R&D Systems, Abingdon, UK) or rat IgG control

(Sigma) was added at 25mg ml�1 in block buffer and left overnight at 4 1C.

Slides were immersed in 3% H2O2 for 10 min at room temperature, and

washed in PBS. Rabbit a-rat IgG conjugated to biotin (Vector Laboratories,

Peterborough, UK) at 5mg ml�1 in PBS was added for 1 h at room

temperature, in the dark. Following 2 washes in PBS, several drops of ABC

Vectastain (Vector Laboratories) were added and slides left for 30 min at room

temperature, in the dark. Slides were washed twice in PBS and DAB peroxidase

solution (Vector Laboratories) was added for 5 min (until a brown stain had

developed).

With water washes in between, the following were added successively to

counterstain the sections: Harris hemotoxylin solution (Sigma), acid alcohol

(75% ethanol, 1% HCl) and Scott’s Tap Water Substitute (ddH2Oþ 42 mM

NaHCO3 and 167 mM MgSO4). Slides were dehydrated through 75, 95 and

100% ethanol and then Histoclear added for 5 min. Coverslips were added

with DPX mountant (Sigma) and slides were left to dry overnight, in the dark.

Pictures were taken using a Leica DFC290 compound microscope and Leica

Application Suite software (Leica Microsystems, Milton Keynes, UK).

Gut homogenate and ELISAs
Approximately 1 cm section of small intestine was homogenized in 500ml 1�
lysis buffer (Cell Signaling Technology Inc, Hitchin, UK) plus 5ml PMSF

(Sigma) using a TissueLyser (Qiagen, Manchester, UK). Samples were

centrifuged at 12 000 g for 10 min to remove debris and supernatants added

to ELISAs to measure RELM-a content, using the antibody pair clone 226033

and biotinylated goat anti-mouse RELM-a (both R&D Systems).

RT-PCR
Approximately 0.5 cm of the uppermost part of the duodenum was placed into

1 ml of TRIzol (Invitrogen, Paisley, UK) and extracted according to the

manufacturer’s protocol; 15ml RNA was treated with DNAse (DNAFree kit,

Ambion, Paisley, UK), concentrations were determined using a Nanodrop 1000

(Thermo Scientific, Hemel Hempstead, UK) and samples reverse-transcribed

using 1–2mg of RNA with M-MLV reverse transcriptase (Promega). A PCR

block (Peltier Thermal Cycler, MJ Research) was used for the transcription

reaction at 37 1C for 60 min. Gene transcript levels were measured by real-time

PCR on a Roche Lightcycler 480 II, in 10ml total volume made up of 4ml

cDNA, 5ml SYBR Green (Roche), 0.3ml of each primer (10mM) and 0.4ml

DEPC treated water (Ambion) using standard conditions for 60 cycles. Target

gene expression levels were normalized against the housekeeping gene

GAPDH.

The forward and reverse primers used, and resultant amplicons, were as

follows: Arginase-1, CAGAAGAATGGAAGAGTCAG and CAGATATGCAGG-

GAGTCACC (249 bp); GAPDH, ATGACATCAAGAAGGTGGTG and CATAC-

CAGGAAATGAGCTTG (112 bp); RELM-a, TATGAACAGATGGGCCTCCT

and GGCAGTTGCAAGTATCTCCAC (107 bp); RELM-b, GGAAGCTCT-

CAGTCGTCAAGA and GCACATCCAGTGACAACCAT (105 bp).

Antibodies
Whole blood was clotted overnight at 4 1C and the fluid phase centrifuged to

remove remaining RBC. Serum was subsequently added in serial dilutions to

ELISA plates coated with either 1mg ml�1 HES, goat a-mouse Ig (Southern

Biotech, Cambridge, UK) at 1mg ml�1 or anti-IgE (clone R35-72, BD

Biosciences) at 1.5mg ml�1 in carbonate buffer. Antibody binding was detected
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using HRP-conjugated goat anti-mouse IgG1 or IgE (both Southern Biotech)

and ABTS Peroxidase Substrate (KPL, Wembley, UK), and read at 405 nm.

Immunoprecipitations with biotin-labeled HES were performed with sera as

described previously.51

Statistical analysis
All statistical analyses were performed using Prism 5 (Graphpad Software Inc,

La Jolla, CA, USA). For comparisons of two groups Student’s t-test was used.

When three or more groups were analyzed then a one-way ANOVA was used

with a Tukey’s multiple comparison test. P-values of o0.05 were considered to

be significant.
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