

Edinburgh Research Explorer

Kripke Semantics for a Logical Framework

Citation for published version:
Simpson, A 1993, 'Kripke Semantics for a Logical Framework'. in Workshop on Types for Proofs and
Programs.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Other version

Published In:
Workshop on Types for Proofs and Programs

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28975752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/kripke-semantics-for-a-logical-framework(98b1a1ca-9f70-4941-adfb-8e41830eef22).html

Kripke Semantics for a Logical FrameworkAlex K. Simpson�Department of Computer Science, University of Edinburgh,JCMB, The King's Buildings, Edinburgh, EH9 3JZ.Alex.Simpson@dcs.ed.ac.ukAbstractWe present a semantics (using Kripke lambda models) for a logical framework(minimal implicational predicate logic with quanti�cation over all higher types).We apply the semantics to obtain straightforward adequacy proofs for encodings oflogics in the framework.1 IntroductionThere has been much recent interest in the development and use of logical frameworks.A logical framework is a formal system within which many di�erent logics can be easilyrepresented. It is hoped that such frameworks will facilitate the rapid development ofproof assistants for the wide variety of di�erent logics used in computer science and other�elds. In this paper we give a semantic analysis (using Kripke lambda models) of the useof minimal implicational predicate logic (with quanti�cation over all higher types) as alogical framework. We choose this framework because it is relatively straightforward togive it a useful semantics.The use of such a logic as a framework is not new. Similar logics have been usedfor this purpose by Paulson [17] and Felty and Miller [5]. Also, the earlier EdinburghLogical Framework (LF) of Harper, Honsell and Plotkin [9], although a dependently-typed lambda-calculus, is closely related to minimal implicational predicate logic by theCurry-Howard correspondence between propositions and types.There are two main ingredients to the encoding of a logic in a framework: the rep-resentation of syntax and the representation of logical consequence. In our framework,syntax is encoded by terms of the simply-typed lambda calculus. The encoding of syntaxin such a way is, in general, straightforward and of little theoretical interest. We shalltherefore simplify matters by giving as few details as possible and abusing notation as�Supported by SERC grant no. 90311820. 1

much as possible. One might prefer to assume that the syntax of the logic being encodedis already given in the typed lambda calculus (as advocated by Martin-L�of [16], Pfenningand Elliot [18] and others).The consequence relation of a logic is represented through an axiomatization of itsproperties in the framework. The desired connection is one of the following form:�1; : : : ; �n `L � i� A; true(��1); : : : ; true(��n) `F true(��);where `L is the consequence relation of the encoded logic, `F is the consequence relationof the framework, A is the axiomatization, true is a predicate in the framework and (�)�is the mapping from formulae in the encoded logic to their representing terms in theframework. An axiomatization satisfying the above equivalence is said to be adequate.To encode a logic in a framework one must provide an axiomatization and prove itsadequacy. The left-to-right implication of adequacy (which we call fullness) is usuallyquite easy to prove. One takes some proof system for the encoded logic and showsthat each proof can be mimicked by one in the framework. The right-to-left implication(which we call faithfulness) is trickier. To show it proof-theoretically one must showthat any derivation in the framework is (essentially) the representation of a derivation insome proof system for the encoded logic. This is usually done by an analysis of normalforms for derivations in the framework, which can be quite involved (see, e.g., Harper etal [9] and Paulson [17]).The goal of this paper is to show how faithfulness can be easily established semantic-ally. Intuitively, faithfulness should not be a di�cult property to demonstrate. Theencoding of logical consequence amounts to a meta-axiomatization of its properties.Faithfulness should follow from the \truth" of the meta-axioms. However, it is notalways clear how to read a meta-axiom. For example, the meta-axiom:8� :o: 8 :o: (true(�) � true()) � true(�))(here o is the type of sentences of the encoded logic,) is implication in the encodedlogic and � is implication in the framework) could be understood as expressing that the\Deduction Theorem" holds for the encoded logic; alternatively it might be interpreted\classically" as: 8� :o: 8 :o: (true(�)^ :true())_ true(�)):In order to understand such statements unambiguously, we need a model of the frame-work to interpret them in.In this paper we provide a notion of model for the framework (using the Kripkelambda models of Mitchell and Moggi [15]). Faithfulness is then proved by constructing2

particular models of an encoding within which the truth (or soundness) of the meta-axiomatization can be veri�ed.A by-product of this approach to proving faithfulness is that the models we con-struct give an interpretation to the meta-logic of the framework. We shall consider twodi�erent sorts of model: term models constructed (essentially) from the syntax of theencoded logic, and \semantic" models built out of models of the encoded logic. Bothkinds of model enable formulae of the framework to be understood as expressing meta-propositions about the encoded logic. Although we do not systematically consider thedi�erent meta-interpretations induced by di�erent models, it is important to note thatthe model theory allows a meta-formula to be given a formal meaning substantiating itsinformal reading.The structure of the paper is as follows. In Section 2 we present the framework weuse. Then in Section 3 we give some example encodings of logics in the framework. Thesemantics of the framework is given in section 4. This is used in Section 5 to prove thefaithfulness of the encodings presented in Section 3. In Section 6 we begin to build ageneral theory relating properties of encodings (such as faithfulness) with their semanticcounterparts. Finally, in section 7 we conclude with a discussion of related work andpossible directions for future research.2 The frameworkThe framework we use is minimal implicational predicate logic with universal quanti�ca-tion over all higher types. It is very similar to the logic programming language consideredby Miller in [13]. It is also closely related to the frameworks considered by Paulson [17]and Felty and Miller [5] (the main di�erences are to do with the treatment of predicatesoutwith the type system and, in the case of Paulson's work, our restriction to predicativequanti�cation).We use A, B and C to range over (simple) types, M and N to range over terms (ofthe simply-typed �-calculus), and � and 	 to range over formulae (lower case Greekletters will be reserved for formulae of the encoded logics).We assume given four countably in�nite, disjoint sets: a set of type constants, a setof predicate symbols, a set of term constants and a set of variables. We use P; : : : to rangeover the predicate symbols, c; : : : to range over the term constants and x; : : : to rangeover the variables.A theory is generated by a presentation which is a quadruple, (T ;P ;�;A), whereeach of T , P , � and A are sets as speci�ed below. Mostly (but not exclusively) weconsider �nite presentations, i.e. those in which all four sets are �nite.T is a subset of the set of type constants. Types are generated from this set by the3

grammar: A ::= � j A! Bwhere � ranges over elements of T . As usual, when brackets are omitted, \!" associatesto the right. (We shall also adopt this convention with implication connectives, both inthe framework and in the encoded logics.) P is a set of predicate declarations of the formP : hA1; : : : ; Ani (where n is possibly zero) such that each predicate symbol, P , appearsonly once in the set. � is a set of constant declarations of the form c :A such that eachterm constant, c, appears only once in the set. The requirements on A are given below.Henceforth everything will be parameterized over T and P and these sets will usuallybe left implicit. Thus we often refer to the presentation as (�;A).A context, �, is a �nite set of variable declarations of the form x :A such that eachvariable, x, appears only once in the set. The abstract syntax of terms and formulae isgiven by the following grammar.M ::= c j x j �x :A:M jM(N)� ::= P (M1; : : : ;Mn) j � � 	 j 8x :A: �We write N [M=x] and �[M=x] for the substitution of M for all free occurrences of x inN and � respectively. Lambda-terms and quanti�ed formulae are considered identi�edup to �-equivalence.The term calculus is just the simply-typed lambda calculus (for which a good refer-ence is [14]). We write � �� M :A to mean thatM is term over � with type A in context�. We shall only be concerned with ��-equality, =�� , between terms. We note (but shallnot use) that equality between terms is decidable. A term, M , such that � �� M :A issaid to be in long-�� normal form (with respect to � and �) if it has the form:�x1 :A1: : : :�xn :An: h(M1) : : :(Mm)where: n;m � 0; h is either a variable or a constant; �; x1 : A1; : : : ; xn : An ��h(M1) : : :(Mm) : � for some type constant �; and each Mi (1 � i � m) is in long-�� normal form with respect to �; x1 :A1; : : : ; xn :An and �. Clearly any M in long-��normal form with respect to � and � is also in long-�� normal form with respect to�0 � � and �0 � �. The crucial property of long-�� normal forms is the following (see[12]): if � �� M :A then there is a unique term, ��(M), in long-�� normal form (withrespect to � and �) such that M =�� ��(M).In Figure 1 we give a formal system for deriving judgements of the form � �� � prop.When � �� � prop is derivable we say that � is well-formed in � and �. When � isthe empty set it is omitted from such statements. � will be omitted when it can beunderstood from the context. 4

� �� M1 :A1 : : : � �� Mn :An P :hA1; : : : ; Ani 2 P� �� P (M1; : : : ;Mn) prop� �� � prop � �� 	 prop �; x :A �� � prop� �� � � 	 prop � �� 8x :A: � propFigure 1: Well-formedness rules for formulae.Ax � 2 A Ass � 2 H�;H `(�;A) � �;H `(�;A) �Sub �;H `(�;A) �[M=x] M =�� N � �� �[N=x] prop�;H `(�;A) �[N=x]� I �;H;� `(�;A) 	 � E �;H `(�;A) � � 	 �;H `(�;A) ��;H `(�;A) � � 	 �;H `(�;A) 	8I �; x :A;H `(�;A) � 8E �;H `(�;A) 8x :A: � � �� M :A�;H `(�;A) 8x :A: � �;H `(�;A) �[M=x]Restriction on 8I: x does not occur free in H.Figure 2: Rules for meta-logical consequence.
5

The fourth component of the presentation, A, is a set of formulae, the axioms, suchthat each formula in A is well-formed in �.Logical consequence for (�;A): �;H `(�;A) �relates �, H and � where H is a set of formulae, the hypotheses, and each formula inH [f�g is well-formed in � and �. This relation is given by the formal system ofFigure 2.In the sequel we shall require the following elementary derived result about con-sequence.Lemma 2.1 (Weakening) If �;H `(�;A) � and all formulae in H0 are well-formed in� [�0 then �;�0;H;H0 `(�;A) �.The easy proof, by induction on the structure of derivations, is omitted.3 Encoding logics in the frameworkIn this section we give some example encodings illustrating the use of the framework.These encodings will later serve as examples for demonstrating our semantic approach toproving adequacy. Many other examples (in the context of LF) which we could equallywell have chosen are detailed in [3].The �rst example is a very simple encoding of the implicational fragment of minimalpropositional logic. We use �, , : : : to range over the formulae of the language, whichare given by the grammar: � ::= ai j �) where faig is a countable set of propositional constants indexed by natural numbers i.The consequence relation of the logic, `m, is just the restriction of intuitionistic con-sequence to the fragment. The standard Hilbert-style axiomatization of the consequencerelation is well known (see, e.g., Hindley and Seldin [11, p. 193]).The presentation encoding minimal implicational logic is (Tm;Pm;�m;Am) of Fig-ure 3. There are two type constants: a type of natural numbers, N , and a type offormulae, o. It is easy to show that the long-�� normal forms (in the empty context) ofN are just the numerals (terms of the form sn(0)). The constructor a : N ! o producesa new propositional constant ai for every numeral i. It is again easy to show that thelong-�� normal forms of type o are in one-to-one correspondence with the formulae ofthe logic. We do not formalize this correspondence as it is completely routine. Further6

Tm = fN; ogPm = ftrue :hoig�m = f0 : N; s : N ! N; a : N ! o;): o! o! ogAm = f8p :o: 8q :o: true(p) q) p);8p :o: 8q :o: 8r :o: true((p) q) r)) (p) q)) p) r);8p :o: 8q :o: true(p) q) � true(p) � true(q)gFigure 3: Presentation of propositional minimal implicational logic.TT = f�; ogPT = ftrue :hoig�T = f): o! o! o; : : o! o; 8 : (�! o)! o; = : �! �! o;P a11 : a1 timesz }| {�! : : : �! o; : : : ; P ahh : ah timesz }| {�! : : : � ! o;fa011 : a01 timesz }| {�! : : : �! �; : : : ; fa0kk : a0k timesz }| {�! : : : � ! �gAT = f8p :o: 8q :o: (true(p) � true(q)) � true(p) q);8p :o: 8q :o: true(p) q) � (true(p) � true(q));8p :o: 8q :o: true(p) � true(:p) � true(q);8p :o: 8q :o: (true(p) � true(q)) � (true(:p) � true(q)) � true(q);8p : �! o: (8x : �: true(p(x))) � true(8x: p(x));8p : �! o: true(8x: p(x))� (8x : �: true(p(x)));8x : �: true(x = x);8p : �! o: 8x : �: 8y : �: true(x = y) � true(p(x))� true(p(y));true(T1); : : : ; true(Tl)gFigure 4: Presentation of an arbitrary classical �rst-order theory.7

we take the liberty (for the sake of notational convenience) of identifying long-�� normalforms of type o with their corresponding formulae.We now turn to the axiomatization of consequence given by Am. Its correctness issummed up by:Proposition 3.1 (Adequacy for minimal logic) The following are equivalent:1. �1; : : : ; �n `m �.2. true(�1); : : : ; true(�n) `(�m;Am) true(�).We call the property that statement 1 implies statement 2 fullness and its conversefaithfulness. The fullness of the encoding is rather straightforward to establish. Theaxioms in Am follow closely the standard Hilbert-style axiomatization of minimal logic.The �rst two of our axioms give the usual axiom schemas for minimal logic, and thelast of our axioms corresponds to the modus ponens rule. Accordingly, it is easy to showthat any derivation of � from �1, : : :, �n in the Hilbert system can be mimicked by aderivation of true(�1); : : : ; true(�n) `(�m;Am) true(�) in the framework. The details areentirely routine. Thus the encoding is indeed full.The faithfulness of the encoding could also be established by proof-theoretical means.To do so would require a normal-form result for the framework (see the discussion inSection 1). However, it is intuitively obvious that the encoding is faithful. All the meta-axioms in the presentation are true with respect to their evident interpretation. Toformalize such an argument we must build a model of the whole framework extendingthe evident interpretation to arbitrary types. We shall give a rigorous proof along theselines in Section 5.Our second example is an arbitrary �nitely axiomatized theory in classical �rst-orderlogic. Suppose we have a �nite �rst-order signature consisting of predicate symbolsfP a11 ; : : : ; P ahh g (where ai is the arity of Pi) and function symbols ffa011 ; : : : ; fa0kk g. Wenow use �, , : : : to range over formulae in the resulting �rst-order language. (Forsimplicity, we consider just the connectives for negation and implication and the universalquanti�er.) Let T = fT1; : : : ; Tlg be a �nite set of sentences in this language. We considerthe consequence relation, `T , between �rst-order formulae de�ned by �1; : : : ; �n `T �if and only if there is a natural deduction derivation (in Prawitz' system for classicalnatural deduction [19]) of � from the axioms in T in which all open assumptions arecontained in the set f�1; : : : ; �ng. This is the so-called \truth" consequence relationof �rst-order logic (see Avron [2]). An alternative, semantic, characterization of theconsequence relation is that �1; : : : ; �n `T � holds if and only if, for all �rst-order modelsM of T and all environments � mapping variables to elements of the domain of M, if8

M j=� �1 and : : : and M j=� �n then M j=� � (the reader is referred to [23] for thede�nition of classical satisfaction). We shall use this characterization later.The encoding of the �rst-order theory is given by the presentation (TT ;PT ;�T ;AT)in Figure 4. Given a �nite set of �rst-order variables, X , we write X : � for the contextfx : � j x 2 Xg. The set of �rst-order terms with all variables in X is in one-to-onecorrespondence with the set of framework terms of type � in long-�� normal form withrespect to X : �. Similarly, the set of �rst-order formulae with all free variables in X is inone-to-one correspondence with the set of long-�� normal forms of type o with respect toX : �. Again, these correspondences are straightforward to establish, so we omit detailsand henceforth identify framework terms in long-�� form with their associated �rst-orderterms and formulae. For example, we write 8x: � for the framework term 8(�x : �: �).Such conventions are used freely in the axiomatization of consequence.Proposition 3.2 (Adequacy for �rst-order logic) Let X be a non-empty �nite setof variables containing all free variables in �1; : : : ; �n; �. Then the following are equival-ent:1. �1; : : : ; �n `T �.2. X : �; true(�1); : : : ; true(�n) `(�T ;AT) true(�).Once again, fullness is easy to establish. The axiomatization is designed to easily mimicthe standard natural deduction rules for �rst-order classical logic. The only interestingpoint is the requirement that X be non-empty even when �1; : : : ; �n; � are closed. Thereason is that the assumption that the type � is non-empty is not built into the framework,whereas the assumption that the domain of quanti�cation is non-empty is (rightly orwrongly) built into �rst-order logic. (However, if the �rst-order signature contains aconstant then the assumption that X is non-empty is no longer required.) A detailedproof of fullness is given by Harper et al [9] for a closely related encoding in the context ofLF. They also prove the faithfulness of their encoding using a normal-form result for LF.Again, we shall show in Section 5 that a straightforward semantic proof of faithfulnessis possible.For our last example, we present an an encoding of the minimal normal modal logicK. We now use �, , : : : to range over formulae given by the grammar:� ::= ai j �) j :� j 2�We consider the \truth" consequence relation, `K, for the logic (again see Avron [2]).A simple semantic characterization of the consequence relation can be given in terms ofKripke models (W;R; j=) where: W is a set (of \worlds"); R is a binary relation on W(the \visibility" relation); and j= is a binary (\satisfaction") relation between worlds and9

TK = fN; o;WgPK = fR :hW;W i; sat :hW; oig�K = f0 : N; s : N ! N; a : N ! o;) : o! o! o; : : o! o; 2 : o! ogAK = f8x :W: 8p :o: 8q :o: (sat(x; p)� sat(x; q))� sat(x; p) q);8x :W: 8p :o: 8q :o: sat(x; p) q) � (sat(x; p)� sat(x; q));8x :W: 8p :o: 8q :o: sat(x; p)� sat(x;:p)� sat(x; q);8x :W: 8p :o: 8q :o: (sat(x; p)� sat(x; q))� (sat(x;:p)� sat(x; q))� sat(x; q);8x :W: 8p :o: (8y :W: R(x; y) � sat(y; p)) � sat(x;2p);8x :W: 8p :o: sat(x;2p)� 8y :W: R(x; y) � sat(y; p)gFigure 5: Presentation of the modal logic K.formulae satisfying well-known inductive properties (see [4]). The consequence relationis de�ned by: �1; : : : ; �n `K � if and only if, for all models (W;R; j=), for all w 2 W , ifw j= �1 and : : : and w j= �n then w j= �.The encoding is given by the presentation (TK;PK ;�K;AK) of Figure 5. As withminimal logic, we have a type N of natural numbers (to generate propositional con-stants) and a type o of formulae. Again, the formulae of modal logic are in one-to-onecorrespondence with the terms of type o in long-�� form with respect to the emptycontext and we identify such terms with their associated formulae. However, this timewe have another type, W , intended to stand for the set of worlds in a model. SimilarlyR and sat are intended to represent the visibility and satisfaction relations respectively.So the axiomatization of consequence is most easily understood semantically. However,it can also be seen as representing (a variant of) the Fitch-style natural deduction proofsystem for K, see Fitting's book [6, Chapter 4, Sections 12, 15 and 16]. It is also closelyrelated to Fitting's pre�xed tableau systems [6, Chapter 8]. It is possible to give otherpresentations of K based on, for example, its standard Hilbert-style proof system (seeAvron's encoding of S4 in LF [3]). However, we believe that our semantic-based encodingis rather natural. It will also serve to illustrate nicely the semantic approach to provingfaithfulness.Proposition 3.3 (Adequacy for K) The following are equivalent:� �1; : : : ; �n ` �.� x :W ; sat(x; �1); : : : ; sat(x; �n) `(�K ;AK) sat(x; �).10

Once again, fullness is routine. Although the encoding is not based on any proof system,it is very easy to show that the standard Hilbert system for K can be mimicked withinit. Other than the routine veri�cation of the axioms of classical propositional logic, itsu�ces to show that the system derives the characteristic axiom of K and is closed undernecessitation (restricted to theorems). For the characteristic axiom we must show that,for any �, : x :W ; `(�K;AK) sat(x;2(�))) 2�) 2):This is a straightforward, but worthwhile, exercise. For necessitation, we must showthat if x :W ; `(�K;AK) sat(x; �) then x :W ; `(�K;AK) sat(x;2�). But this is an easyconsequence of the \2-introduction" axiom.Again, the faithfulness of the encoding is more interesting. One possible way toobtain a syntactic proof is as follows. First, de�ne a natural deduction proof system forK based on the proof system adumbrated in the encoding. Then, using a normal formresult for the framework, show that every framework derivation does indeed correspondto a derivation in the new system. Lastly, justify the correctness of the new proof systemby proving it sound with respect to the semantics of K.1 Fortunately, the middle groundcan be cut out completely. Rather than providing a new proof system, it is possibleto justify the soundness of the framework encoding directly. Full details are given inSection 5.4 SemanticsAs the meta-logic is intuitionistic with quanti�cation over all higher types, we seek asemantics in terms of Kripke models in which all typed lambda terms can be interpretedat each world. The Kripke lambda models of Mitchell and Moggi [15] are thus a naturalchoice. This section is rather technical. For a more discursive presentation of Kripkelambda models the reader is urged to consult [15]. However, although we follow theirpaper quite closely, the reader is advised that some of our notation and terminologydi�ers from that of Mitchell and Moggi.An (extensional, Kripke, T -P-)prestructure is a sextuple:(W;�; f[[A]]wg; f[[P]]wg; f�ABw g; fiAww0g)where:� W is a set of worlds partially ordered by �.1Avron's proof of faithfulness for his twin judgement encodings of modal logic in LF proceeded inthis way [1]. 11

� f[[A]]wg is a family of sets, [[A]]w, indexed by types, A, and worlds, w.� f[[P]]wg is a family of relations, [[P]]w � [[A1]]w � : : :� [[An]]w, indexed by predicatesymbols, P , with declarations, P :hA1; : : : ; Ani, in P and worlds, w.� f�ABw g is a family of functions, �ABw : [[A! B]]w � [[A]]w �! [[B]]w, indexed by pairsof types, A, B, and worlds, w.� fiAww0g is a family of functions, iAww0 : [[A]]w ! [[A]]w0, indexed by types, A, and pairsof worlds, w � w0.subject to the conditions given below. In these (and henceforth) we adopt the followingnotational conventions. When f 2 [[A! B]]w and a 2 [[A]]w, we write f(a) for �ABw (f; a).When aw 2 [[A]]w and w � w0, we write aw0 for iAww0(aw).The conditions are:identity: For all worlds w, iAww is the identity.composition: For all w � w0 � w00, iAw0w00 � iAww0 = iAww00 .naturality: For all w � w0, iBww0 � �ABw = �ABw0 � (iA!Bww0 � iAww0).extensionality: If fw; gw 2 [[A ! B]]w and, for all w0 � w, for all a 2 [[A]]w0, fw0(a) =gw0(a) then fw = gw.persistency: If [[P]]w(a1w; : : : ; anw) then, for all w0 � w, [[P]]w0(a1w0; : : : ; anw0).Thus a prestructure is an \extensional Kripke applicative structure" in the terminologyof [15], together with an extra parameter, f[[P]]wg, used for interpreting the predicatesof the logic.A partial element, p, of type A in a prestructure is given by an upper-closed subsetdom(p) �W , its domain, and a family of elements, fpwg, indexed by worlds w 2 dom(p)such that for all w0 � w 2 dom(p), pw 2 [[A]]w and iAww0(pw) = pw0 . Given pw 2 [[A]]w, wewrite p for the induced partial element of type A with domain fw0 j w � w0g given by theelements pw0 2 [[A]]w0. A global element is a partial element, p, for which dom(p) = W .A �-structure is a 9-tuple:(W;�; f[[A]]wg; f[[P]]wg; f[[c]]wg; f�A1A2w g; fiAww0g; fKABw g; fSABCw g)given by a prestructure together with f[[c]]wg, fKABw g and fSABCw g where:� f[[c]]wg is a family of global elements, [[c]], of type A indexed by constants, c, withdeclarations, c :A, in �. 12

� KAB is a global element of type A ! B ! A such that, for all worlds w, for alla 2 [[A]]w, for all b 2 [[B]]w, KABw (a)(b) = a.� SABC is a global element of type (A! B ! C)! (A! B)! A! C such that,for all worlds w, for all f 2 [[A! B ! C]]w , for all g 2 [[A! B]]w, for all a 2 [[A]]w,SABCw (f)(g)(a) = f(a)(g(a)).Henceforth we refer to a �-structure as (W;�) leaving the other components implicit.An environment, �, is a function from variables to partial elements. We say that� interprets � at w if, for all x : A 2 �, �(x) is a partial element of type A withw 2 dom(�(x)). Clearly if � interprets � at w and w0 � w then � interprets � at w0 too.Also any environment interprets the empty context at any world. Given an environment� and an element aw 2 [[A]]w we write �[x := a] for the environment that agrees with� on variables other than x and which assigns the induced partial element a to x. If �interprets � at w and aw 2 [[A]]w then clearly �[x := a] interprets �; x :A at w.IfM has type A in �, and � interprets � at w, then the interpretation, [[M]]�w 2 [[A]]w,of M by � at w is de�ned inductively on the structure of M by:[[c]]�w = [[c]]w[[x]]�w = �(x)w[[�x :A:M]]�w = the unique fw 2 [[A! B]]w (where A! B is the type of�x :A:M in �) such that, for all w0 � w, for all aw0 2 [[A]]w0 ,fw0(aw0) = [[M]]�[x:=a]w0[[M(N)]]�w = [[M]]�w([[N]]�w)As in [15], the existence of the fw required in the �x : A: M clause is given by the Sand K combinators, and its uniqueness is guaranteed by extensionality. Clearly if M iswell-typed in the empty context then the value of [[M]]�w is independent of �, so we justwrite [[M]]w.We now give some lemmas concerning the interpretation of terms in �-structures.Lemma 4.1 If � �� M :A, � interprets � at w and w � w0, then iAww0([[M]]�w) = [[M]]�w0.Lemma 4.2 If �; x :A �� M :B, � �� N :A and � interprets � at w, then [[M [N=x]]]�w =[[M]]�[x:=[[N]]�]w .Lemma 4.3 If � �� M : A, � �� N : A, M =�� N , and � interprets � at w, then[[M]]�w = [[N]]�w. 13

The �rst two lemmas are proved by straightforward inductions on the structure of M .The third is proved by an induction on derivations (in the usual formal system for ��-equality) of M =�� N , using Lemma 4.2 in the veri�cation �-equality.If � is well-formed in �, and � interprets � at w, then the \forcing" relation w j=� �is de�ned inductively on the structure of � by:w j=� P (M1; : : : ;Mn) i� [[P]]w([[M1]]�w; : : : ; [[Mn]]�w)w j=� � � 	 i� for all w0 � w, if w0 j=� � then w0 j=� 	w j=� 8x :A: � i� for all w0 � w, for all aw0 2 [[A]]w0, w0 j=�[x:=a] �If H is a set of formulae, each well-formed in �, and � interprets � at w then we writew j=� H to mean that w j=� �, for all � 2 H. If � is well-formed in the empty contextthen whether w j=� � holds or not is independent of �, so we write w j= �. We write(W;�) j= � to mean, for all w 2 W , w j= �.The lemmas below give basic properties of the forcing relation.Lemma 4.4 If w j=� � and w � w0 then w0 j=� �.Lemma 4.5 If � �� M :A and � interprets � at w, then w j=� �[M=x] if and only ifw j=�[x:=[[M]]�] �.Both these lemmas are proved by induction on the structure of �. The base case of the�rst uses Lemma 4.1 together with the persistency property of the structure. The basecase of the second uses Lemma 4.2.A (�;A)-model is a �-structure, (W;�), such that, for all � 2 A, (W;�) j= �.Theorem 4.6 (Soundness and completeness) The two statements below are equi-valent.1. �;H `(�;A) �.2. For all (�;A)-models (W;�), for all w 2 W , for all � interpreting � at w, ifw j=� H then w j=� �.Soundness is proved by a straightforward induction on the derivation of �;H `(�;A) �.The veri�cation of the 8E rule uses Lemma 4.5. The veri�cation of the Sub rule usesLemmas 4.3 and 4.5. Completeness is proved by a term model construction similar tothat used in [15] but interpreting the logic as well. Rather than directly constructing theterm model required for completeness, we give instead a general term model constructionof which the desired model will be a special case. The general construction will also beused in Section 5 for the faithfulness proofs.14

The idea behind the term model construction is to build a �-structure out of thoseterms well-typed in a limited number of contexts. One extreme will be when only closedterms are allowed. Such a model will be used in Section 5. The other extreme arises whenterms typable in arbitrary contexts are allowed. In this case we obtain the model usedto prove completeness. In Section 5 we shall also have use for a model lying somewherebetween the two extremes. Some open terms will be allowed, but only those typable inspeci�c contexts.However, placing restrictions on the free variables allowed in terms raises the problemof how to obtain an extensional model. This problem already occurs with classical Henkinmodels of simply-typed lambda calculus. In general an equivalence relation must beplaced on terms to obtain the extensional collapse of the underlying (non-extensional)applicative structure [14, p. 421].To motivate the following de�nitions, consider the Henkin model obtained by theextensional collapse of the closed term applicative structure This is only guaranteed toexist if there are no term constants with second-order or higher types (again see [14,p. 421]). The reason is that the equivalence relation on terms is only guaranteed toagree with =�� on base types, so term constants of second-order or higher type mightnot respect the equivalence relation. However, if we allow free variables of base type(zero-order) then the equivalence relation agrees with =�� also on �rst-order types andit is possible to have term constants of second-order type. In general, if we have freevariables at type level n then =�� agrees with the extensional equivalence at level n+ 1and the extensional collapse works for signatures containing types of level n+2 or lower.However, rather than work with type orders (which do not distinguish between distinctbase types) everything can be stated with respect to speci�c types. We shall work withthree sets of types: a primitive set of \quanti�er" types classifying the variables thatmust be allowed to appear in terms (somewhere in the Kripke structure); a derivedset of \equality" types whose extensional equivalence will be =�� ; and a derived set of\context" types containing all the types allowed in the signature.For any type A, de�ne the set Args(A) of argument types of A by:Args(�) = ;Args(A! B) = fAg [Args(B):The set of quanti�er types can be any set of types closed under arguments, i.e., for anyquanti�er type A, the set Args(A) must contain only quanti�er types. We shall use Qto range over quanti�er types. The equality types are now generated by the grammar:E ::= � j Q! E:An easy induction on A shows that if Args(A) is contained in the set of quanti�er types15

then A is an equality type. It follows that every quanti�er type is an equality type. Thecontext types are generated by the grammar:K ::= � j E ! K:Clearly every equality type is a context type.Now suppose we have a presentation (T ;P ;�;A) such that, for all predicate declar-ations P : hA1; : : : ; Ani 2 P , the types A1, : : :, An are all equality types and, for allconstant declarations c :A 2 �, A is a context type. We shall construct a �-structurefrom the following ingredients. First, we require a partially ordered set (W;�). This willbe the partially ordered set of worlds underlying the eventual �-structure. Second, werequire a function Ctxt mapping W to contexts in which the type of every variable is acontext type, such that:1. w � w0 implies Ctxt(w) � Ctxt(w0), and2. for all quanti�er types Q, for all w 2W , there exists w0 � w such that Ctxt(w0) �Ctxt(w); x :Q for some x not occurring in Ctxt(w).De�ne ([A])w = fM j Ctxt(w) �� M :Ag:Third, we require, for every P : hA1; : : : ; Ani 2 P , a W -indexed family of relations([P])w � ([A1])w � : : :� ([An])w respecting =�� such that w � w0 implies ([P])w � ([P])w0(it is clear that condition 1 above implies ([Ai])w � ([Ai])w0).The elements of [[A]]w will be equivalence classes of ([A])w under an equivalence relation�Aw. This is de�ned inductively on the structure of A by:M ��w M 0 i� M =�� M 0M �A!Bw M 0 i� for all w0 � w, for all N;N 0 2 ([A])w0, N �Aw0 N 0 impliesM(N) �Bw0 M 0(N 0).Symmetry and transitivity are easily shown by induction on types. Reexivity requiresmore work. Essentially it follows from the \Basic Lemma" for admissible Kripke logicalrelations over Kripke applicative structures with acceptable meaning functions (cf. [14,Lemma 3.2.5, p. 418]); however, Kripke logical relations have not been treated in suchgenerality in the literature, so it is worthwhile giving the argument.First, note that �A is monotone: if M �Aw M 0 and w � w0 then M �Aw0 M 0 (by aneasy induction on the structure of A).Lemma 4.7 Suppose M;M 0 2 ([K])w (where K is a context type) then M =�� M 0implies M �Kw M 0. Further, if K is an equality type then M �Kw M 0 implies M =�� M 0.16

Proof. By induction on the structure of K. For base types the proposition is trivial.For E ! K 0 suppose that M =�� M 0. Take any w0 � w and N;N 0 2 ([E])w0 such thatN �Ew0 N 0. Then, by the induction hypothesis, N =�� N 0 and so M(N) =�� M 0(N 0).Thus, again by the induction hypothesis, M(N) �K0w0 (M 0)(N 0). This shows that indeedM �E!K0w M 0.If K is a non-atomic equality type then it has form Q! E. Suppose that M �Q!EwM 0. Let w0 � w be such that Ctxt(w0) � Ctxt(w); x :Q (as in requirement 2 above).Then, by the induction hypothesis, x �Qw0 x soM(x) �Ew0 M 0(x). Again by the inductionhypothesis, M(x) =�� M 0(x). So indeed M =�� M 0. 2Thus for equality types E,M �Ew M 0 if and only ifM =�� M 0, hence the reason for theirname.Lemma 4.8 If M �Aw M 0 and M 0 =�� M 00 2 ([A])w then M �Aw M 00.Proof. By induction on the structure of A. When A is atomic the proposition is trivial.If A is B ! C then suppose M �B!Cw M 0 and M 0 =�� M 00 2 ([B ! C])w. Take anyw0 � w and N;N 0 2 ([B])w0 such that N �Bw0 N 0. Then M(N) �Cw0 M 0(N 0). However,M 0(N 0) =�� M 00(N 0) 2 ([C])w0 . So, by the induction hypothesis, M(N) �Cw0 M 00(N 0).Thus indeed M �B!Cw M 00. 2Corollary 4.9 If M and M 0 both have type B in Ctxt(w); x : A and M [N=x] �BwM 0[N 0=x] then (�x :A:M)(N)�Bw (�x :A:M 0)(N 0).Proof. Apply Lemma 4.8 twice (using the symmetry of �Bw). 2The next lemma is essentially the \Basic Lemma" of logical relations applied to �Aw. Wejust outline the well-known argument, as all the interesting groundwork has been done.Lemma 4.10 If N1 �A1 N 01, : : :, Nk �Ak N 0k and Ctxt(w); x1 :A1; : : : ; xk :Ak �� M :Athen M [N1; : : : ; Nk=x1; : : : ; xk] �Aw M [N 01; : : : ; N 0k=x1; : : : ; xk].Proof. By induction on the structure of M . The case for a variable xi (1 � i � k)is trivial. For a variable in Ctxt(w) or a constant in � the proposition follows fromLemma 4.7 (as its type must be a context type). Applications follow easily from thede�nition of �B!Cw for function types. Abstractions also follow from this de�nitionusing the monotonicity of �A1 , : : :, �Ak and Corollary 4.9. 2The reexivity of �Aw is an immediate consequence of this lemma. We write [M]w forthe equivalence class ofM 2 ([A])w under �Aw . Note that it now follows from Lemma 4.8that, for M;M 0 2 ([A])w, M =�� M 0 implies M �Aw M 0.We de�ne the remaining components of the �-structure, (W;�), by:[[A]]w = ([A])w= �Aw17

[[P]]w([M1]w; : : : ; [Mn]w) i� ([P])w(M1; : : : ;Mn)[[c]]w = [c]w�ABw ([M]w; [N]w) = [M(N)]wiAww0([M]w) = [M]w0KABw = [�x :A: �y :B: x]wSABCw = [�x :A! B ! C: �y :A! B: �z :A: x(z)(y(z))]wProposition 4.11 (W;�) is indeed a �-structure.Proof. For P : hA1; : : : ; Ani, [[P]]w is well-de�ned because A1, : : : , An are all equalitytypes and so �Aiw is just =�� and ([P])w respects =�� . That the evaluation maps �ABware well-de�ned follows from the de�nition of �A!Bw . The coercions iAww0 are well-de�nedbecause of the monotonicity of �A. The other components are obviously well-de�ned.It remains to check the various conditions. Identity, composition and naturality areall immediate. Extensionality is a straightforward consequence of the de�nition of�A!Bw .Persistency follows from the monotonicity requirement on ([P])w. Lastly, KAB and SABCsatisfy the required equalities because �Aw contains the restriction of =�� to terms in([A])w. 2We conclude the presentation of the �-structure (W;�) with two basic propositionsrelating terms and their interpretations.Proposition 4.12 If N1 2 ([A1])w, : : : , Nk 2 ([Ak])w and x1 :A1; : : : ; xk :Ak �� M :Athen [[M]][x1:=[N1];:::;xk:=[Nk]]w = [M [N1; : : : ; Nk=x1; : : : ; xk]]w.Proof. A straightforward induction on the structure of M . 2Proposition 4.13 If N1 2 ([A1])w, : : : , Nk 2 ([Ak])w and � is well-formed in the contextx1 :A1; : : : ; xk :Ak then w j=[x1 :=[N1];:::;xk:=[Nk]] � if and only if w j= �[N1; : : : ; Nk=x1; : : : ; xk].Proof. Immediate from Proposition 4.12 and Lemma 4.5. 2We now prove of the completeness direction of Theorem 4.6. The result will notactually be required in the paper. However, the model we use for proving completenesswill be reused in Section 6. The model is one extreme (and simple) case of the termmodel construction in Section 4. Let the set of quanti�er types be the set of all types.Consider the partial order (W(�;A);�(�;A)) de�ned by:W(�;A) = f(�;H) j every formula in H is well-formed in �g(�;H) �(�;A) (�0;H0) i� � � �0 and H � H0:The function Ctxt fromW(�;A) to context is just the �rst projection. This clearly satis�esthe two conditions above. The interpretation of predicates is:([P])(�;H)(M1; : : : ;Mn) i� �;H `(�;A) P (M1; : : : ;Mn):18

This respects =�� because of the Sub rule, and is monotonic because of weakening(Lemma 2.1). We can now construct the �-structure (W(�;A);�(�;A)) as above. Forsimplicity we shall just write [M] for the equivalence class of a term M at (�;H). Notethat, as every type is an equality type, the equivalence relation is always =�� (restrictedto terms well-typed in the appropriate context).Given a context � we construct a canonical environment �� as follows. If, for sometype A, the declaration x : A is in � then ��(x) is the partial element with domainf(�0;H) j �0 � �g given by ��(x)(�0;H) = [x]. Otherwise, if there is no such A, then ��(x)is the trivial partial element with domain ;. Clearly, for all �0 � �, the environment ��interprets � at (�0;H).The crucial property of (W(�A);�(�;A)) is:Lemma 4.14 �;H `(�;A) � if and only if (�;H) j=�� �.Proof. By induction on the structure of �. The cases are:P (M1; : : : ;Mn): Immediate from the de�nitions of [[P]](�;H) and ([P])(�;H).� � 	: Suppose that �;H `(�;A) � � 	. Take any �0 � � and H0 � H such that(�0;H0) j=�� �. Then clearly (�0;H0) j=��0 �. So, by the induction hypothesis,�0;H0 `(�;A) �. Therefore �0;H0 `(�;A) 	. Then, again by the induction hypo-thesis, (�0;H0) j=��0 	, so (�0;H0) j=�� 	 (because all the free variables in 	 are in�). Thus we have shown that (�;H) j=�� � � 	 as required.Conversely, suppose (�;H) j=�� � � 	. Now �;H;� `(�;A) �, so, by the inductionhypothesis, (�;H [f�g) j=�� �. Then, by the assumption, (�;H [f�g) j=�� 	.Whence, by the induction hypothesis, �;H;� `(�;A) 	. Thus indeed �;H `(�;A)� � 	.8x :A: �: Suppose �;H `(�;A) 8x : A: �. Take any �0 � �, H0 � H and [M] 2[[A]](�0;H0). Then �0 �� M :A and �0;H0 `(�;A) 8x :A: �, so �0;H0 `(�;A) �[M=x].Now, by the induction hypothesis, (�0;H0) j=��0 �[M=x]. So, by Proposition 4.13,(�0;H0) j=��0 [x:=[M]] �. Now (�0;H0) j=��[x:=[M]] �, because all the free variables in� are in �0; x :A. We have therefore shown that (�;H) j=�� 8x :A: � as required.Conversely, suppose that (�;H) j=�� 8x :A: �. Now [x] 2 [[A]](�[fx:Ag;H). Therefore(� [fx :Ag;H) j=��[x:=[x]] �, and so (� [fx :Ag;H) j=��[fx:Ag � (by the de�nitionof ��[fx:Ag). So, by the induction hypothesis, �; x : A;H `(�;A) �. Thus indeed�;H `(�;A) 8x :A: �.2Corollary 4.15 (W(�;A);�(�;A)) is a (�;A)-model.19

Proof. Immediate. 2Completeness now follows easily. Suppose that statement 2 of Theorem 4.6 holds. Thenin particular (�;H) j=�(�;H) �. So, by Lemma 4.14, �;H `(�;A) � as required.5 Semantic proofs of faithfulnessThe semantics presented above provides the tool for proving the faithfulness propertiesdeferred from Section 3. The proofs all have a common avour. In each case we de�ne a�-structure (or family of �-structures) and show that it is indeed a model of the relevantencoding. The faithfulness of the encoding will then follow almost immediately from thede�nition of the model and the soundness direction of Theorem 4.6. A more uniformanalysis of the requirements on the model will be given in Section 6.We begin with the encoding, (Tm;Pm;�m;Am), of minimal implicational logic givenin Figure 3. De�neWm to be the set of all �nite sets of formulae of minimal implicationallogic. We use � to range over Wm. We shall de�ne a �m-structure over the discretepartial order (Wm;=). This will be a term model of the sort constructed in Section4. The set of quanti�er types is just the empty set (which is trivially closed underarguments). Clearly the only argument type to a predicate, o, is an equality type and itis easily checked that every type in �m is contained in the derived set of context types.The context function, Ctxtm, maps every element of Wm to the empty set. This clearlysatis�es the two required properties. Thus the set ([A])� is just the set of closed termsof type A. The only predicate, true, is interpreted by:([true])�(M) i� � `m ��(M)where we are making use of the equivalence between long-�� normal forms of type o andformulae. Again this satis�es the required properties: it respects =�� by de�nition, andmonotonicity is a vacuous requirement over the discrete partial order. These ingredientsare all we need to de�ne the �m-structure (Wm;=) as in Section 4.In Section 1 we claimed that we would build models of the framework out of the syntaxof the encoded logic. Although (Wm;=) is built from terms of the framework, the crucialproperty is that we have only used closed terms, so [[o]]� is the set of equivalence classes ofclosed terms of type o under =��. Therefore [[o]]� is in one-to-one correspondence withthe set of formulae of minimal implicational logic (by taking ��-normal forms as therepresentatives of their equivalence classes). This correspondence enables us to interpretframework predicates over type o as expressing (intuitionistic) properties of formulae ofminimal implicational logic. To make this explicit, and for notational convenience, wehenceforth identify [[o]]� with the set of formulae.20

Proposition 5.1 (Wm;=) is a (�m;Am)-model.Proof. We must show that (Wm;=) validates the three axioms in Am. Consider, forexample, the third axiom:8p :o: 8q :o: true(p) q) � true(p) � true(q)Suppose we have a world � and an environment � with �(p)� = �, �(q)� = , suchthat � j=� true(p) q) and � j=� true(p). Then, by Proposition 4.13, � j= true(�))and � j= true(�). So, by the de�nition of ([true])�, � `m �) and � `m �, whence,by modus ponens (for minimal logic), � `m . Thus � j= true() and so, again byProposition 4.13, � j=� true(q). It follows that (Wm;=) does indeed validate the thirdaxiom. The other two axioms are easier. 2Note how the proof follows the informal justi�cation of the correctness of the axioms inAm.It is now a simple step to prove the faithfulness direction of Proposition 3.1. Sup-pose that true(�1); : : : ; true(�n) `(�m;Am) true(�). Consider the world � = f�1; : : : ; �ngin Wm. Then clearly � j= true(�1) and : : : and � j= true(�n). So, by the sound-ness direction of Theorem 4.6, � j= true(�). But then, by the de�nition of ([true])�,�1; : : : ; �n `m � as required.It is interesting to investigate the interpretation of formulae of the framework inducedby the model (Wm;=). Because the partial order is discrete, the model validates anyinstance of Peirce's law, i.e., for any framework sentences � and 	,(Wm;=) j= ((� �) � �) � �;so meta-implication is given a classical interpretation. Therefore, the schema for Peirce'slaw could be added to Am without losing adequacy.A more interesting axiom that one might like to add to Am is:8p :o: 8q :o: (true(p) � true(q)) � true(p) q): (1)Intuitively, this expresses the true fact that the Deduction Theorem holds for `m. Adding(1) to the encoding would enable derivations in the natural deduction system for minimallogic to be mimicked easily in the framework. However, (Wm;=) does not validate (1).Consider the world ; and interpret p by a0 and q by a1. Then it is the case that; j= true(a0) � true(a1), because the meta-implication is interpreted classically and6`m a0, but it is not the case that ; j= true(a0) a1), because 6`m a0) a1. The problemis that, because of its classical implication, (Wm;=) does not interpret (1) as expressingthe Deduction Theorem (see the discussion in Section 1). In fact, the reading of (1)21

as expressing the Deduction Theorem for minimal logic is inconsistent with a classicalmeta-implication: if Peirce's law and (1) are added together to Am then the resultingencoding is not adequate (it is easy to derive true(((a0) a1)) a0)) a0)).However, if just (1) alone is added to Am then adequacy is retained. To show thiswe need a �m-structure in which meta-implication is interpreted intuitionistically. Themodi�cation required is very slight. We take the term model de�ned over (Wm;�)generated by the same (empty) set of quanti�er types, Ctxtm and ([true])� (it is easilychecked that the required properties hold). The proof of Proposition 5.1 applies mutatismutandis to (Wm;�) so this is indeed a (�m;Am)-model.Proposition 5.2 (Wm;�) j= 8p :o: 8q :o: (true(p) � true(q)) � true(p) q).Proof. Suppose we have a world � and an environment � with �(p)� = �, �(q)� = ,such that � j=� (true(p) � true(q)). Then, by Proposition 4.13, � j= true(�) � true().However � [f�g � � is a world such that � [f�g j= true(�). So � [f�g j= true().But then �; � `m (by the de�nition of ([true])�[f�g). So � `m �) , by theDeduction Theorem for `m. Therefore � j= true(�)). So, again by Proposition 4.13,� j=� true(p) q) as required. 2Note that once again the proof follows the intuitive explanation of the correctness of(1) using the Deduction Theorem. Further, the non-triviality of the partial order wasessential to the proof. The faithfulness of the encoding now follows by the same argumentas before.We now turn to the encoding, (TT ;PT ;�T ;AT), of a �rst-order theory T given inFigure 4. This time we have axiom (1) built into the encoding. However, this timeit is not inconsistent with a classical meta-implication, because the implication of theencoded logic is also classical. This fact enables a very simple proof of faithfulness basedon interpretations in the classical full type hierarchy.Let M = (D; fPAii g; ffaii g) be any �rst-order model of T . We shall construct a �Tmodel, (fwMg;=), over the trivial partial order. Thus essentially we shall be workingwith a standard Henkin model [14, x2.4]. None of the extra generality of Kripke lambdamodels will be required. However, we shall see later that the present construction hasits limitations.Types are interpreted by (as there is only one world we omit the subscript):[[�]] = D[[o]] = ftt; �g[[A! B]] = [[B]][[A]]where [[B]][[A]] is the full set-theoretic function space. The predicate is interpreted by:[[true]](b) i� b = tt:22

The constants are interpreted, following the semantics of �rst-order logic, by:[[)]](b1)(b2) = 8<: tt if b1 = � or b2 = tt� otherwise[[:]](b) = 8<: tt if b = �� if b = tt[[8]](f) = 8<: tt if, for all d 2 D, f(d) = tt� otherwise[[=]](d1)(d2) = 8<: tt if d1 = d2� otherwise[[P aii]](d1) : : :(dai) = 8<: tt if P aii (d1; : : : ; dai)� otherwise[[fa0ii]](d1) : : :(da0i) = f(d1; : : : ; da0i):The components �AB , KAB and SABC are given their standard interpretations in the fulltype hierarchy [14, p. 384]. (The coercions iAwMwM are of course trivial.)Let X be a �nite set of �rst-order variables. Let � be any function from X to D.If t is a �rst-order term with all free variables in X then we write t�M for its inducedinterpretation in M. Clearly � as de�ned is an environment interpreting X : � (at wM)in (fwMg;=). By the correspondence between framework terms and �rst-order terms, tis also a term of type � in long-�� form with respect to X : �.Lemma 5.3 t�M = [[t]]�.Proof. An easy induction on the structure of t. 2Now let � be any �rst-order formulae with all free variables in X . The satisfaction of the�rst-order formula � by M is related to the interpretation of the term � in (fwMg;=)by:Lemma 5.4 M j=� � if and only if [[�]]� = tt.Proof. A straightforward induction on the structure of � using Lemma 5.3 for atomicformulae. 2Proposition 5.5 (fwMg;=) is a (�T ;AT)-model.Proof. We must show that (fwMg;=) validates the 8+ l axioms in AT . For the axiomstrue(T1); : : : ; true(Tl), this is immediate by Lemma 5.4. We consider two interesting casesfrom the other eight axioms. 23

1. 8p :o: 8q :o: (true(p) � true(q)) � true(p) q).Suppose we an environment � with �(p) = b and �(q) = b0 such that wM j=�true(p) � true(q). Then either b = � or b0 = tt. So [[p) q]]� = tt. ThereforewM j=� true(p) q) as required.2. 8p : �! o: (8x : �: true(p(x))) � true(8x: p(x)).Suppose we have an environment � with �(p) = f such thatwM j=� 8x : �: true(p(x)).Then given any d 2 [[�]], we have that wM j=�[x:=d] true(p(x)), so f(d) = tt. Butthen [[8x p(x)]]� = [[8]](f) = tt. Thus indeed wM j=� true(8x: p(x)).2We can now establish the faithfulness direction of Proposition 3.2. Suppose then thatX : �; true(�1); : : : ; true(�n) `(�T ;AT) true(�). LetM be any model of T and let � be any�rst-order environment such thatM j=� �1 and : : : andM j=� �n. Then, by Lemma 5.4,wM j=� true(�1) and : : : and wM j=� true(�n) (in the model (fwMg;=)). So, by thesoundness direction of Theorem 4.6, wM j=� true(�). But then, again by Lemma 5.4,M j=� �. Therefore, by the semantic characterization of `T , we have established thatindeed �1; : : : ; �n `T �.Although we restricted attention to a �nite �rst-order signature and a �nite set ofaxioms, nothing in the argument has relied upon this fact. However, the given argumentonly extends to in�nite �rst-order signatures and axiom sets by taking the evident in�nitepresentation of the theory. Often, however, one has an in�nite axiomatization by way ofa �nite number of axiom schemas. In such cases one would like to encode the logic by a�nite presentation.A case in point is Peano Arithmetic. This has no �nite �rst-order axiomatizationbut it can be given a �nite presentation in the framework. The presentation, whichwe call (�A;AA), is just the presentation for the �rst-order theory (in the language ofarithmetic) given by Peano's six axioms, augmented with the framework axiom:8p : �! o: true(p(0)) (8x: p(x)) p(s(x)))) 8x: p(x)) (2)expressing the induction schema. A similar encoding of arithmetic (in the context of LF)was proved faithful by Harper et al [9]. If the �A-structures (fwMg;=) (constructed asabove where M is a model of Peano Arithmetic) were (�A;AA)-models then we shouldhave a simple semantic proof of faithfulness. Unfortunately, in general they are not! Tosee this, consider any model M of Peano Arithmetic such thatwM j= 8p : �! o: true(p(0)) (8x: p(x)) p(s(x)))) 8x: p(x)):Then, for all f 2 [[�! o]], [[true(p(0)) (8x: p(x)) p(s(x)))) 8x:p(x))]][p:=f] = tt. Butthis says that M satis�es the full second-order induction axiom, which means that M24

must be isomorphic to the standard model of arithmetic. Therefore the above argumentfor faithfulness does not go through.The example illustrates nicely the limitations of building a model of the frameworkout of a model of the encoded logic. In the �rst-order models the variable p ranges overall subsets of the domain, whereas the desired semantic reading of (2) is for p to rangeonly over the arithmetically de�nable subsets. It may be possible to patch the modelconstruction by considering only a subset of all functions at higher type, as in Henkin'sgeneral models of higher order logic [10]. However, we have no de�nite ideas about howto do this and the details would almost certainly be complicated.In order to give a proof of the faithfulness of the encoding, we resort instead to aterm model construction. This time the set of quanti�er types is necessarily non-empty,for otherwise the type of 8 would not be a context type. In fact we can take the set ofquanti�er types to be just f�g. The model will be constructed over of the partial order(WA;�A) where: WA = f(X;�) j X is a �nite set of variables and � is a�nite set of formulae with all free variables in Xg(X;�) �A (X 0;�0) i� X � X 0 and � � �0.The context function, CtxtA, maps (X; �) to X : �. This clearly satis�es the two proper-ties. demanded of it. The predicate, true, is interpreted by:([true])(X;�)(M) i� � `A ��(M)where M is a term of type o in the context X : �, so ��(M) is indeed (according to ourcorrespondence) a formula (with all free variables in X). We now de�ne the �A-structure(WA;�A) as is Section 4.Once more, the restriction to terms typed in contexts of the form X : � means thatthe sets [[�]](X;�) and [[o]](X;�) correspond to sets of terms and formulae of the encodedlogic. Again we take the notational liberty of working with [[�]](X;�) and [[o]](X;�) as ifthey were respectively the set of arithmetic terms with variables in X and the set ofarithmetic formula with free variables in X . Similarly, because �! o is an equality type,we can work with [[� ! o]](X;�) as if it were the set of terms of type � ! o in long-��normal form with respect to X : �.Proposition 5.6 (WA;�A) is a (�A;AA)-model.Proof. We must show that (WA;�A) validates all the axioms in A. For (1) this isshown as in the proof of Proposition 5.2. We consider just two of the other axioms:25

1. 8p : �! o: (8x : �: true(p(x))) � true(8x: p(x)).Suppose we have a world (X;�) and an environment � with �(p)(X;�) = �x :�: � such that (X;�) j=� 8x : �: true(p(x)). Then (X;�) j= 8x : �: true(�), byProposition 4.13. Let x be any variable not in X . Then x 2 [[�]](X[fxg;�) and so (X[fxg;�) j=[x:=x] true(�). Therefore (X [fxg;�) j= true(�), by Proposition 4.13.So � `A � where x does not appear free in �. But then, by the 8-introductionrule of natural deduction, � `A 8x: �. So (X;�) j= true(8x: �). Thus, again byProposition 4.13, (X;�) j=� true(8x: p(x)) as required.2. 8p : �! o: true(p(0)) (8x: p(x)) p(s(x)))) 8x: p(x)).Suppose we have a world (X;�) and an environment � with �(p)(X;�) = �x :�: �. Now, by the induction schema, � `A �[0=x]) (8x: �) �[s(x)=x]))8x: �. So (X;�) j= true(�[0=x]) (8x: �) �[s(x)=x])) 8x: �). But then, byProposition 4.13, (X;�) j=� true(p(0)) (8x: p(x)) p(s(x)))) 8x: p(x)) asrequired.2Note that this time the partial order is important. The formula set component of thepartial order is required to validate (1) (as in the proof of Proposition 5.2), and thevariable set component is required for \8-introduction".For faithfulness, suppose that X : �; true(�1); : : : ; true(�n) `A true(�) where all thefree variables in the formulae are contained in X . Consider the world (X;�) where� = f�1; : : : ; �ng. Let � be any environment mapping each x in X : � to (the partialelement generated by) x (at (X;�)). Then clearly (X;�) j=� true(�1) and : : : and(X;�) j=� true(�n). Therefore (X;�) j=� true(�). So indeed � `A �.Clearly the above argument applies equally well in the general case of an arbitrary�rst-order theory axiomatized by a �nite number of axiom schemas. So the generalproof of faithfulness we gave using models constructed out of �rst-order models can bebettered by using term models. What then is the point of considering the original moresemantic models? One reason for considering such models is to give, when possible, atruly semantic interpretation of the encoding. Further, such models are rather simplerthan the term models. A more pragmatic reason for considering them is a�orded byencodings, such as our presentation of the modal logic K in Figure 5, based directly onthe semantics of the encoded logic. In the case of this encoding it is not clear how a proofusing term models would proceed (as the encoding is not based on any proof system).However, it is quite straightforward to give a proof of faithfulness based on models ofthe framework built out of Kripke models of modal logic.Given a Kripke model, M = (W;R; j=), we construct once more a model (fwMg;=)26

in the full type hierarchy. The base types are interpreted by:[[N]] = N[[o]] = }(W)[[W]] = Wwhere N is the set of natural numbers. (Function types are again interpreted by the fullfunction space.) The predicates are interpreted by:[[R]](w; v) i� wRv[[sat]](w; V) i� w 2 VThe constants are interpreted by:[[0]] = 0[[s]](n) = n+ 1[[a]](n) = fw j w j= ang[[)]](V)(V 0) = (WnV)[V 0[[:]](V) = WnV[[2]](V) = fw j for all v 2 W , wRv implies v 2 V gThe de�nitions above follow the standard interpretation of modal formulae in the Booleanalgebra (}(W);�) induced by the Kripke model M.Lemma 5.7 w j= � if and only if w 2 [[�]].Proof. By a straightforward induction on the structure of �. 2Proposition 5.8 (fwMg;�) is a (�K;AK)-model.Proof. We must show that (fwMg;�) validates the six axioms. We just considerone case: 8x :W: 8p :o: (8y :W: R(x; y) � sat(y; p)) � sat(x;2p). Suppose we have anenvironment � with �(x) = w and �(p) = V such that wM j=� 8y :W: R(x; y) � sat(y; p).Then, for all v 2 W , wRv implies v 2 V . Thus w 2 [[2]](V). So wM j=� sat(x;2p) asrequired. 2To establish faithfulness, suppose that x :W ; sat(x; �1); : : : ; sat(x; �n) `(�K;AK) sat(x; �).Now take any Kripke model M = (W;R; j=) and any w 2 W such that w j= �1 and: : : and w j= �n. Then, by Lemma 5.7, wM j=[x:=w] sat(x; �1) and : : : and wM j=[x:=w]sat(x; �n) (in the model (fwMg;=)). So, by the soundness direction of Theorem 4.6,wM j=[x:=w] sat(x; �). Whence, again by Lemma 5.7, w j= �. This shows that indeed�1; : : : ; �n `K � (by the semantic characterization of `K).27

6 Towards a general theoryIn this section we consider more abstractly the theory underlying the above applications.We give a general de�nition of what it means to encode a logic in the framework. Thisenables us to give semantic characterizations of the properties of fullness and faithfulness.We then discuss how well the general theory applies to the examples we have considered.In order to give a general de�nition of encoding, we need �rst a general notion oflogic. We consider a logic abstractly as a consequence relation. A consequence relation,`, over a set L (of sentences) is a binary relation between �nite subsets of L and Lsatisfying the following three conditions.reexivity: � ` �.weakening: If �1; : : : ; �n ` � then �1; : : : ; �n; ` �.transitivity: If �1; : : : ; �n ` � and �1; : : : ; �n; � ` then �1; : : : ; �n ` .A consequence relation, `, determines a closure operator, Th : }(L)! }(L) by:Th(�) = f� j there exist �1; : : : ; �n 2 � such that �1; : : : ; �n ` �gwhere, in contrast to earlier, we use � to range over arbitrary subsets of L. Further, This continuous (it preserves directed unions). In fact consequence relations are in one-to-one correspondence with continuous closure operators. We call those sets in the imageof the closure operator theories and we write Theories for the set of all theories. Notethat L itself is a theory. (Thus we are not requiring all theories to be \consistent".)The de�nition of consequence relation (in the form of continuous closure operator)goes back to Tarski [22]. For discussion on the appropriateness of the notion of con-sequence relation as an abstract notion of logic see Scott [21], Avron [2] and Ryan andSadler [20].The de�nition of consequence relation using only �nite sets in the antecedent amountsto an assumption of compactness. Many model-theoretic logics have non-compact con-sequence relations. To treat these one must consider relations between }(L) and L. Thecorrect axioms require in�nitary forms of weakening and transitivity giving relations cor-responding to arbitrary closure operators on }(L). However, for our purposes compactconsequence relations su�ce, for it is impossible to adequately encode a non-compactconsequence relation in the framework (because of the compactness of the logic of theframework).An encoding of a consequence relation ` over L is given by a presentation (T ;P ;�;A)containing the following ingredients: 28

1. A distinguished type constant o in T together with a function:(�)� : L ! fM j�� M :o, M is in long-�� normal formgmapping formulae of the object-logic to their representing terms in the framework.2. A distinguished predicate, true, with declaration true :hoi 2 P .One might prefer to ask that (�)� be injective or even bijective, however such requirementsmake no di�erence to the theory. The encoding is said to be full if�1; : : : ; �n ` � implies true(��1); : : : ; true(��n) `(�;A) true(��);it is said to be faithful iftrue(��1); : : : ; true(��n) `(�;A) true(��) implies �1; : : : ; �n ` �:An encoding that is both full and faithful is said to be adequate.At this point it is worth considering how well our earlier examples �t into the generalscheme. Only the encoding of minimal implicational logic requires no change. Theencoding of the modal logic K has no true predicate. However, it is easy to massage theencoding into the scheme. One way of doing so is to include the true predicate togetherwith a new constant w0 :W in �K and extend the axioms with:8p :o: sat(w0; p)� true(p)8p :o: true(p) � sat(w0; p)Semantically, this amounts to considering consequence over pointed Kripke models. Forthe encoding of �rst-order logic, the problem is that the consequence relation we consideris between open formulae, whereas in our general de�nition of encoding we consider onlyclosed terms in the framework. An obvious way of �tting �rst-order logic into the generalscheme is to consider instead the consequence relation over sentences. However, it wouldbe more interesting to generalize the notions of consequence relation and encoding tocater explicitly for free variables and substitution. One proposal along these lines hasbeen recently suggested by Gardner [7]. However, for simplicity, we work with the lesscomplicated \propositional" notion of consequence relation.There are other changes that one might make to the notion of encoding. Gardnergives a general de�nition of encoding adopting fullness as one of the requirements [8].However, we prefer to keep the de�nition of encoding as general as possible consideringthe two halves of adequacy as extra conditions (which in practice an encoding mustsatisfy). This approach allows us to analyse semantic properties corresponding to thefullness and faithfulness of an encoding. It must be said that neither one of fullness and29

faithfulness is particularly interesting without the other. A trivial full encoding is alwaysgiven by the axiom 8p : o: true(p). A trivial faithful encoding is given by an empty A.Further, some faithful encodings do not extend to adequate encodings. For an exampleconsider the encoding of minimal implicational logic obtained by replacing the entireset Am with f8p : o: true(p) p) � true(p)g (the faithfulness of this is an easy semanticexercise).The two halves of adequacy each correspond to conditions on the class of (�;A)-models. Given a (�;A)-model, (W;�), de�ne form :W ! }(L) by:form(w) = f� j w j= true(��)gWe write form(W) for the set fform(w) j w 2Wg.Theorem 6.1 (Semantic characterization of fullness) The following are equival-ent:1. The encoding is full.2. For all (�;A)-models (W;�), form(W) � Theories.Proof. Suppose the encoding is full. Let (W;�) be any (�;A)-model, and take anyw 2 W . We must show that form(w) 2 Theories. Suppose that �1; : : : ; �n ` � for some�1; : : : ; �n 2 form(w). By fullness, true(��1); : : : ; true(��n) `(�;A) true(��). But, by thede�nition of form(w), w j= true(��1) and : : : and w j= true(��n). So, by the soundness ofthe meta-logic, w j= true(��). But then � 2 form(w). Thus form(w) = Th(form(w)). Soindeed form(w) 2 Theories.Conversely, suppose that, for all (�;A)-models (W;�), form(W) � Theories. Sup-pose further that �1; : : : ; �n ` �. We must show that true(��1); : : : ; true(��n) `(�;A)true(��). For this we use the model, (W(�;A);�(�;A)), used in the proof of completenessin Section 4. By Corollary 4.15, we know this is indeed a (�;A)-model. Consider theworld w = (;; ftrue(��1); : : : ; true(��n)g). By the initial supposition, form(w) 2 Theories.But clearly f�1; : : : ; �ng � form(w), so � 2 form(w) (as any theory is closed un-der consequence). Therefore w j= true(��). So, by the de�nition of (W(�;A);�(�;A)),true(��1); : : : ; true(��n) `(�;A) true(��) as required. 2Theorem 6.2 (Semantic characterization of faithfulness) The following are equi-valent:1. The encoding is faithful.2. There exists a (�;A)-model, (W;�), such that Theories � form(W).30

Proof. Suppose the encoding is faithful. We will show that the (�;A)-model(W(�;A);�(�;A)) has the required property. Take any T 2 Theories. We must showthat there exists (�;H) 2W(�;A) with form((�;H)) = T . For this we take the world w =(;; ftrue(�) j 2 Tg). Clearly (from the de�nition of (W(�;A);�(�;A))) T � form(w).We now show that form(w) � T . Suppose that � 2 form(w). Then w j= true(��), softrue(�) j � 2 Tg `(�;A) true(��). By the (evident) compactness of `(�;A), there exist�1; : : : ; �n 2 T such that true(��1); : : : ; true(��n) `(�;A) true(��). Therefore, by faithful-ness, �1; : : : ; �n ` �. Thus indeed � 2 T (as T is closed under consequence).Conversely, suppose that there exists a (�;A)-model, (W;�), such that Theories �form(W). Suppose further that true(��1); : : : ; true(��n) `(�;A) true(��). We must showthat �1; : : : ; �n ` �. Let w 2 W be such that form(w) = Th(f�1; : : : ; �ng) (such a wis guaranteed to exist by the assumed property of (W;�)). Clearly w j= true(��1) and: : : and w j= true(��n). So, by soundness, w j= true(��). But then � 2 form(w) so� 2 Th(f�1; : : : ; �ng). Thus �1; : : : ; �n ` � as required. 2Although pleasing, the theorem characterizing fullness is not particularly useful. Aswe have seen, fullness is easily established proof theoretically. The universal quanti�c-ation over models prevents Theorem 6.1 from being a viable alternative. On the otherhand, Theorem 6.2 is intended to be useful. In order to establish faithfulness it is enoughto construct a (�;A)-model with the required property.Unfortunately, none of the earlier proofs of faithfulness are applications of The-orem 6.2 to the letter. There are two possible remedies. One is to modify the models usedto prove faithfulness. The other is to modify Theorem 6.2. In fact a simple modi�cationsuggests itself from the proof. Call a theory, T , �nitely generated if there exist �1; : : : ; �nsuch that T = Th(f�1; : : : ; �ng). Then it is clear that an encoding is faithful if and onlyif there exists a (�;A)-model, (W;�), such that form(W) contains all �nitely generatedtheories. Both the models (Wm;=) and (Wm;�) used in the proof of faithfulness forminimal implicational logic satisfy this modi�ed condition. So those proofs can be seenas applications of (the modi�ed) Theorem 6.2. However, we stated Theorem 6.2 in itsform above to emphasize the duality with Theorem 6.1. Also, it is trivial to modify thede�nition of Wm (allowing arbitrary sets of formulae) so that Theorem 6.2 applies asstated. A similar situation occurs with the term model we used to prove the faithfulnessof the encoding of Peano Arithmetic.The other proofs of faithfulness (using the structures built frommodels of the encodedlogic) are further from Theorem 6.2. To accommodate these we can adapt the theoremas follows:Proposition 6.3 The following are equivalent:1. The encoding is faithful. 31

2. There exists a family F � Theories such that every �nitely generated theory canbe obtained as TF 0 for some F 0 � F and, for every T 2 F , there exists a (�;A)-model, (W;�), and a world, w 2 W , such that form(w) = T .Proof. That 1 implies 2 is immediate from Theorem 6.2 (taking F = Theories). For theconverse, suppose that statement 2 holds and that true(��1); : : : ; true(��n) `(�;A) true(��).Take some F 0 � F such that TF 0 = Th(f�1; : : : ; �ng). Now, for each T 2 F 0, thereexists a model, (W;�), and a world, w, such that form(w) = T . Then, as in the proofof Theorem 6.2, � 2 T . So � 2 TF 0. Therefore �1; : : : ; �n ` � as required. 2The proposition is more general than Theorem 6.2, but also less natural.It is perhaps more interesting to consider again how Theorem 6.2 can be applied asstated. For example, consider the proof of faithfulness for the encoding of the �rst-ordertheory T using �T -structures of the form (fMg;=). These di�erent �T -structures canbe gathered together in one all encompassing �T -structure as follows. First (to avoid thesize problem) we consider only those �rst-order models of T whose domain is containedin some �xed in�nite set (the L�owenheim-Skolem Theorem guarantees that we can doso). Let I be the set of such models. We can de�ne a �T -structure over the partialorder (}(I);�) by taking the interpretations of types at a world J � I to be the J-indexed product of the interpretations in the various M2 J . Predicates, constants andcombinators are interpreted pointwise. The coercions, iAJJ 0 are the evident projections.We do not go into further details of the construction. However, Theorem 6.2 holdsas stated because, for any �rst-order theory T 0 � T , we have that T 0 = form(fM jM is a model of T 0g).7 Conclusions and related workIn this paper we presented a semantics for a logical framework using the Kripke lambdamodels of Mitchell and Moggi. Our main use of the semantics was to give easy faithfulnessproofs for encodings of logics in the framework. Then we gave the beginnings of a generaltheory relating properties of encodings to their semantics.It is worth comparing our use of Kripke lambda models with their use by Mitchelland Moggi in [15]. In both cases the rôle of the partial order is to model intuitionisticentailment. But there are di�erences in emphasis due to the di�erent logical languagesconsidered. In [15], although it is remarked that the models interpret full intuitionisticpredicate logic with quanti�cation over all higher types, only the interpretation of equa-tions is given explicitly. This is because their interest is in obtaining a completenesstheorem for the usual equational consequence relation of the typed lambda-calculus onceempty types are permitted. In this paper we too are not making full use of the scope32

of the models. We consider only a fragment of the full intuitionistic logic, and we haveno equality predicate in the logic. The absence of equality means that the de�nition ofmodel could be simpli�ed in various ways. For example, it would be possible to insistthat the coercions, iAww0 , are injections. However, such restrictions are unnatural. Fur-thermore, we prefer to keep the de�nition of model in its full generality to allow the logicto be extended with equality (and also the other connectives) if desired.Because of the complexity of Kripke lambda models, the reader might doubt thatour proofs of faithfulness are easier than the usual syntactic ones. We believe thatthe proofs using the models constructed over the full type hierarchy are self-evidentlysimple. (Also, in the case of our encoding of K, we have argued that a syntactic proof offaithfulness would be quite involved.) However, the term model constructions certainlyare complex. Nevertheless, we were able to give the general construction just once (inSection 4). Given this, the applications of the construction in Section 5 were quitestraightforward. Irrespective of the question of simplicity there are two other reasons forpreferring semantic proofs of faithfulness. One is that the same model can be reused toprove the faithfulness of di�erent encodings of the same logic (as in, e.g. the minimal logicexamples involving Pierce's Law and the Deduction Theorem in Section 5). The otheris the fact, mentioned in Section 1, that the models of the encodings give a meta-logicalinterpretation to formulae of the framework.If one is primarily interested in term models, it is possible to work with a consider-ably simpler notion of Kripke lambda model. Miller has given a semantics for a logicprogramming language (very similar to our framework) in terms of Kripke models builtdirectly out of contexts (for the partial order) and terms [13]. Miller's models are simplerfor two reasons. First, due to their concrete nature, the models provide the application,coercion and combinator components for free. Second, Miller does not require the modelsto be extensional. The term models we consider can be reformulated as Miller modelswithout having to go through all the rigmarole of extensional collapse.Nonetheless, there are reasons for preferring extensional models. For one, they aremore \semantic": extensional models give a unique interpretation to terms as (intuition-istic) functions. Also, if one were to extend the framework with an equality predicate,extensionality would be required to validate �-conversion. Technically, even withoutequality, we believe that the extensional collapse technique is interesting enough to makethe consideration of extensional models worthwhile.One disappointing fact about our proofs of faithfulness in Section 5 is that we neverneeded a model that was both genuinely semantic and genuinely intuitionistic. Our \se-mantic" models were standard classical models of type theory, and our \intuitionistic"models (i.e. ones over non-trivial partial orders) were term models. It would be interest-ing to �nd a use for a proper hybrid model (perhaps by giving a truly semantic model33

to an encoding of a non-classical logic).As to future work, there are several interesting lines of development. One is to gen-eralize the theory of Section 6 to more interesting notions of logic (e.g. the consequencerelations introduced by Gardner [7]). Another is to analyse notions of derived and ad-missible rule and see whether the semantics of an encoding has anything to say abouthow well these are represented by the encoding. It would also be interesting to developa notion of Kripke model for the more intricate dependent type theory of LF.AcknowledgementsI gratefully acknowledge the support of my supervisors, Gordon Plotkin and David Pym.I would also like to thank Philippa Gardner for discussions on this work. PhilippaGardner, Fausto Giunchiglia and Andrew Wilson made useful comments on earlier draftsof the paper.References[1] A. Avron. Modal logics in the Edinburgh LF. In Workshop on General Logic,number ECS-LFCS-88-52 in LFCS Report Series. LFCS, Department of ComputerScience, University of Edinburgh, 1988.[2] A. Avron. Simple consequence relations. Information and Computation, 92:105{139,1991.[3] A. Avron, I. Mason F. Honsell, and R. Pollack. Using typed lambda calculus toimplement formal systems on a machine. Journal of Automated Reasoning, 9:309{354, 1992.[4] B. Chellas. Modal Logic. Cambridge University Press, 1980.[5] A. Felty and D. Miller. Specifying theorem provers in a higher-order logic-programming language. In Proceedings of Ninth International Conference on Auto-mated Deduction, pages 61{80. Springer-Verlag, 1988.[6] M. C. Fitting. Proof Methods for Modal and Intuitionistic Logics. D. Reidel Pub-lishing Co., Dortrecht, 1983.[7] P. A. Gardner. Equivalences between logics and their representing type theor-ies. Technical Report ECS-LFCS-92-251, LFCS, Deptartment of Computer Science,University of Edinburgh, 1992. Submitted for publication.34

[8] P. A. Gardner. A new type theory for representing logics. In A. Voronkov, editor,Logic Programming and Automated Reasoning, number 698 in Lecture Notes inArti�cial Intelligence. Springer Verlag, 1993.[9] R. Harper, F. Honsell, and G. D. Plotkin. A framework for de�ning logics. Journalof the Association for Computing Machinary, 40(1):143{184, 1992.[10] L. Henkin. Completeness in the theory of types. Journal of Symbolic Logic, 15(2):81{91, 1950.[11] J. R. Hindley and J. P. Seldin. Introduction to Combinators and the �-Calculus.London Mathematical Society, Student Texts 1. Cambridge University Press, 1986.[12] G. Huet. A uni�cation algorithm for typed �-calculus. Theoretical Computer Sci-ence, 1:27 { 57, 1975.[13] D. Miller. Abstract syntax and logic programming. In A. Voronkov, editor, Pro-ceedings of the Second Russian Conference on Logic Programming, Lecture Notes inArti�cial Intelligence. Springer-Verlag, 1991.[14] J. C. Mitchell. Type systems for programming languages. In J. van Leeuwen, editor,Handbook of Theoretical Computer Science, volume II, pages 365 { 458. ElsevierScience Publishers, 1990.[15] J. C. Mitchell and E. Moggi. Kripke-style models for typed lambda calculus. Journalof Pure and Applied Logic, 51:99{124, 1991.[16] B. Nordstr�om, K. Petersson, and J. Smith. Programming in Martin-L�of 's TypeTheory. Oxford University Press, 1990.[17] L. Paulson. The foundation of a generic theorem prover. Journal of AutomatedReasoning, 5:363{396, 1989.[18] F. Pfenning and C. Elliot. Higher-order abstract syntax. In Proccedings of ACM-SIGPLAN Conference on Programming Language Design and Implementation, 1988.[19] D. Prawitz. Natural Deduction - A proof theoretical study. Almquist and Wiksell,Stockholm, 1965.[20] M. Ryan and M. Sadler. Valuation systems and consequence relations. In S. Ab-ramsky, D. M. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Com-puter Science, volume 1. Clarendon Press, Oxford, 1992.[21] D. S. Scott. On engendering an illusion of understanding. Journal of Philosophy,68:787{807, 1971. 35

[22] A. Tarski. Logic, Semantics, Metamathematics. Oxford University Press, 1956.[23] D. van Dalen. Logic and Structure. Springer-Verlag, 1983. Second edition.

36

