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Recursive Types in Kleisli CategoriesAlex K. Simpson�Department of Computer Science, University of Edinburgh,JCMB, The King's Buildings, Edinburgh, EH9 3JZAugust 10, 1992AbstractWe show that an enriched version of Freyd's principle of versality holds in the Kleislicategory of a commutative strong monad with �xed-point object. This gives a general cat-egorical setting in which it is possible to model recursive types involving the usual datatypeconstructors.1 IntroductionOne of the goals of axiomatic domain theory is to give a categorical account of datatype con-structions in terms of suitable universal properties. In this paper we show how recursive types,involving the usual type constructors, can be modelled in the Kleisli category of a strong monadsatisfying certain assumptions.A datatype with n free type variables is naturally interpreted by a bifunctor [[�]] : (Cop �C)n ! C. The lack of true (covariant) functoriality makes the interpretation of recursive typesquite di�cult, whereas the corresponding situation for inductive types (those interpretable bycovariant functors [[�]] : Cn ! C) is much simpler, as inductive types can be easily interpretedusing initial algebras. In a series of recent articles, [5, 6, 7], Peter Freyd has shown how, undercertain conditions, the simplemethods for interpreting inductive types can be applied to recursivetypes.Central to Freyd's approach is the requirement that initial algebras and terminal coalgebrasbe canonically isomorphic. Technically, this requirement is exactly suited to its purpose ofdealing with contravariance. For intuition, Freyd justi�es his requirement by appeal to what hecalls the principle of versality: namely that datatypes should be equally good for both input andoutput, thus universal de�nitions should be equivalent to their duals. But the relation betweenthe technical requirement and the computational intuition is not that compelling. Further, therequirement is inconsistent with many standard properties of categories such as distributivity,cartesian closure and pre-ordering, to name but three. Clearly, if the requirement is to apply,we are unlikely to be able to interpret products and sums by their categorical analogues. Itis desirable to �nd a setting which accounts for all the usual datatypes, and in which Freyd'srequirement follows from some less sweeping, more intuitive axioms.�Supported by SERC grant no. 90311820 1



In this paper we �t Freyd's work into a general categorical setting for interpreting the usualtype constructors. Here we build upon the work of Moggi who suggests that programs arenaturally interpreted in the Kleisli category of a strong monad [14]. Moggi's approach givesan elegant account of the usual datatypes such as sums and products, for these are interpretedin the base category of the monad by their genuine categorical counterparts and then liftedby the inclusion functor into the Kleisli category. In order to incorporate recursive types, wegive conditions on the monad for which it is a derived feature of the Kleisli category that theproperty of being an initial algebra (for suitably enriched endofunctors) is equivalent to theproperty of being a terminal coalgebra. The main requirement that ensures this is the existenceof a �xed-point object, using de�nitions and reults due to Crole, Pitts and Mulry [3, 16].The structure of the paper is as follows. Section 2 reviews some of the elementary propertiesof initial algebras, terminal coalgebras, and some of the important ideas of Freyd. In Section 3we introduce the structure on the category and monad that we shall assume throughout. InSection 4 some useful results about �xed-points are proved. These are then applied in Section 5to give, in an abstract enriched setting, the desired equivalence between initial algebras andterminal coalgebras. In Section 6 it is shown that the Kleisli category can be considered as asuitably enriched category and thus the results of Section 5 are applicable. We then sketch howthe theory can be applied to give models of recursively typed calculi. Finally, in Section 7, wesuggest possible developments, including how the theory may also be applicable to the Eilenberg-Moore category.2 Initial algebras and terminal coalgebrasGiven an endofunctor T on a category C, a T -algebra is a morphism TX x�! X in C. A T -invariant object is a T -algebra that is an isomorphism. A T -homomorphism from TX x�! X toTY y�! Y is a morphism X z�! Y such that the diagram below commutes.TX x - XTz ? ?zTY y - YT -algebras and T -homomorphisms form a category with identities and composition inheritedfrom C. An initial T -algebra is just an initial object in this category. Initial T -algebras are thusdetermined up to isomorphism. The following well-known lemma is attributed to Lambek [1].Lemma 2.1 Any initial T -algebra is a T -invariant object.Given a functor S : C0�C ! C such that, for every X 2 ob C0, the endofunctor S(X;�) on Chas an initial algebra, S(X;AX ) �X�! AX , a functor Sy : C0 ! C can be de�ned as follows. Theobject part of Sy is de�ned by SyX = AX . Given X f�! Y in C0, AX Syf�! AY is de�ned to bethe unique morphism, given by the initial algebra property of �X , making the diagram below2



commute. S(X;AX ) �X - AXS(1; Syf)? ?SyfS(X;AY ) S(f; 1)- S(Y;AY ) �Y - AYIt is routine to check that the Sy so de�ned is indeed a functor.A T -coalgebra is just a Top � algebra. A T -cohomomorphism from X x�! TX to Y y�! TYis a morphism X z�! Y such that zop is a Top-homomorphism from yop to xop. A terminalT -coalgebra is a terminal object in the category of T -coalgebras and T -cohomomorphisms. Equi-valently a terminal T -coalgebra is just an initial Top-algebra. By duality, the analogues of lemma2.1 holds for terminal coalgebras.A category is called algebraically complete if every endofunctor on the category has an ini-tial algebra. It is called algebraically compact if it is algebraically complete and, for each T , ifTX x�! X is an initial T -algebra then X x�1�! TX is a terminal T -coalgebra (x must be anisomorphism by lemma 2.1). Both these notions are due to Freyd [6] (although there he de�nesalgebraic compactness in terms of a canonical isomporphism from initial algebra to terminalcoalgebra). Examples of algebraically complete and compact categories are given in [7]. Algeb-raic compactness has two aspects: an existence aspect and a duality aspect. The duality is ofinterest in its own right. Accordingly we say a category is consistently algebraically compact iffor every endofunctor, T , TX x�! X is an initial T -algebra if and only if X x�1�! TX is a terminalT -coalgebra. Consistent algebraic compactness is none other than Freyd's principle of versality.We now sketch why consistent algebraic compactness is important. The outline below isbased upon work of Fiore and Plotkin which is as yet unpublished (though see [4]). Considerthe category bC = Cop � C. This category has an involution:(�)D : (f 0; f) 7! (f; f 0)which establishes an isomorphism of categories between bCop and bC. Call an endofunctor T : bC !bC symmetric if (T (f 0; f))D = T (f 0; f)D. Clearly symmetric endofunctors on bC are in one-to-onecorrespondence with bifunctors from Cop � C to C. This correspondence enables the bifuntorrepresenting a type constructor to be \diagonalised" to a covariant endofunctor on bC. Notethat the notion of symmetry extends easily to functors from bC n to bC, and there is a similarcorrespondence with multi-arity bifunctors.Now suppose bC is consistently algebraically compact and T is a symmetric endofunctor. Fioreand Plotkin have shown that if T has an initial algebra then T has an initial algebra of the form:T (X;X) (x�1; x)- (X;X)Thus X above is a canonical solution to the recursive domain equation given by the bifunctorgenerating T . Importantly, the above result extends so that if S : bC n� bC ! bC is symmetric andSy : bC n ! bC exists, then Sy can be constructed to be symmetric.Although stated in terms of all functors, the de�nitions of algebraic compactness and consist-ent algebraic compactness are normally to be understood in the setting of a suitable 2-category ofcategories and functors [7]. Examples of algebraically compact categories have been particularly3



forthcoming in various 2-categories of CPO enriched categories (where CPO is to be understoodexibly enough to include subcategories of PERS [7]). We too will be dealing with enrichedversions of the de�nitions (see Section 5).3 A category of predomainsThroughout this paper we work with a category, C, of \predomains" which we assume to havethe following structure. C must be cartesian (but not necessarily cartesian closed), with adistinguished faithful strong monad, (T; �; �; t), with respect to which C has Kleisli exponentials,Y XT , and a �xed-point object, 1 !�! � � � T�. We spell out these requirements below.We write X �1XY ��� X � Y �2XY���! Y for the distinguished product structure, denoting pairingby C hf;gi���! X � Y , the symmetry isomorphism by X � Y cXY���! Y � X, and the associativityisomorphism by (X � Y ) � Z aXYZ�����! X � (Y � Z). We write X !X�! 1 for the terminal objectand its universal morphism.Strong monadsA strong monad, (T; �; �; t), is a monad (T; �; �) together with a natural transformation, itsstrength, tXY : X � TY ! T (X � Y ), satisfying four diagrams (see [14]). This de�nition is dueto Kock [11]. The strong monad is faithful if T is. Faithfulness is easily seen to be equivalent toMoggi's mono requirement, namely that all the components of � be monos (see [15]).We write CT for the Kleisli category with the standard adjunction FT a GT : CT ! C. Wewrite CT for the Eilenberg-Moore category with adjunction F T a GT : CT ! C. CT is cartesianwith products given by:(X;x)� (Y; y) = (X � Y; (x� y) � hT�1; T�2i)A fourth category D is de�ned by ob D = ob CT and D((X;x); (Y; y)) = C(X;Y ) with identit-ies and composition inherited from C. In fact D is the co-Kleisli category of the obvious F TGTcomonad on CT . Clearly the forgetful functor U : D ! C gives (using choice) an equivalence ofcategories between D and the full subcategory C0 of C obtained as the image of U . The reasonfor preferring D to C0 is that we have the co-Kleisli inclusion I : CT ! D which gives CT as adistinguished subcategory of D. It is easy to see that D is cartesian, its products being the sameas those of CT . Further, in the case that C is cartesian closed then D is too (in fact C0 is anexponential ideal of C).The strength of the monad enables the following natural transformations to be de�ned.t0XY = TX � Y Tc � t � c- T (X � Y ) XY = TX � TY � � T t � t0- T (X � Y ) 0XY = TX � TY � � T t0 � t> T (X � Y )We say that the monad is commutative if  =  0.We call a morphism (X;x) f�! (Y; y) in D linear if it is an algebra homomorphism from(X;x) to (Y; y), ie. if f � x = y � Tf , or equivalently if f is in the image of I. A morphism4



(X;x)� (Y; y) f�! (Z; z) is called right-linear if the diagram below commutes in C.X � TY t- T (X � Y ) Tf - TZ1� y ? ?zX � Y f - ZIntuitively, f is right-linear if whenever the �rst argument is �xed the resulting morphism onthe second argument is linear. The same f is called left-linear if the diagram below commutesin C. TX � Y t0- T (X � Y ) Tf - TZx� 1? ?zX � Y f - Zf is called bilinear if it is both right-linear and left-linear. All the above variations on the notionof linearity were de�ned by Kock who also gave two other equivalent de�nitions of bilinearityutilizing  and  0 [12].Kleisli exponentialsWe say that C has Kleisli exponentials if, for all X 2 ob C, the functor FT � (� � X) : C ! CThas a right adjoint, (�)XT : CT ! C.The property of having Kleisli exponentials is essentially equivalent to that of �C-model dueto Moggi [14]. However, we do not require Moggi's equalising requirement (this terminologyis from [15]) and we prefer not to refer to any extraneous lambda-calculus. Note that if C iscartesian closed then CT is automatically Kleisli closed, the right adjoint being (�)X �GT .We write �XY Z for the induced natural isomorphism from C(X � Y; TZ) to C(X;ZYT ). Wewrite �XY for the maps Y XT �X �! TY in C giving the components of the counit in CT . Thede�ning adjunction of Kleisli exponentials is now equivalent to the statement that the diagram(in C) below commutes if and only if f = �g.ZYT � Y � - TZ6f � 1 ��� g����X � YWe consider Kleisli exponentials, rather than making the stronger assumption of cartesianclosure, for two reasons. First, it is in spirit of axiomatic domain theory to make the weakestassumptions possible for the desired results to follow. Second, we want as good a correspondenceas possible between the category theory and the typed calculi modelled. Standard recursivelytyped calculi (such as Plotkin's metalanguage [18]) have partial function spaces (correspondingto the Kleisli exponentials of a suitable strong monad) but not total function spaces. However, itmust be admitted that most real-world models are cartesian closed (with the possible exceptionof Rosolini's �-domains [20]). 5



Fixed-point objectsA �xed-point object is an object � together with arrows 1 !�! � � � T� such that:1. T� ��! � is an initial T -algebra.2. 1 !�! � equalises � 1�! � and � ������! �.Fixed-point objects were introduced by Crole and Pitts [3]. However, we followMulry in making! a global element of � [16]. Our de�nition is easily shown to be equivalent to the original.By lemma 2.1, � is an isomorphism. De�ne:� = T� � � � � T��1- �A routine calculation shows that � is an Eilenberg-Moore algebra. It is then easy to see that �and ��1 are morphisms in CT (between (T�; �) and (�; �)). These observations remove someof the hypotheses from theorem 3.12 of [16].The following lemma gives an important property of the �xed-point object (which we requirein the proof of Theorem 4.6).Lemma 3.1 For every X � TY y�! Y , there is a unique X � � x�! Y making the diagrambelow commute. X � T� h�1; Tx � ti- X � TY1� � ? (1) ?yX � � x - YProof. Consider the diagrams below:X � T� h�1; � � Tz � ti- X � TY1� �? (2) ?� � yX �� z - TYT� Tw - TY XT� ? (3) ?�(� � y � h�2; � � T� � t0i)� w - Y XTWe show that:� � � : fX � � x�! Y j (1) commutesg �! fX �� z�! TY j (2) commutesgand: �(� � c) : fX �� z�! TY j (2) commutesg �! f� w�! Y XT j (3) commutesgare both well de�ned and bijections. Then the lemma follows, as the initial algebra property ofT� ��! � ensures that f� w�! Y XT j (3) commutesg is a singleton set.6



First we show that x makes (1) commute if and only if z = � � x makes (2) commute.x � (1� �) = y � h�1; Tx � tii� � � x � (1 � �) = � � y � h�1; Tx � ti (`if' because � is mono)= � � y � h�1; � � T� � Tx � ti (by unit law of monad)= � � y � h�1; � � T (� � x) � tiNow for any z making (2) commute we have z = � � y � h�1; ��T (z) � t ���1i, so z has the form� � x and this x is necessarily unique (again as � is a mono). So we have established that � � �is indeed a bijection between the given sets.Similarly we show that z makes (2) commute if and only if w = �(z � c) makes (3) commute.�(z � c) � � = �(� � y � h�2; � � T� � t0i) � T�(z � c)i� � � (�(z � c)� 1) � (� � 1) = � � (�(� � y � h�2; � � T� � t0i) � 1) � (T�(z � c)� 1)i� z � c � (� � 1) = � � y � h�2; � � T� � t0i � (T�(z � c)� 1)i� z � (1� �) = � � y � h�2; � � T� � t0 � (T�(z � c)� 1)i � c= � � y � h�2; � � T� � T (�(z � c)� 1) � t0i � c= � � y � h�2; � � Tz � Tc � t0i � c= � � y � h�1; � � Tz � Tc � t0 � ci= � � y � h�1; � � Tz � tiThat �(� � c) is a bijection is obvious (� is a bijection and c an isomorphism). 2Note that the proof uses both Kleisli exponentials and that the � components are monos. If Cis cartesian closed then the the proof is simpler (though the idea is the same) and does not relyon the mono requirement.The property expressed by Lemma 3.1 is meaningful for any strong endofunctor T . In cat-egories that are not cartesian closed it can be used as the de�ning property of a good para-metrised notion of initial T -algebra for such endofunctors (in cartesian closed categories theproperty is automatically satis�ed by the usual initial T -algebras). For example, if C is a dis-tributive category then the 1+ (�) functor is strong. With our de�nition of parametrised initial(1 + (�))-algebra we derive the usual (parametrised) notion of natural numbers object for noncartesian-closed categories (see [19]).ExamplesThe motivating example is the following. C is PreDom, the category of !CPOs (!-completepartial orders, possibly without least element) and !-continuous functions. For the monad T ,we take the lift functor on PreDom (which adds a new least element to an !CPO), this has anassociated commutative strong monad. CT is now pPreDom, the category of !CPOs and partialcontinuous functions [18]. CT is the category Dom?, of those !CPOs with a least element andstrict (ie. least-element preserving) continuous functions. Incidentally, pPreDom and Dom?are equivalent categories, this is not true in general for CT and CT . D is the category, Dom, of!CPOs and all !-continuous functions. As is well-known, Dom is a cartesian closed category,and every endomorphism has a (least) �xed-point. The notions of linearity, right-linearity, left-linearity and bilinearity coincide in Dom with the usual notions of strictness, right-strictness,left-strictness and bistrictness. PreDom is cartesian closed, so it has Kleisli exponentials. Ithas a �xed-point object given by the vertical natural numbers [3].7



The categories above have been deliberately named to allow for easy reinterpretation. Similarexamples are to be found for any lift monad on a category of predomains. These domains neednot be partially-ordered, see Phoa [17] for example.It is well-known that pPreDom andDom? are algebraically compact for all !CPO-enrichedfunctors (this is easily shown from results in [21, 5]). We will show that the considerations leadingto the consistent algebraic compactness of CT are in fact quite general.4 Fixed-points in DThe presence of the �xed-point object gives rise to well-behaved �xed-points in D. In thissection we prove some basic properties of these �xed-points. These generalise properties of least�xed-points in Dom. The section is based on, and inspired by, Mulry's [16]. However, theparametrisation results are new.The basic result is that D has a canonical �xed-point operator. Let (�)� be an ob D-indexedfamily of functions: (�)�(X;x) : D((X;x); (X;x)) �! D((1; !); (X;x))De�nition 4.1 (�xed-point operator) (�)� is a �xed-point operator on D if, f � f� = f�, forevery (X;x) f�! (X;x).The next de�nition generalises a property that has become known as Plotkin's axiom in domaintheory. This algebraic generalisation is essentially a less internal version of Mulry's algebraic-ally strong dinaturality [16]. We call the property uniformity following the terminology (in thedomain-theoretic setting) in a forthcoming book by Gunter.De�nition 4.2 (uniformity) (�)� is uniform if, for every (X;x) f�! (X;x), (Y; y) g�! (Y; y),and linear (X;x) h�! (Y; y), if the diagram below commutes.(X;x) f - (X;x)h? ?h(Y; y) g - (Y; y)then h � f� = g�.The canonical �xed-point operator is given by the following theorem, which is essentially theorem3.12 of [16] adapted to our situation.Theorem 4.3 D has a unique uniform �xed-point operator.Proof. First we prove existence. Take any morphism (X;x) f�! (X;x) in D. Note thatX f�! X and TX x�! X are both morphisms in C. Let � �(f)�! X be the unique morphism, givenby the initial algebra property of �, making the diagram (in C) below commute.T� T�(f) - TX� ? ?x � Tf� �(f) - X8



We show that f 7! �(f) � ! is a uniform �xed-point operator. That it is a �xed-point operatorfollows from the commutativity of the diagram below (the left-hand triangle commutes by thede�ning property of !, the two top squares by the naturality of �, the bottom rectangle byde�nition of �(f), and the right-hand triangle as (X;x) is an object of CT ).� �(f) - X f - X���! ���� ?� ?� ?�@@@ 1@@@R1 T� T�(f) - TX Tf - TX X@@@! @@@R ?� ?x��� 1����� �(f) - XFor uniformity, suppose we have (X;x) f�! (X;x), (Y; y) g�! (Y; y), and linear (X;x) h�! (Y; y)such that h � f = g � h. Then the diagram below commutes (the left-hand rectangle by thede�nition of �(f), the upper square because h � f = g � h, and the lower square by the linearityof h). T� T�(f)- TX Th - TY?Tf ?Tg� ? TX Th - TY?x ?y� �(f) - X h - YBut by de�nition, �(g) is the unique � z�! Y such that z � � = y � Tg � Tz. So, by the abovediagram, �(g) = h � �(f). But then �(g) � ! = h � �(f) � !, which proves uniformity.For uniqueness, let (�)� be any uniform �xed-point operator. Take any (X;x) f�! (X;x).We must show that f� = �(f) � !. First note that (�; �) �(f)���! (X;x) is linear, for �(f) =x � Tf � T�(f) � ��1 which is a composite of linear maps. Now omitting the left-hand trianglefrom the �rst diagram in this proof we see that �(f) � � � � = f � �(f). So, by the uniformity of(�)�, �(f) � (� � �)� = f�. But (�)� is a �xed-point operator and, by de�nition, ! is the unique�xed-point of � � �, so (� � �)� = !. Therefore f� = �(f) � ! as required. 2Henceforth we write (�)� for the unique uniform �xed-point operator.D also has a canonical parametrised �xed-point operator. Let (�)y be an (ob D�ob D)-indexedfamily of functions:(�)y(X;x)(Y;y) : D((X;x)� (Y; y); (Y; y)) �! D((X;x); (Y; y))De�nition 4.4 (parametrised �xed-point operator) (�)y is a parametrised �xed-point op-9



erator on D if, for all (X;x)� (Y; y) f�! (Y; y), the diagram below commutes.(X;x) h1; fyi- (X;x)�(Y; y)@@@fy @@@R ?f(Y; y)De�nition 4.5 (parametrised uniformity) (�)y is parametrically uniform if, for all morph-isms (X;x) � (Y; y) f�! (Y; y), (X;x) � (Z; z) g�! (Z; z), and right-linear (X;x) � (Y; y) h�!(Z; z), if the diagram below commutes.(X;x)� (Y; y) h�1; fi- (X;x)� (Y; y)h�1; hi? ?h(X;x)� (Z; z) g - (Z; z)then h � h1; fyi = gy.The canonical parametrised �xed-point operator is given by the following theorem mirroringTheorem 4.3.Theorem 4.6 D has a unique parametrically uniform parametrised �xed-point operator.The proof of this theorem is by relativising Theorem 4.3 to the co-Kleisli categories of comonadsof the form X � (�) on C.Write CX for the co-Kleisli category of the X�(�) comonad on C, and IX for the \inclusion"functor from C to CX . We must show that CX has all the structure we require.IX is surjective on objects and preserves limits (it has a left-adjoint). So CX is cartesian,moreover products are inherited from C.Now we de�ne a strong monad (TX ; �X ; �X ; tX) on CX . The action of TX on objects isinherited from T . Its action on morphisms takes the CX morphism from Y to Z given by the Cmorphism X � Y f�! Z to the CX morphism from TY to TZ given by X � TY Tf�t�����! TZ.The components of �X , �X and tX , are given by �XY = IX�Y , �XY = IX�Y and tXY Z = IX tY Z .It is readily checked that these give natural transformations and satisfy the axioms of a strongmonad. For the faithfulness of TX it is enough to show that all the components of �X are monos.But these are the image of the components of � (which are monos) under IX , and IX preserveslimits and hence monos.The Kleisli exponentials are given by ZYTX = ZYT . The easiest way to see that this does indeedgive a Kleisli exponential is to de�ne the isomorphism �XY ZW mapping X � (Y �Z) f�! TW inCX (Y � Z; TW ) to X � Y f�a�1�����! WZT in CX (Y;WZT ), and to de�ne the maps �XY Z = IX �YZ .It is routine to check that these have the appropriate universal property giving the adjunction.The �xed-point object is again �, with morphisms !X = IX! and �X = IX�. ThatTX� �X�! � is an initial algebra in CX follows straightforwardly from Lemma 3.1. The equalisingproperty of IX! follows from IX preserving limits.The proposition below summarises what we have sketched so far.10



Proposition 4.7 CX is cartesian with a faithful strong monad with respect to which it has Kleisliexponentials and a �xed-point object.In fact IX clearly preserves all the structure. So the above proposition is closely related to thefunctional completeness result in [3].We now proceed to give the proof of Theorem 4.6 applying Proposition 4.7. Write DX for theanalogous category to D obtained from the TX monad on CX . Note that for any object (X;x)of D, (X; IXx) is an object of DX . Write (�)�X for the unique uniform �xed-point operator onDX . We now de�ne the evident parametrised �xed-point operator on D by:fy(X;x)(Y;y) = f�X(Y;y) � h1; !i(for (X;x) � (Y; y) f�! (Y; y)). To see that this is parametrically uniform, suppose we have(X;x) � (Y; y) f�! (Y; y), (X;x) � (Z; z) g�! (Z; z), and right-linear (X;x) � (Y; y) h�! (Z; z)satisfying the hypothesis of parametrised uniformity. It is easy to see that h is a linear map from(Y; IXy) to (Z; IXz) in DX , and that the hypothesis of uniformity is satis�ed by f , g and h inDX . The required equation for the parametrised uniformity of (�)y now follows directly from theuniformity of (�)�X .To see that (�)y is the unique parametrically uniform parametrised �xed-point operator itis necessary to inspect the proof (given in the proof of Theorem 4.3) that (�)�X is the uniqueuniform �xed-point operator on DX . The proof shows that the restriction of (�)�X is the uniqueuniform �xed-point operator on any full subcategory of DX containing the object (�; IX�). Inparticular this holds for the full subcategory of all objects of the form (Y; IXy) where (Y; y) is anobject of D. But the statement that the appropriate restriction of (�)�X is the unique uniform�xed-point operator on this full subcategory is easily seen to be equivalent to the statementthat (�)y is the unique parametrically uniform parametrised �xed-point operator on D. Thiscompletes the proof of Theorem 4.6.In the sequel we shall have use for the following simple lemma relating (�)� and (�)y.Lemma 4.8 Given any (Y; y) f�! (Y; y), (f � �2X�Y )y = f��!X : (X;x)! (Y; y).The proof is easy.5 Algebras in D-categoriesThe distinguished cartesian structure on D gives D as a (symmetric) monoidal category. Wecan thus consider categories enriched over D [10]. A D-category, K, is given by a class, ob K, ofobjects, an object, K(A;B), of D for every A;B 2 ob K and families of morphisms in D:1 eKA�! K(A;A) K(B;C)� K(A;B) mKABC���! K(A;C)for identities and composition such that (all instances of) three coherence diagrams commute(expressing the left and right unitary properties of the identities, and the associativity of compos-ition) [10]. The dual Kop is the D-category de�ned by: ob Kop = ob K, Kop(A;B) = K(B;A),eKopA = eKA and mKopABC = mKCBA �c. Similarly, the product, K�L, of K with another D-category,L, is de�ned as a D-category in the obvious way.11



A D-functor, F : K ! L, from K to L is given by a function, F : ob K ! ob L, together withmorphisms, K(A;B) FAB���! L(FA;FB), in D such that two diagrams commute (expressing thefunctorial preservation of identities and composition) [10]. F determines an obvious D-functorFop : Kop ! Lop, and, given another D-functor F 0 : K0 ! L0, there is an evident D-functorF 0 � F : K0 � K ! L0 � L. Further, given a D-functor F : K0 � K ! L, any object A of K0induces an obvious D-functor F (A;�) : K ! L.Note that any D-category is trivially a C-category. Moreover, any C-category all of whosehom-objects have an Eilenberg-Moore algebra over them can be construed (possibly in manynon-equivalent ways) as a D-category. Further, F : K ! L is a D-functor if and only if it isa C-functor between the two associated C-categories. Thus, the only point in considering D-categories is to make use of the algebra structure associated with each object of the category.This we now do.Each K(A;B) is an object of D and therefore an Eilenberg-Moore algebra of T on C. Wewrite (K(A;B); k(A;B)) for this algebra structure (confusing the object K(A;B) of D with itsunderlying object in C). We say composition in K is linear, left-linear, right-linear or bilinear ifeach mKABC is linear, left-linear, right-linear or bilinear respectively. It is easy to see that com-position in K is right-linear if and only if composition in Kop is left-linear. Again, compositionin K �L is right-linear if and only if composition is right-linear in both K and L.A D-category K determines an underlying ordinary category K0 with the same objects asK, with hom-sets given by K0(A;B) = D(1;K(A;B)), with identities eKA and with compositionde�ned using mKABC in the obvious way. Similarly, each D-functor F : K ! L determines anordinary functor F0 : K0 ! L0 with the obvious action on morphisms. Given a D-endofunctorF : K ! K, when we use the terms F -algebra, F -homomorphism, initial F -algebra, F -coalgebra,F -cohomomorphism, terminal F -coalgebra and F -invariant object we mean the correspondingconcept for F0. Thus, for example, an F -algebra is a morphism 1 ��! K(FA;A) in D. Also thecategory of F -algebras is not a D-category. In the case that C has equalisers it is possible tomake a D-category of F -algebras, but we shall not pursue this any further here.So it makes sense to talk about initial algebras for D-functors on D-categories, but only asnon-enriched notions. We now show that, if composition in the D-category is right-linear, thenon-enriched notion of initial algebra corresponds to a self-dual enriched property. The self-duality of the property leads to an appropriate form of consistent algebraic compactness forD-categories in which composition is bilinear.Let F : K ! K be a D-functor. Given an F -invariant object, FA ��! A, and an F -algebra,FB ��! B, we write: K(A;B) � � F (�) � ��1- K(A;B)for the morphism in D given by the composite below.K(A;B) hh��!; F i; ��1�!i- (K(FB;B)� K(FA;FB))�K(A;FA) m � (m� 1)- K(A;B)Lemma 5.1 (� � F (�) � ��1)� is an F -homomorphism from � to �.Proof. (�)� is a �xed-point operator, so � � F ((� � F (�) � ��1)�) � ��1 = (� � F (�) � ��1)�(using an obvious notation), and clearly � � F ((� � F (�) � ��1)�) = (� � F (�) � ��1)� � � asrequired. 2We call an F -invariant object, FA ��! A, special if (� � F (�) � ��1)� = eA. This de�nition12



generalises one due to Peter Freyd [6]. The theorem below is the similar generalisation of atheorem in [6, page 502].Theorem 5.2 If composition in K is right-linear then the following are equivalent:1. FA ��! A is a special F -invariant object.2. FA ��! A is an initial F -algebra.Proof. Suppose that FA ��! A is an initial F -algebra. By the Lambek lemma � is aniso. in K0 so � is an F -invariant object. By initiality, eA is the unique F -homomorphismfrom � to �. But, by Lemma 5.1, (� � F (�) � ��1)� is such an F -homomorphism. So indeed(� � F (�) � ��1)� = eA.Conversely, suppose that FA ��! A is a special F -invariant object. Let FB ��! B be anyF -algebra. We must show that there is a unique F -homomorphism from � to �. The existenceof such an F -homomorphism, namely (� �F (�) ���1)�, is given by Lemma 5.1. For uniquenesssuppose A x�! B is an arbitrary F -homomorphism. We must show that x = (� �F (�) ���1)�.Write K(A;A) x�������! K(A;B) for the composite below.K(A;A) m � hx�!; 1i- K(A;B)That x � � is linear follows easily from the right-linearity of m. Now, because x is an F -homomorphism, the diagram below commutes.K(A;A) � � F (�) � ��1- K(A;A)x � �? ?x � �K(A;B) � � F (�) � ��1- K(A;B)So, by the uniformity of �, (x��)� (��F (�)���1)� = (� �F (�)���1)�. However, (��F (�)���1)� = eA, as � is a special F -invariant object. Therefore x = (x ��) � eA = (� �F (�) ���1)�as required. 2Corollary 5.3 If composition in K is left-linear then the following are equivalent:1. FA ��! A is a special F -invariant object.2. A ��1�! FA is a terminal F -coalgebra.If, in addition, composition in K is right-linear, then the following is equivalent to the above:3. FA ��! A is an initial F -algebra.Proof. By duality. 2In particular if composition in K is bilinear then K is consistently algebraically compact. Here weare working in the 2-category D-Cat [10], understanding \all functors" to mean all D-functors.As the bilinearity of composition is preserved by taking opposite categories and products wehave also that Kop and Kop �K are consistently algebraically compact.13



The application of the above results will be to model datatypes in D-categories with bilinearcomposition. As long as the type-constructors yield enriched functors, the consistent algebraiccompactness will be applicable. We now show that one important way of optaining one typeconstructor from another preserves enrichment. See the discussion on page 19 for the application.Let G : L � K ! K be a D-functor such that for each B 2 ob L there exists a specialG(B;�)-invariant object, G(B;AB) �B���! AB. Assume furthermore that application in K isright-linear. Then by Theorem 5.2 there is an initial G(B;�)-algebra for every B 2 ob K. Thusthe conditions are satis�ed for de�ning (G0)y as in section 2. We now show that this functor isenriched in the sense that it is the underlying ordinary functor associated with some D-functor(which we call Gy). For each B;C 2 ob L we write:L(B;C)�K(AB ; AC) (�C �G(�) � ��1B )- K(AB ; AC)for the composite below.L(B;C)� K(AB; AC) m � (m � 1) � hh�C�!; Gi; ��1B �!i- K(AB; AC)Now de�ne: GyBC = L(B;C) (�C �G(�) � ��1B )y- K(AB; AC)Lemma 5.4 Given any morphism Z f�! L(B;C) in D, there is a unique Z x�! K(AB; AC)such that the diagram below commutes.Z hf; xi- L(B;C)� K(AB; AC)x? 	��� �C �G(�) � ��1B���K(AB; AC)Proof. For existence de�ne x = ((�C �G(�) � ��1B ) � (f � 1))y. Then:x = ((�C �G(�) � ��1B ) � (f � 1))y= (�C �G(�) � ��1B ) � (f � 1) � h1; xi (as y is a parametrised �xed-point operator)= (�C �G(�) � ��1B ) � hf; xiFor uniqueness suppose x is any morphism making the above diagram commute. We must showthat x = ((�C �G(�) � ��1B ) � (f � 1))y. Note now that the diagram below commutes.Z � K(AB; AB) 1� (�B �G(B;�) � ��1B )- Z �K(AB; AB)h�1;m � (x� 1)i? ?m � (x� 1)Z �K(AB; AC) (�C �G(�) � ��1B ) � (f � 1) - K(AB ; AC)Note further that the right-linearity of m � (x� 1) is an easy consequence of the right-linearityof m. So the equation below follows from the parametrised uniformity of y.m � (x� 1) � h1; ((�B �G(B;�) � ��1B ) � �2)yi = ((�C �G(�) � ��1B ) � (f � 1))y (1)14



But then:x = m � hx; eB�!i= m � (x � 1) � h1; eB�!i= m � (x � 1) � h1; (�B �G(B;�) � ��1B )��!i (as �B is a special G(B;�)-invariantobject)= m � (x � 1) � h1; ((�B �G(B;�) � ��1B ) � �2)yi (by Lemma 4.8)= ((�C �G(�) � ��1B ) � (f � 1))y (by (1) above)2Theorem 5.5 Gy is a D-functor and (Gy)0 = (G0)y.Proof. For preservation of identity we must show that the diagram below commutes.1 eLB - L(B;B)@@@eKAB @@@R ?GyBBK(AB; AB)Now, by Lemma 5.4, there is a unique 1 x�! K(AB; AB) making the following diagram commute.1 heLB ; xi- L(B;B)� K(AB; AB)x? 	��� �B �G(�) � ��1B���K(AB; AB)It is easy to see that the diagram commutes with x = eKAB (as G preserves identities). So to showpreservation of identity we need only prove that the diagram commutes with x = GyBB � eLB .This is by:GyBB � eLB = (�B �G(�) � ��1B )y � eLB (by de�nition of GyBB)= (�B �G(�) � ��1B ) � h1; GyBBi � eLB (as y is a parametrised �xed-pointoperator)= (�B �G(�) � ��1B ) � heLB ; GyBB � eLBiFor the peservation of composition we must show that the diagram below commutes.L(C;D)� L(B;C) ML- L(B;D)GyCD � GyBC ? ?GyBDK(AC; AD)� K(AB; AC) MK- K(AB ; AD)Again, by Lemma 5.4, there is a unique L(C;D)�L(B;C) x�! K(AB; AD) making the following15



diagram commute. L(C;D)� L(B;C) hmL; xi- L(B;D)� K(AB; AD)x? 	��� �D �G(�) � ��1B���K(AB; AD)So for the preservation of composition it is enough to check that the diagram commutes for bothx = GyBD �mL and x = mK � (GyCD �GyBC). The former is by:GyBD �mL = (�D �G(�) � ��1B )y �mL (by de�nition of GyBD)= (�D �G(�) � ��1B ) � h1; GyBDi �mL (as y is a parametrised �xed-pointoperator)= (�D �G(�) � ��1B ) � hmL; GyBD �mLiThe latter is by:mK � (GyCD � GyBC)= mK � ((�D �G(�) � ��1C ) � h1; GyCDi � (�C �G(�) � ��1B ) � h1; GyBCi)(by expanding de�nitions and applying parametrised �xed-point property)= mK � ((�D �G(�) � ��1C ) � (�C �G(�) � ��1B )) � (h1; GyCDi � h1; GyBCi)= (�D �G(�) � ��1B ) � (mL �mK) � h1; (GyCD � GyBC)i(by composing in K and applying preservation of composition of G)= (�D �G(�) � ��1B ) � hmL;mK � (GyCD � GyBC)iIt remains to show that (Gy)0 = (G0)y. Given a morphism B f�! C in L0, we must showthat the diagram below commutes in K0.G(B;AB) �B - ABG(1; Gyf)? ?GyfG(B;AC) G(f; 1)- G(C;AC) �C - ACHowever, this is an easy consequence of the de�nition of GyABAC as a parametrised �xed-point.26 The Kleisli category as a D-categoryIn this section we apply the results of the last section by showing that the Kleisli category is aD-category. Further, if the monad is commutative then composition in the Kleisli category isbilinear. Under these conditions the Kleisli category is consistently algebraically compact (forD-functors) and it makes sense to interpret recursive types in this setting.The object ofD corresponding to CT (X;Y ) will be an algebra over the Kleisli exponential Y XT .The structure map, TY XT yxt�! Y XT , of this algebra is obtained by applying � to the composite:TY XT �X � � T� � t0- TY16



Proposition 6.1 yxt is an Eilenberg-Moore algebra.Proof. We must show that the diagrams below commute.Y XT � - TY XT T 2Y XT Tyxt- TY XT@@@1 @@@R ?yxt �? ?yXtY XT TY XT yxt - Y XTThat the left-hand of these diagrams commutes is shown by the top diagram in Figure 1 in theappendix. The middle and bottom diagrams in Figure 1 show respectively that TyXt � yXt and� � yXt are both � applied to:T 2Y XT �X � � � � T 2� � T t0 � t0- TYTherefore the right-hand diagram above commutes. 2We now de�ne the identity and composition maps. De�ne 1 eX�! XXT to be � applied to:1�X � � �2- TXDe�ne ZYT � Y XT mXYZ�����! ZXT to be � applied to:(ZYT � Y XT )�X � � T� � t � (1� �) � a- TZProposition 6.2 The above data gives a D-category whose underlying ordinary category is (iso-morphic to) CT .Proof. For the data to give a D-category we must show that the diagrams below commute.Y XT �XXT �h1; e�!i Y XT he�!; 1i- Y YT � Y XT@@@m @@@R ?1	��� m���Y XT(WZT � ZYT ) � Y XT m � 1 - WYT � Y XTa? ?mWZT � (ZYT � Y XT ) 1�m- WZT � ZXT m - WXTWe just give the proof that the lower diagram commutes. The proofs for the two trianglesforming the upper diagram are easier. To show the lower diagram commutes we show that bothsides of the diagram are � applied to:((WZT � ZYT )� Y XT )�X � � T� � � � T t � T (1� �) � Ta � t � (1� �) � a- TW17



The �rst diagram in Figure 2 in the appendix shows this for the top leg, and the second diagramshows it for the bottom leg.It remains to show that CT is isomorphic to the underlying ordinary category of the estab-lished D-category. The isomorphism between hom-sets is given by:CT (X;Y ) = C(X;TY ) �(� � �2)- C(1; Y XT ) = D((1; !); (YXT ; yxt ))It is now easy to check that the identities and compostition are as required. 2Henceforth we refer to the D-category as CT , confusing the enriched category with its underlyingordinary category.Proposition 6.3 Composition in CT is right-linear.Proof. We must show that m � (1� yxt ) = zxt � Tm � t : ZYT � TY XT ���! ZXT . The �rst andsecond diagrams in Figure 3 in the appendix show respectively that the left-hand and right-handsides of the equation are both � applied to:(ZYT � TY XT )�X � � T� � � � T t � t � (1� T�) � (1� t0) � a- TZThey are therefore equal. 2Proposition 6.4 If the monad is commutative then composition in CT is left-linear.Proof. We must show that m � (zyt � 1) = zxt � Tm � t0 : TZYT � Y XT ���! ZXT . The �rstdiagram in Figure 4 in the appendix shows that the left-hand side of the equation is � appliedto: (TZYT � Y XT )�X � � T� �  0 � (1� �) � a- TZThe second diagram shows that the right-hand side is � applied to:(TZYT � Y XT )�X � � T� �  � (1� �) � a- TZFrom these, the equality of the two sides is immediate by commutativity. 2Thus if the monad is commutative then composition in CT is bilinear and so (by the results ofsection 5) CT , CopT and CopT � CT are all consistently algebraically compact.Assume then that the monad is commutative. We now sketch how to de�ne recursive typesinvolving the standard type constructors. Products in C, the monad functor T and Kleisliexponentials lift naturally to functors �T : CT�CT ! CT , TT : CT ! CT and!T : CopT �CT ! CTrespectively. �T is not in general a cartesian product on CT , but computationally it is a genuinelyuseful \smash product". Categorically, �T is a tensor product, inheriting its monoidal structurefrom that of the cartesian product on C (a folklore result, see [9, Theorem 4.4]). Incidentally,the functor �T only exists in general for commutative strong monads. So, if we are to considertype constructors as (bi)functors on CT , the assumption of commutativity is more or less forcedupon us. Computationally, TT is a \lifting" constructor and !T gives \computational functionspaces". In order to have sums, we have to demand that C have �nite coproducts.1 These lifttrivially (FT is surjective on objects and preserves colimits) to �nite coproducts on CT .1It is interesting that the distributivity of C does not follow, however it does if we impose Moggi's equalisingrequirement [15]. 18



Importantly, all the above (bi)functors, �T , TT , !T , +, are enriched over C and hence overD, as is easily shown (we give the enrichment of TT below). So all type constructors lift tomulti-arity D-functors on the consistently algebraically compact CopT � CT .Having made the above observations, it is easy to see how the Kleisli category can be usedto model recursively typed call-by-value calculi (such as Plotkin's metalanguage [18]). A type �with (at most) n free type variables will be modelled by a symmetric D-functor:[[�]] : (CopT � CT )n ! CopT � CTNow if � has a free type variable V (and n other variables) then its denotation will be:[[�]] : (CopT � CT )n � (CopT � CT )! CopT � CT(where the behaviour on the second argument models instantiations of V ). To model recursivetypes we want to de�ne: [[�V:�]] = [[�]]y : (CopT � CT )n ! CopT � CTwhich by the remarks on page 3 is symmetric, and by Theorem 5.5 is a D-functor as required.Thus in order to model recursive types it is necessary for CopT �CT to have enough initial algebras(equivalently terminal coalgebras) for the [[�]]y functor to always be de�nable. One could demandthat it be algebraically compact with respect to D-functors (the example of C = PreDom showsthat this is consistent). However, in general it is su�cient to require only those initial algebrasnecessary for modelling all syntactically de�nable types.Our approach leads to the possibility of having essentially algebraic notions of model forlanguages like Plotkin's metalanguage. It would be interesting to fully develop the inducedequational calculus for such a language. One merit of our characterisation of initial algebras(and terminal coalgebras) as special invariant-objects (Theorem 5.2), is that the property ofbeing an initial algebra is thereby reduced to three equations (two expressing the isomorphismof the invariant object, and one expressing the de�ning property of being special). As well asthe usual real-world models (pPreDom for example [18]), there should also be an initial modeland also a fully abstract closed-term model obtained by quotienting by operational equivalence.We conclude this section with an application of the results of this paper to yield furtherinformation about �. The functor TT referred to above inherits its behaviour on objects (of CT )from the behaviour of T (on objects of C). On morphisms, TT maps a morphism from X to Yin CT given by X f�! TY (in C) to the morphism from TX to TY given by TX ����Tf�����! T 2Y .It is routine to check that this is indeed a functor on CT . Moreover TT is a D-functor on CT . Itsenrichment is given by morphisms Y XT TT�! TY TXT , de�ned as � applied to:Y XT � TX � � � � T� � t- T 2YLemma 6.5 T� FT ����! � is an initial TT algebra in CT .Proof. Take any morphism TX f�! X in CT . Thus TX f�! TX in C. Consider the diagrams19



below, the �rst in CT , the second in C.T� TTx- TX T� Tx- T 2XFT� ? (1) ?f � ? (2) ?f � �� x - X � x - TXWe now show that x makes (1) commute if and only if it makes (2) commute (the reason for thetype mismatch in the diagrams is that in (1) x is considered qua Kleisli morphism).f � TTx = c � FT� in CTi� � � Tf � � � � � Tx = � � Tx � � � � in C (translation of above)i� � � � � f � � � Tx = � � � � x � � in C (by naturality of �)i� f � � � Tx = x � � in C (by monad unit law)It follows (from the initiality of T� ��! � in C) that there is a unique x making (1) commute.2Theorem 6.6 � ��1���! T� is a terminal T -coalgebra in C.Proof. By the lemma, T� FT ����! � is an initial TT algebra in CT . So, by consistent algebraiccompactness for D-functors, � FT ��1�����! T� is a terminal TT coalgebra in CT .To prove the theorem, take any morphism X f�! TX in C. Now consider the two diagramsbelow, the �rst in C, the second in CT .TX Tx - T� TX TTy - T�6 6 6 6f (1) ��1 FTf (2) FT��1X x - � X y - �We show that:FT : fX x�! � in C j (1) commutesg �! fX y�! � in CT j (2) commutesgis a well-de�ned bijection. Then the terminality of � ��1���! T� in C follows from that of� FT ��1�����! T� in CT .First, note that FTTx = TTFTx. So if x makes (1) commute then y = FTx makes (2)commute, as (2) is the image of (1) under FT . So FT is indeed a well-de�ned function betweenthe two sets. Also the function is injective, as the faithfulness of FT follows easily from thefaithfulness of T .It remains to show that any y making (2) commute is obtained as y = FTx for some x making(1) commute. Note that TT y = FT (��Ty) (where on the right-hand side we consider X y�! T�qua morphism in C). So if y makes (2) commute then:y = FT� � TT y � FT f= FT� � FT (� � Ty) � FTf= FT (� � � � Ty � f)20



Now setting x = ����Ty�f , we have (by the assumption that (2) commutes) that FT (Tx�f) =FT (��1 � x). So, by the faithfulness of FT , Tx � f = ��1 � x, and (1) does indeed commute. 2It is known that for any strong monad, T , any initial T -algebra T� ��! � for which ��1 isa terminal T -coalgebra gives � as a �xed-point object (see [2]). The above theorem showsthat, when the monad is commutative and T faithful, any �xed-point object arises in such away. Perhaps, in the light of Freyd's work, it would be more natural to de�ne the notion of�xed-point object using the terminal coalgebra requirement rather than the global element !.7 ConclusionsWe have given conditions on a category with a strong monad under which Freyd's principleof versality holds (for suitably enriched endofunctors) in the Kleisli category. This mean that,assuming enough initial algebras exist, one can model recursively typed calculi in the Kleislicategory.Although the use of the Kleisli category is in keeping with Moggi's approach to semantics [14],there are also reasons to be interested in the Eilenberg-Moore category. Under certain conditionsthe Eilenberg-Moore category is bicartesian, symmetric monoidal closed, with a comonad andthus models intuitionistic linear logic (an observation due to Gordon Plotkin and Bart Jacobs, see[9] for details). So the Eilenberg-Moore category has the potential to model quite sophisticatedtype-systems. In order to model recursive types we would like to apply the analysis of Section 5to the Eilenberg-Moore category. The work of Kock [13] leads us to believe that, wheneverC is cartesian closed with �nite limits and T is commutative, then CT can be construed asa D-category with bilinear composition. Thus under these conditions (which are in any casenecessary for obtaining the model of intuitionistic linear logic), a treatment along the lines ofthat of Section 6 should also be possible for CT .An interesting open problem is to �nd general conditions that will ensure that the initialalgebras used to model recursive types are constructable as the colimits of !-chains startingwith an initial object (as in the the classical case of O-categories [21]). Ideally one would thenlike to obtain consistent algebraic compactness from a limit/colimit coincidence along the linesof [21, Theorem 2].One further question is whether there are general conditions that will ensure the existenceof enough initial algebras to solve recursive type equations. If initial algebras are obtainableas !-colimits, then it is su�cient to require enough cocompleteness (or dually, completenessfor terminal coalgebras). In fact, for internally small complete categories (with respect to sometopos) the question has a rather trivial answer. For abstract reasons, any small complete categoryis (bi)algebraically complete (that is all internal endofunctors have both initial algebras andterminal coalgebras) [8]. In this setting a quite simple requirement su�ces to obtain algebraiccompactness: it is enough that the hom-\sets" of the category are objects of the topos for whichevery endomorphism has a �xed-point. This approach should be applicable to the Eilenberg-Moore categories of suitable internal strong monads on small complete categories (for abstractreasons the Eilenberg-Moore categories will also be small complete) such as the lift monad on asmall complete category of predomains. So, in such a situation, (internal) algebraic compactnesscan be obtained without resorting to the analysis of this paper.21
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