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Abstract

One of the main clinical applications of speech technology is in
voice-enabled assistive technology for people with disordered
speech. Progress in this area is hampered by a sparseness in
suitable data and recent research have focused on ways of in-
corporating knowledge about typical (i.e., un-impaired) speech
through the use of e.g., deep belief neural networks. This paper
presents a new way of using deep belief neural networks trained
on typical speech, namely to improve pronunciations for indi-
vidual speakers. Analysis of the posterior probabilities show a
clear correlation between measured pronunciation ‘disordered-
ness’ and the overall speech recognition performance of the full
system. Based on this, we propose a method to use deep be-
lief network outputs to i) identify which words are pronounced
differently than what would be expected from a typical pro-
nunciation, and ii) subsequently generate new pronunciations.
We investigate different methods for pronunciation generation
as well as what is the best way of using the modified pronun-
ciations to inform the system development stages. Using the
UAspeech database of disordered speech, we demonstrate im-
provement in average accuracy of 69.76% to 70.51%, with some
speakers showing individual improvements of up to 10%.
Index Terms: dysarthric speech recognition, learning speaker-
specific pronunciations

1. Introduction

People with severe physical handicaps may find it difficult to
operate devices in their homes. Providing hands-free, voice-
enabled assistive technology can help towards them experienc-
ing more independence and potentially lead to a better quality
of life [1]. However, as many physical handicaps affect motor-
control mechanisms including the speech articulators, potential
users often have disordered speech, also known as dysarthric
speech. Dysarthric speech is characterised by being ‘slurred’ as
well as highly variable, and can be hard to understand for lis-
teners unfamiliar with the particular impairments of a speaker.
This often rules out the use of conventional, off-the-shelf au-
tomatic speech recognition (ASR) systems trained on typical
speech [2], leaving clinical scientists and researchers working
with dysarthric speakers with many design choices in order to
establish a system that is tailored to the specifics of a given
speaker’s impairment, yet leverages off typical speech ASR
knowledge as much as possible.

One of the things that impacts on choice of models and
training strategies is the lack of suitable training data as speak-
ers with dysarthria can find it tiring and distressing to speak for
any length of time. Very few databases exists, and research of-
ten concentrates on optimising learning strategies when faced
with sparse data. Some success have been demonstrated by us-
ing both whole-word and triphone models in speaker depen-
dent and speaker adapted systems [3, 4, 1, 5, 6]. In [7] we

trained dysarthric triphone-based speech ASR systems by ap-
plying ‘state-of-the-art’ training and adaptation strategies devel-
oped on typical speech, and achieved significant improvements
on previously published results using the UAspeech database
(one of the largest databases of English dysarthric speech [8]).
In [9] we have further expanded on this work by including fea-
tures generated from deep belief neural networks (DNNs) [10]
trained on out-of-domain (OOD) data, such as typical speech
data from the AMI collection of meeting data. Adding features
from the DNNs pre-trained on OOD provides a further improve-
ment for the UAspeech task. However, for some speakers using
conventional training strategies and typical speech data is only
going to help up to a certain point: their pronunciation patterns
are too different from that which is inherently expected of a sys-
tem with a canonical dictionary. This paper addresses this issue
by looking at ways of tailoring an ASR system to a speaker. We
propose a method of altering the training data transcriptions and
test data dictionaries so they are tuned to the individual speaker
and matches the particular speech impairment of that speaker.

In a conventional ASR system, the word pronunciations are
normally fixed and unlike the acoustic and language models,
often no attempt is made to derive pronunciations using data-
driven methods. Exceptions are automatic methods for gen-
erating pronunciations for out-of-vocabulary words, letter-to-
sound mapping [11, 12, 13], and learning accent and dialect
specific dictionaries [14, 15]. In the area of disordered speech,
research on the detection of pronunciation errors have attracted
some interest [16, 17], as have work on predicting intelligibil-
ity [2, 18, 19]. Mengistu and Rudzicz showed good results by
adapting the pronunciation dictionaries to individual speakers
[20]. However, their method involve expert assessment of the
individual speakers’ pronunciation pattern which can be very
time-consuming.

This paper presents an automatic way of detecting mis-
pronunciations and subsequently adjusting the dictionary to re-
flect this. We look at using the posterior probability outputs of
OOD DNNs as indicators of how a particular speaker’s pronun-
ciation of a given word is different from that represented in the
typical speech pronunciation. We investigate the different ways
of letting this information feed back into the training, adaptation
and testing stages of a system.

In section 2 we quantify the degree of discrepancy between
the dysarthric speech pronunciations as observed in the poste-
rior probabilities in comparison with those of a typical speaker,
and we analyse to what degree this discrepancy is correlated
with the overall ASR performance for a given speaker. Sec-
tion 4 gives some details about the experimental setup as well
as details of the different specific strategies we have explored
for deriving alternative speaker dependent pronunciations, and
finally sections 5 and 6 present our results and conclusions.
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2. Analysis

We base our analysis on DNNs pre-trained on typical speech
from the AMI corpus. They are trained using mono-phone la-
bel targets and by applying a suitable sigmoid function at the
final layer we can interpret the output as frame-level posterior
probabilities. When passing dysarthric speech from a particular
speaker through the network it is hence possible to interprete
peaks in the posterior probabilities as indicators of the pronun-
ciation pattern. We investigate to which degree the DNNs can
be used to identify pronunciation mismatch from that of typical
speech, and how better pronunciations can be derived.

Figure 1, top frame, shows a typical example of the pos-
terior probabilities output from a DNN; this is for all of the
frames from the word 'Line’ spoken by speaker FO4 from the
UAspeech database. The dark areas indicate phone labels that
have a very high probability. Moving along the x-axis, it is
possible to see a relatively clear sequence of likely phone la-
bels, with some uncertainty around the phone label ’/1/’ where
it looks like the speaker has sounded intermittently like an */m/’
or ’/n/’. For each frame, finding the phone label with the max-
imum posterior probability would yield the most likely phone
sequence, with the highest possible probability for each frame.
One can find the frame-level posterior probability sequence for
any phone sequence by indexing into the posterior probability
matrix. The resulting vector of posterior probabilities will have
values close to 1 in frames where the phone label with which we
are indexing is a good match to how the phone is pronounced,
and likewise have low probabilities if there is a big mismatch.

The bottom pane of Figure 1 shows the posterior probabil-
ities for two such different phone sequences, namely, i) the se-
quence corresponding to the pronunciations from the standard,
speaker independent dictionary (based on typical speech pro-
nunciation patternsand ii) the phone sequence which is the most
likely when looking at which phone label has the maximum
probability per frame; the maximum sequence can be seen as
an ‘observed’ (or hypothesised) pronunciation for this particu-
lar speaker and this particular word instance.

The speaker in Figure 1 has pronounced all of the phonemes
in the word fairly correctly except /I/. This is reflected in the
line plot of the posterior probabilities for the two phone se-
quences: the probability for the typical speech pronunciation
drops around frames 20-25, and there is a discrepancy between
the posterior probabilities of the typical speech pronunciation
and those corresponding to the observed/dysarthric speech pro-
nunciation. We hypothesise that the size of the distance between
the observed and typical phone sequence is an indicator of to
what degree the speaker’s speech is disordered. To investigate
this further, we accumulated the distance between observed and
typical probabilities over all words said by each speaker. We
then looked at the correlation between this value and the intelli-
gibility of the individual speakers as well as the WER achieved
for the full ASR systems.

Figure 2 illustrates this. It contains a plot of the speaker
dependent measured discrepancies vs. either WER for the full
ASR system (crosses on the left-hand plot) or the speaker’s in-
telligibility as provided with the UAspeech meta-data (crosses
on the right-hand plot). There is a clear correlation between
probability mass distribution discrepancies and both the WER
and the intelligibility. On each plot, a fitted linear regression
curve is also plotted. The parameters corresponding to this line
in the WER-plot accounts for 90% of the variance. The equiva-
lent number for the intelligibility line is 87%. In summary, there
is a strong correlation between the discrepancies as observed for
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Figure 1: Phone-level output posterior probabilities for all
frames in the word ’Line’. For clarity, only phone labels rel-
evant to this word is shown on the y-axis. The bottom plot
shows two sequences of posterior probabilities for the same
word. Please see text for further explanation.

the posterior probability outputs and the resulting overall sys-
tem WER. For a particular speaker in need of an ASR system,
it is therefore possible to use a DNN in a diagnostic fashion to
measure the ‘disorderedness’ of a particular speaker. Notably,
it is possible that even very small amounts of data could give
useful insight and be used as a first step towards tailoring that
speaker’s system configuration.

3. Method

We propose a method for deriving phone level pronunciations
for individual speakers with dysarthric speech, which is based
on using a DNN to find a phone sequence that has a higher
accumulated posterior probability associated with it, than the
typical phone sequence does.

Let py(f,1) be the phone level posterior probability for
word w, frame f and phone label [, and let L represent phone
sequences arising from using a particular method of pronunci-
ation generation, the accumulated posterior probability associ-
ated with that phone sequence L is given as

)

pu(f;1) ey

leL

w
Kp=>_
w=1

f=1

where W is the number of words for that speaker and F, is
the number of frames for word w. The difference in accu-
mulated posterior probability for two pronunciation generation
methods (e.g., pronunciations derived according to the typical



2500 2500
x Typ x Typ
% Dys

% Dys

1250 1250

Mean Square Difference
Mean Square Difference

0 50 100 0 50 100
WER Speaker Intelligibility

Figure 2: [llustration of correlation between the degree of
discrepancy between ’'typ’ and ’dys’ (observed on dysarthric
speech) posterior probability masses and the overall full sys-
tem WER (lefthand-side panel) and the intelligibility for that
speaker (righthand-side panel). Super-imposed on the plots are
the linear regression lines.

speech dictionary ("typ’) and by doing a frame-level maximum
the observed pronunciations described above (’dys’)) is then:

AK = Ki,,, — Ki,,, @)

Kp,,. represent the phone sequence giving the maximum pos-
terior probability, and we hypothesise that by choosing a pro-
nunciation generation method, L which reduces the difference
in Eq. 2, we can increase the performance of the final ASR sys-
tem. This can be shown to be equivalent to reducing the distance
for each word instance:

minAK = min{Ky,,, - K;}
= Inﬁill {Z (KLdysw - Ki/w)}
S (Ki -Kp) O

4. Experimental setup

We are looking at finding pronunciation generation methods, L
which will improve recognition results for dysarthric speakers.
Each tested method will be used to derive pronunciations from
the training data, and the resulting transcriptions and dictionary
will be applied at some or all of training, adaptation and testing
stages of a full ASR system to investigate what the effect is.

To this end, we train a range of speaker independent and
speaker adapted systems, which allows us to compare results
to a set of baseline systems established by using the typical,
speaker-independent annotations and pronunciation forms. We
test the systems on the UAspeech task which is single word
recognition and have continued following the decoding strat-
egy deployed in [7, 9]. A uniform language model was used,
with a word grammar network containing silence models at the
start and end, and all possible test words in parallel.

For the acoustic modelling in all the systems, the data is en-
coded in ‘tandem features’. These are feature vectors comprised
of a conventional feature vector - in our case a 13-dimensional
PLP vector with added first and second order derivatives - aug-
mented with features extracted from a DNN pre-trained on the
AMI corpus [21]. The DNN was trained on filterbank outputs
and the DNN features used in the ASR systems are stacked
bottleneck features as described in [22]. This system setup

gave very competitive results in [9]. All Hidden Markov Mod-
els (HMMs) were trained using the maximum likelihood (ML)
criterion. State-clustered, triphones having Gaussian mixture
models with 16 components per state were used. Speaker adap-
tation was carried out using the maximum a posteriori (MAP)
technique [23].

4.1. Data

The UAspeech database contains synchronised audio and vi-
sual streams from 15 speakers (4 female and 11 male). The
dysarthric speakers were asked to repeat single words from
5 groups: 10 digits, 29 Nato alphabet letters, 19 command
words (delete’, ’enter’ etc.), 100 common words (’the’, will’
etc.), and 300 uncommon words chosen to be phonetically
rich and complementary to the remaining words (’Copen-
hagen’,’chambermaid’ etc.). Full details of the corpora can
be found in [8]. The speakers all have dysarthric speech, and
accompanying the database are percent intelligibly scores as
obtained from listening tests with unfamiliar listeners. These
range from 4% to 95%. Following previously published work
using the UAspeech for ASR (e.g. [3]) the data was divided into
training and test data with a 2:1 split, using blocks 1 and 3 for
training and block 2 for testing. As our method relies on having
examples of a particular word in the training set, we exclude
all the uncommon words which differ between each recording
block. In total we have about 9 and 3 hours per speaker in the
training and test set respectively.

The DNN was trained on the AMI dataset [22], which con-
sists of meeting room headset microphone recordings with mul-
tiple speakers per session. It contains about 127 hours of data.
The speech is conversational of nature and there is a relatively
large variety in accent, (although all speakers can be considered
fluent in English).

5. Results

We explored the following methods for generating speaker de-

pendent pronunciations:

‘raw’ : In the extreme, setting L == Lgys in Eq. 2 would

minimise the distance but also render the pronunciations
practically useless by becoming very long. In practice, we
generated the pronunciations and subsequently applied post-
filtering by removing all phones that were too short (affected
frames were then re-assigned to neighbouring phones). A
limit of 4 frames was found empirically to be a good choice.

‘avrmax’ : One way of reducing the number of phones in
each pronunciation is to impose some structure. In all the fol-
lowing methods, this is done by imposing the phone bound-
aries from the reference alignments for that particular speaker
and word, whilst still allowing the phone label identity to
change.!. For each phone segment, 7, the ‘avrmax’ method
assigns the phone label, /,, as the one with the highest poste-
rior probability, i.e. l,, = max = Kr,,,, - Bestresults were

obtained by being conservative about which segments were
given new phone labels, and the results presented here will
keep the reference phone label except when the K-distance is
too large (i.e., we are confident that the speakers pronuncia-
tion deviates from the typical). The threshold was empirically
set at 0.8.

INote, that this a step towards better pronunciations modelling:
phoneme substitutions are handled, however further work is needed to
expand the methods to also allow for deletion and insertions



Word Pronunciations
Accuracy per word
‘typ’ 69.99 1.16
‘raw’ 59.96 6.38
‘avrmax’ 70.37 4.32
‘probwords5’ 70.51 1.17
‘probwords20’ 70.38 1.17
‘typocc’ 70.37 1.16

Table 1: Word accuracy as a result of using different types of
speaker specific dictionaries during testing and number of pro-
nunciations per word. Please see text for explanation of pro-
nunciation generation methods.

‘probwords’ : This method extends the ‘avrmax’ methods
above by restricting it to a subset of the words that appear to
be problematic, as in mis-recognised when tested on a part of
the training set. The size of the subset will greatly affect the
performance of this method and we evaluated a large range
of values. Here we present results from two such evaluations:
either allowing new pronunciations for the top 5 or the top 20
problem words.

‘typocc’ : This method is the most conservative of the meth-
ods in that it will use — for each speaker — the actual pronunci-
ation picked during a forced alignment for a particular word
from the typical speech dictionary. The effect is that no new
pronunciations are generated, however, pronunciation varia-
tions present in the typical speech dictionary which do not
appear to be used by the speaker will not be present in the
speaker dependent dictionary.

5.1. Effect of different pronunciation generation methods

The results of testing the various pronunciation generation
methods is presented in Table 1 alongside the average number
of pronunciations in the generated dictionaries. The ’typ’ dic-
tionary is the typical speech dictionary, i.e., the un-modified,
speaker independent dictionary.

The ‘raw’ method is by far the worst with an accuracy of
59.96%, which is about 10% lover than that of the baseline sys-
tem (‘typ’). Although the ‘raw’ method produces dictionaries
with pronunciations very close to the pronunciations observed,
they clearly fail to generalise. The resulting pronunciations tend
to be very long phone sequences with an average of 6.21 words
which is almost twice as long as for the other methods that were
all restricted to using the same number of phonemes as the ‘typ’
pronunciations had. All of the other methods show an improve-
ment in performance in comparison to the ‘typ’ score, with the
‘probwords5’ giving the highest accuracy.

5.2. Effect of using speaker dependent pronunciations at
training, adaptation and testing stages

We also wanted to investigate the effect of using the pronun-
ciations during training and adaptation, and so we ran all pos-
sibly combinations of using typical, reference pronunciations
(‘typ’) or speaker dependent, dysarthric speech pronunciations
(‘DYS’). Only the results for the ‘probwords5’ pronunciation
generation methods are shown in Table 2, but we observed the
same trends for all the methods.

Looking first at the overall averages, it can be seen that the
earlier the ‘DYS’ pronunciations are introduced the better: the

Train typ typ typ typ DYS DYS
Adapt - - typ typ DYS DYS
Test typ DYS typ DYS typ DYS

M04 (2%) | 10.0 104 129 13.1 128 129
F02 (6%) | 39.0 39.0 429 442 468 47.0
M12 (%) | 21.5 221 275 278 260 263
MO1 (17%) | 39.7 417 494 499 46.6 48.0
MO7 (28%) | 80.5 80.1 83.8 837 850 84.6
F02 (29%) | 50.7 519 60.0 61.1 639 635
M16 (43%)| 70.1 713 733 731 756 769
MO5 (58%) | 70.0 704 749 765 759 765
M11 (62%)| 739 73.1 760 749 745 73.6
F04 (86%)| 764 77.0 80.8 81.7 83.1 84.0
M09 (90%) | 899 89.8 914 909 916 0916
M14 (93%) | 83.7 837 870 86.8 872 869
MI10 (95%) | 94.8 947 962 963 964 959
MO8 (95%) | 92.7 921 944 939 941 935
FO5 (95%) | 958 962 959 959 964 96.4

Average ‘65.91 66.23 69.76 69.99 70.39 70.51

Table 2: Word accuracy rates using the ‘probwords5’ pronun-
ciation generation method. Results per speaker (intelligibility
in parenthesis). Top three rows indicate usage (during training,
adaptation and/or testing): ‘typ’ - typical speech pronuncia-
tions, ‘DYS’ - dysarthric speaker specific pronunciations.

results gradually increase from the baseline result of 65.91%
to 70.51%. Inspecting the results for the individual speakers
show a more detailed picture: as expected some speakers have
not improved (a few even have a negative result) whereas other
speakers have improved by up to 10%. This confirms our ini-
tial statement that introducing speaker specific dictionaries can
greatly benefit some speakers.

6. Discussion and conclusions

This paper has investigated one way of designing an ASR sys-
tem for a speaker with dysarthria, namely by modifying the pro-
nunciations so they represent the specific speech impairments of
the speaker. We used DNNSs pre-trained on typical speech and
demonstrated that there exists a correlation between the phone-
level posterior probabilities corresponding to the typical speech
pronunciation and the performance (as measured by WER) of
the final system. We have also seen how this discrepancy de-
pends on the severity of the speaker’s dysarthria and believe
this finding can be utilised in a diagnostic fashion by practition-
ers and researchers looking at finding an optimal system for a
particular speaker with dysarthria.

We then investigated several methods for generating
speaker specific pronunciations and observed that overall best
results were achieved by carefully choosing for which phones
alternative pronunciations should derived. We also showed that
best results are achieved when using the pronunciations during
both training, adaptation and testing.
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