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Locally Non-compact Spaces
and Continuity Principles

Andrej Bauer* Alex Simpson'
June 10, 2003

Abstract

We give a constructive proof that Baire space embeds in any inhabited
locally non-compact complete separable metric space, X, in such a way
that every sequentially continuous function from Baire space to Z extends
to a function from X to R. As an application, we show that in the presence
of certain choice and continuity principles, the statement “all functions
from X to R is continuous” is false. This generalizes a result previously
obtained by Ecardé and Streicher, in the context of “domain realizability”,
for the special case X = C[0, 1].

1 Introduction

In a recent paper, [ES02], Escardé and Streicher analyse continuity principles
in the context of so-called domain realizability, i.e. in realizability toposes con-
structed over domain-theoretic models of the untyped A-calculus. In such mod-
els, the internal statement “all functions from Baire space to N are continuous”
is known to be false (even though externally all morphisms from Baire space
to N are continuous), because it conflicts with choice principles valid in the
models. Escardé and Streicher show that, similarly, the internal statement “all
functions from C[0, 1] to R are continuous” is false. (Once again, externally,
all morphisms from C[0,1] to R are continuous.) Their proof exploits specific
features of the space C[0, 1], and requires a concrete analysis of the nature of
“realizers” of certain functions in the model. In this paper, we show instead
how it is possible to derive the failure of continuity principles, for a wide range
of analytic spaces, directly from the known failure for Baire space.

Working within the context of constructive mathematics [Bis67, BB85], we
identify a property of complete separable metric spaces (CSMs) which we call
local non-compactness. Our main result, Theorem 2.3, states that Baire space,
which is itself locally non-compact, embeds in any inhabited locally non-compact
CSM, X, in such a way that every sequentially continuous function from Baire
space to Z extends to a function from X to R. This result is proved in Section 3.
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In Section 4, we apply Theorem 2.3 to derive Escardé and Streicher’s result
that “all functions from C[0, 1] to R are continuous” is false in domain realiz-
ability [ES02]. This is a simple consequence of the known result for Baire space,
together with the fact that C[0,1] is easily shown to be locally non-compact.
Furthermore, our approach establishes a more general result that for any in-
habited locally non-compact X, the statement “all functions from X to R are
continuous” is false in any topos in which certain choice and continuity principles
are valid.

We believe that Theorem 2.3 may have other applications in computable
and constructive analysis. Indeed, it may provide a useful general tool for
establishing that properties of Baire space find themselves reflected in analogous
properties of other locally non-compact spaces.

2 Locally non-compact metric spaces

Following Bishop [Bis67, BB85], we do mathematics using intuitionistic logic,
and we assume ACg: the axiom of choice for properties Vz € N.3y € Nip. We
shall not need dependent choice. For the development that follows, it does not
matter whether real numbers are taken to be Cauchy sequences of rationals,
with equality as an equivalence relation over them, or whether real numbers are
taken to be equivalence classes of Cauchy sequences. The former is Bishop’s
approach to real numbers, the latter is the natural approach when reasoning
in the internal logic of an elementary topos, where, because we assume ACy g,
the object R of equivalence classes of Cauchy sequences is isomorphic to the
favoured object of Dedekind reals.

We assume familiarity with the constructive notions of metric space, Cauchy
sequence and convergence. Because we consider several notions of continuity,
we spell out each one of them. A function f: X — Y between metric spaces is:

— uniformly continuous when for every £ > 0 there exists § > 0 such that,
for all z,2' € X, if d(z,2") < ¢ then d(f(x), f(z')) <e.

— pointwise continuous at x € X when for every ¢ > 0 there exists § > 0 such
that, for all ' € X, d(z,2") < § implies d(f(z), f(z')) < e. A function

which is pointwise continuous at every point is pointwise continuous.

— sequentially continuous when it preserves limits of convergent sequences:
if (a;)ien converges to a in X then (f(a;))ien converges to f(a) in Y.

For a metric space (X,d), we write B(x,r) for the open ball centered at
r € X with radius r > 0, and B(xz,r) for the closed ball. We say that (X,d)
is separable if it contains a countable dense subspace; and that it is complete
if every Cauchy sequence converges. As is customary we abbreviate complete
separable metric space as CSM.

In Section 3 we will need the “cone” and “hill” functions, which we define
now. For a metric space X, z € X, and 0 < g < r let cone(z,r) : X — R and
hill(z,r,q) : X — R be defined as

cone(z,7)(y) = max(0,1 —r~" - d(z,y))) ,
hill(z, ¢,7)(y) = max(0,1 - (r — ¢)~" - max(0, d(z,y) — q)) -



Figure 1: Graphs of cone(x,r) and hill(z, q,r)

See Figure 1 for a picture of a cone and a hill.
We next define the concepts needed to formulate our main result, Theo-
rem 2.3 below.

Definition 2.1 A sequence without accumulation point in a metric space (X, d)
is a sequence (a;);en with the property that for every z € X there exist € > 0
and m € N such that d(z,a;) > € for all i > m.

Definition 2.2 A metric space (X,d) is locally non-compact at x € X if for
every ¢ > 0 the open ball B(z,¢) contains a sequence without accumulation
point in X. It is locally non-compact if it is locally non-compact at every .

Any infinite-dimensional separable Hilbert space is locally non-compact CSM,
for example the space £ of square-summable sequences; or the space C,[0, 1] of
uniformly continuous maps [0, 1] — R, equipped with the supremum norm. The
latter example generalizes as follows. An e-net in a metric space X is a fi-
nite subset N C X such that for every z € X there exists y € N for which
d(z,y) < e. A CSM is said to be complete totally bounded (CTB) if it has an
e-net for every e > 0. An injective sequence {(a;);cn in X is a sequence for
which d(ay,am) > 0 whenever n # m. For any CTB space X containing a con-
vergent injective sequence, it is straightforward to show that C,(X) is locally
non-compact.

Another important example of a locally non-compact CSM is the space R
of infinite sequences of real numbers with metric

o0
d(z,y) = > min(L, [z —yxl)- 27"
k=0

Baire space, which is also a locally non-compact CSM, can be defined as the
subspace ZN of RY.

In the presence of Church’s Thesis CTo [TvD88a, 4.3] the closed interval [0, 1]
gives a surprising example of a locally non-compact space. This is because CTyg
implies the existence of strong Specker sequencess [TvD88a, 6.4.7], which are
nothing but bounded monotone sequences of reals without accumulation point.
This example shows that it is possible for a CSM to be simultaneously CTB

and locally non-compact.



Theorem 2.3 If X is inhabited and locally non-compact then there exists a
uniformly continuous embedding e : ZN — X with the property that, for every
sequentially continuous f : ZN — 7, there exists a function f : X — R such
that f = foe.

3 The Proof of Theorem 2.3

In this section we prove Theorem 2.3. Throughout we assume that X is an
inhabited locally non-compact CSM with a countable dense subset S C X. The
proof consists of two parts, which are stated in the following two propositions.

Proposition 3.1 There ezxists a uniformly continuous embedding e : ZN — X
and a pointwise continuous map g : X — RY such that the following diagram

commutes.

x —7 gy

ZN

Proposition 3.2 For every sequentially continuous f : ZN — 7 there exists a
function h : RY — R such that the following diagram commutes.

]RNL]R

IN——> 1.

Theorem 2.3 follows immediately from Propositions 3.1 and 3.2, because the
map f = ho g is an extension of f along e.

3.1 Proof of Proposition 3.1

We begin by proving several lemmas that are needed for the proof of Proposi-
tion 3.1.

Lemma 3.3 A sequence that has no accumulation points has an injective sub-
sequence, which has no accumulation points.

Proof. Suppose (a;);en is a sequence without accumulation points. By ACq g
there is a choice function ¢ : N — N which chooses for each n € N some ¢(n) > n
such that there exists ¢ > 0 for which d(a,,a,,) > € for all m > ¢(n). Now the
subsequence (a.n (0))nen is injective, and it has no accumulation points because
it is a subsequence of (a;);en. n



Henceforth we assume that all sequences without accumulation point are injec-
tive.

Lemma 3.4 If (a;);en is a sequence without accumulation point and (b;);en is
a sequence satisfying lim;_, o d(a;, b;) = 0 then (b;)ien is without accumulation
point as well.

Proof. Consider an arbitrary z € X. There exists € > 0 and m € N such that
d(z,a;) > ¢ for all i > m. There exists n € N such that d(a;,b;) < €/2 for all
i > n. Then for all i > max(m,n) we have d(z,b;) > d(z,a;) — d(a;,b;) > &/2.
"

Lemma 3.5 For every x € X and € > 0 the open ball B(x,e) contains a
sequence in S without an accumulation point in X .

Proof. There exists a sequence (a;);en without accumulation point that
lies in B(z,e/2). By ACg, there exists a sequence (b;);eny in S such that
d(a;,b;) < e-27"! for every i € N. By Lemma 3.4 the sequence (b;);en
is without accumulation point. Tt is contained in B(z,e) because d(z,b;) <
d(z,a;) + d(a;,b;) <e/2+e-27171 <e. "

Lemma 3.6 Suppose (w;)ien is a sequence without accumulation point. There
ezists a sequence (&;)ien of positive real numbers such that d(w;, w;) > 2(§+&;)
whenever i # j.

Proof. By ACq there exists a sequence (m;);en of natural numbers and a
sequence ((;);en of positive real numbers such that d(w;, w;) > ¢; for all j > m,.
Let & = min({¢} U {d(w;,w;) | i # j Aj < m;})/5. Now consider any distinct
i,j € N If j > m; then d(w;,w;) > ¢; > 5&;, and otherwise d(w;,w;) > 5&;.
Similarly it follows that d(w;,w;) > 5¢;, therefore d(w;,w;) > 5(& +&;)/2 >
2(& +§5). =

Lemma 3.7 For anyv € X andn > 0 there exists a sequence (¢;);cz of positive
real numbers, and a sequence (v;)icz in S without accumulation point in X such
that, for alli,j € 7:

1. d(v,v;) < n/3,
g, <n/3 and g; < 2711,

d(viavj) > 2(5i +€j) unless i = j,

for all x € X, there exists a unique k € Z such that d(z,vy) < 2eg, or
d(z,v;) > ¢; for alli € 7.

Furthermore, we may assume that for every i € 7 there is p € N such that
g; = 27P,



Proof. Since X is locally non-compact at v, the ball B(v,n/3) contains a
sequence (v;);ecz in S without accumulation point, as was proved in Lemma 3.5.
Clearly it is the case that d(v,v;) < n/3. By Lemma 3.6 there exists a sequence
(&)iez such that d(v;,v;) > 2(& + &;). If we set &; = min(&;, /3,27 /1+1) then
the second condition is satisfied, as well as the third one because i # j implies
d(vi,v;) > 2(& + &) > 2(ei +€5).

To see that the fourth requirement is satisfied, consider any = € X. There
exists ¢ > 0 and ny; € N such that d(z,v;) > ¢ whenever |i| > n;. Because
g; < 2711 there exists no € N such that &; < ¢ whenever li| > ny. Define
n = max(ni,n2) and observe that |i| > n implies d(z,v;) > ¢ > ¢;. For every
i € 7 satistying |i| < n, d(z,v;) > &; or d(z,v;) < 2¢;. Therefore, there exists
J € Z satisfying |j| < n and d(z,v;) < 2¢j, or d(z,i) > ¢; for all i € Z with
li| < n. If the second case holds, then we may conclude that d(z,v;) > ¢; for all
i € Z. In the first case, there is a unique j for which d(z,v;) < 2¢;, since another
such j' implies d(v;,v;/) < d(z,v;) + d(z,v;:) < 2(¢; + £;), which contradicts
d(vj,vj) > 2(gj + ;) unless j = j'.

Finally, observe that the lemma still holds if we make all the £;’s smaller. By
ACy,, for each i € Z there exists p; € N such that 277 < ¢;. We may replace
<5i>i€Z with <2_pi>igz. ]

Let Z* be the set of finite sequences of integers. If a € Z* and j € Z, we

write aj for the sequence a followed by j. The empty sequence is denoted by []
and the length of a is denoted by |al.

Lemma 3.8 There exist a family (§(a))acz~ of positive real numbers and a
family (w(a))qez~ in S without accumulation point in X such that, for all a € Z*
and i,j € 7:

1. d(w(a), w(aj)) < é(a)/3,
2. §(aj) < 8(a)/3 and 5(aj) < 2711,
3. d(w(ai),w(aj)) > 2(6(ai) + d(aj)) unless i = j,

4. for any x € X, there exists a unique k € 7 such that d(w(ak),z) < 26(ak),
or d(w(ai),x) > d(ai) for alli € Z.

Proof. The sort of proof that comes to mind first, namely an inductive con-
struction of (0(a))qez+ and (w(a))qez+ by successive applications of Lemma 3.7,
uses dependent choice. We present a more careful proof that relies on separa-
bility of X and only requires ACq .

Let (s;)ien be an enumeration of S. Because ACy o implies choice from
Nx N to N” there exist choice functions ¢5 : Nx N — N and ¢, : Nx N —» N,
such that for all m,n € N the conditions of Lemma 3.7 are satisfied if we take
V= 8m,n =2"" g = 27%mn0 and y; = Sc,(m,n)(i)- Define mutually
recursive functions « : Z* - N and A : Z* — N by

k([]) r(aj) = cu(k(a), M) (j) ,
D) Aaj) = c5(k(a), Ma))(4) -
Now for a € Z* let w(a) = s,(,) and 6(a) = 2-Ma) | The desired properties of

(6(a))aez+ and (w(a))qez+ follow directly from Lemma 3.7 and the definition
of k and A. L]

0,
0,



Lemma 3.9 Let (0(a))aecz+ and (w(a))acz+ be as in Lemma 3.8. If a € Z* is
a prefiz of b € Z* then B(w(b), (b)) C B(w(a),2d(a)/3).

Proof. Tt follows from the first and the second condition of Lemma 3.8 that
for any @ € Z* and j € Z, B(w(aj),d(aj)) C B(w(a),20(a)/3). The general
case when b = ab; - - - b, is then witnessed by a chain of inclusions of the form
B(w(abi te b]) 5(&[)2 te b])) g B(w(abi cee bj+1), 2(5((1[)1 e b]'+1)/3). ]

Lemma 3.10 Let (6(a))aez+ and (w(a))acz+ be as in Lemma 3.8. For every
i € N and z € X, there exists a unique a € Z* such that d(w(a),z) < §(a), or
for all a € 7' it is the case that d(w(a),z) > 6(a).

Proof. We prove the lemma by induction on i € N. The base case just
claims that d(w([]),z) < 26([]) or d(w([]),z) > &([]), which of course holds.
To prove the induction step, suppose there exists a unique a € Z*+! such that
d(w(a),r) < 26(a), or d(w(a),z) > §(a) for all @ € Z*!. In the first case we
use the fourth condition of Lemma 3.8 to conclude that there exists a unique
b = aj € 72 such that d(w(b),z) < 26(b), or that d(w(b),z) > &§(b) for all
b € Z'*+2. In the second case, the first and the second condition of Lemma 3.8
imply, for all aj € Z+2,

d(w(aj),z) > d(w(a),z) — d(w(a),w(ay)) > d(a)/3 > d(aj) .

We prove Proposition 3.1. Let (0(a))qez+ and (w(a))qez+ be asin Lemma 3.8.
Observe that d(a) < §([]) - 3~I¢l = 3~lal for all @ € Z*. Define the map
e:7ZN = X by
e(a) = lim w(al;) .
71— 00

The first and the second condition of Lemma 3.8 imply that (w(a[;)):en satisfies
d(w(al;),w(al;)) < d(al;) <37 which means that it is a Cauchy sequence,
hence e is well defined. It is the case that d(e(a),w(al;)) < 371 To see
that e is uniformly continuous, consider any € > 0. There exists k& € N such
that 37 ¥t < £/2. If d(a, B) < 2% then af, = B, therefore

d(e(a):e(ﬂ)) < d(e(a),w(a[k)) + d(e(ﬂ)/w(ﬂrk)) <2. g—k+1 <c.

This shows that e is uniformly continuous. Next we define the map g : X — RY
as g = (gi)ien where the value of g; : X — R at € X is defined by the following
two clauses:

1. if there exists a unique a = agay .. .a; € Z*! such that d(w(a),z) < 2§(a)
then

9i(z) = a; - hill(25(a)/3,6(a))(z) ,

2. if d(w(a),z) > &(a) for all a € Z**+! then

g9i(z) =0.



Note that when both clauses apply they agree that g;(z) = 0, and by Lemma 3.10
at least one of the cases always applies, hence g; is well defined.

Let us prove that g; is continuous at x. First consider the case when
d(z,w(a)) > 6(a) for all a € Z™*!. Because (w(a))qez- is without accumu-
lation point there exists p > 0 such that d(z,w(a)) > p for all a € Z*!. By
the second condition of Lemma 3.8, there exists m € N such that §(a) < p/2 if
lla]lcc = max(|agl,...,|ai]) > m. Since there are finitely many a € Z**! such
that ||a||ec < m, we may define

7 = min({p} U{d(@, w(a)) = 6(a) | a € Z*, allow < m}) .

Let y € B(z,7/2) and a € Z*!. If ||al|oc > m then d(w(a),y) > d(w(a),z) —
d(z,y) > p—1/2 > p/2 > 6(a). If ||a||cc < m then d(w(a),y) > d(w(a),z) —
d(z,y) > d(w(a),z) — 7 > 6(a). In either case, y € B(z,7/2) implies ¢;(y) =
0, which means that g¢; is indeed continuous at x. Now consider the case
when there exists a € Z'*! such that d(w(a),z) < 2§(a). Then for every
y € B(x,20(a) — d(z,w(a))) it holds that d(w(a),y) < 26(a), therefore g; re-
stricted to B(z,0(a)/2) is equal to the continuous function a; -hill(2d(a)/3,0(a))
restricted to the same ball.

Since every g; is pointwise continuous, it is not hard to see that g is pointwise
continuous as well. Finally, observe that, for any a € ZY, Lemma 3.9 implies
that, for all i € N,

d(e(),w(al,)) < 26(al,)/3
therefore,
gile(a) = o - hill(28(al;)/3,5(al))(e(a)) = a;

Hence g(e(a)) = a, which concludes the proof of Proposition 3.1.

3.2 Proof of Proposition 3.2

We move on to proving Proposition 3.2. Assume given a sequentially continuous
f:ZN = 7. We construct a function & : RY — R extending f.
For v € RY and 3 € Z", define a sequence (hfa (7)Yien of real numbers by:

hg (v) = £(04)
Wy () = W) + (F(Bo ... B:0) - H cone(B;, 1/4)(17))”

We say that 3 is adequate for ~y if, for all i € N,
Bi—2/3<’yi<6i+2/3.
By ACq 0, for every v € RY, there exists 8 € ZN adequate for 7.

Lemma 3.11 If 8 and ' are both adequate for ~ then hz6 (v) = hfl ().

Proof. The proof proceeds by induction on i. Clearly hiﬁ(fy) = hiﬁl () in
the case that g; = B;, for all 7 < i. Otherwise, without loss of generality,
there exists j < i such that 3; < B7. Then, as both 8 and ' are adequate
for v, it holds that v; —2/3 < B; < B < v; +2/3. Thus 3} = §; + 1 and
Bj+1/3 < v; < B; —1/3, so cone(B;,1/4)(v;) = 0 = cone(f,1/4)(v;). By
induction hypothesis, hiﬁ(fy) = hfﬁl(v) = hiﬁil(fy) = hf,(fy). ]



The above lemma justifies the definition
hi(y) = hf(fy), for any (3 adequate for v .

The following technical lemma is in preparation for Lemma 3.13 below.

Lemma 3.12 If (&)ien is a sequence in [0, 1] satisfying &1 < &2, for alli € N,
then the infinite product H;’io(l — &) converges.

Proof. We need to prove convergence of the sequence (P;);en of partial

products

i—1

P=110-¢)

j=0
We show that m > n implies P, — P, < (2/3)™. There are two cases. First, if
& > 1/3 for all i < n, then
In the second case there exists k < n such that & < 1/2 and & > 1/3 for all
i <k. Then, forall i > k, P; < Py < (2/3)F and & < (1/2)”" ", s0

Pi— P = P& < (2/3)% - (1/2)* " < (2/3)F - (1/2)'Fi7*

From this we derive

m—1

Py — P < (2/3) Y (1/2)"FF < (2/3)F - (1/2)" 7 < (2/3)"

i=n

Lemma 3.13 For every v € RY, the sequence (hi(7))ien converges.

Proof. Let  be adequate for y. We must show that (hf(’y))ieN converges.
As f is sequentially continuous, there exists n such that (5o ... Bm-10%) = f(5)
for all m > n. Then, for m > n, the equality

m—1

BE() = 1(8) + () - £8) - [] ( T (cone(sy. 1/4 m))Q”) M
i=n 7=0
is easily shown by induction on m. Define
n+k T
& = [ (come(B;,1/4)(7;))
j=0

By Lemma 3.12, ¢ = [[pe,(1 — &) exists, and so (hS,(7))men converges to
() + (1= €)f(B). =

Finally, define
h(v) = lim h;(7y) .

i— 00

Lemma 3.14 For all a € ZY, it holds that h(a) = f(a).



Proof. Trivially, § = «a is (the only ) adequate for a. We must show
that lim,, . A2 (a) = f(a). Let n be such that, for all m > n, it holds that

f(Bo - Bu0) = £(8). Then, by (1), we have h3,(y) = f(B) = f(a) for al
m > n, because cone(fj,1/4)(«;) = 1 for all j and so £ = 0. ]

This completes the proof of Proposition 3.2. Observe that, in addition to
showing the existence of h given f, the proof constructs a function mapping any
sequentially-continuous function f : ZN — Z to a corresponding hy - RY - R

Various strengthenings of Proposition 3.2 are possible, for which we do not
include proofs as they are not required for our application. First, it is possible
to generalize the proposition to apply to any continuous f : ZN — R. Second, it
can be shown that the function h; constructed above is sequentially continuous.
Note that with the assertion of sequential continuity added, Proposition 3.2 be-
comes a statement with content in classical mathematics; whereas, as currently
stated, the result is a classical triviality.

4 Continuity and Choice Principles

Continuity principles are statements asserting that all functions between certain
spaces are continuous. Nontrivial continuity principles are inconsistent with
classical mathematics, but play an important réle in Brouwer’s intuitionistic
mathematics. Interesting continuity principles are also a feature of the internal
logic of many toposes. It is well-known that there are nontrivial interactions
between continuity principles and choice principles. In this section we briefly
survey a few such results. Our main contribution, Theorem 4.5, explains the
failure of certain continuity principles in toposes based on domain realizability.
For CSM X and Y we consider the continuity principle:

All functions f : X =Y are pointwise continuous. (CP(X,Y))
For sets X and Y we consider the choice principle:
VzeX.FyeY.p(z,y) = IfEYX VeeX. p(z, f(z)). (AC(X,Y))

Thus ACo o is AC(N,N). As is standard, we write AC; o for AC(NV,N), and
ACy for AC(NY'|N). Easily ACy o implies ACq g, and ACyo implies AC; o.

In Brouwer’s intuitionism, and in the realizability topos RT(K>) over Kleene’s
second algebra Ky [KV65, Bau00], both CP(ZN,N) and AC, o are valid. These
two principles interact well together:

Proposition 4.1 (CP(ZY,N) + ACy o) For all CSM XY, the continuity prin-
ciple CP(X,Y") holds.

On the other hand, stronger forms of choice are not compatible with CP(ZN, N).

Proposition 4.2 (CP(ZN,N)) ACy,o does not hold.

For proofs of Propositions 4.1 and 4.2, see Sections 7.2.7 and 9.6.10 of [TvD88b]
respectively. Note that Section 7.2.7 of ibid. relies on the continuity princi-
ple WC-N, which follows easily from AC; g and CP(Z",N).
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Given Proposition 4.2, it is natural to ask just how strong a continuity
principle is still consistent with ACs . In this context, it is interesting to look
at the realizability topos RT(D) where D is a universal Scott domain, as this
validates choice between any two finite types [BB00, Bau00], in particular ACs g.
In RT(D), as a consequence of the existence of a continuous modulus of uniform
continuity on K, the continuity principle CP(K,N) holds, where K C ZY is
Cantor space:

K={aecZ"|VieN.0 <a; <1} .

(In fact a stronger continuity principle holds: all functions from K to N are
uniformly continuous.) Again, CP(K,N) interacts nicely with ACy . Recall,
from Section 2, the notion of CTB space. We say that a CSM X is locally CTB
if every point in X has a CTB neighbourhood.

Proposition 4.3 (CP(K,N) + ACy o) For all locally CTB X and CSM'Y , the
continuity principle CP(X,Y) holds.

This result follows from Section 7.4.4 of [TvD88b]. Observe that, since K is
itself (locally) CTB, the principle CP(KK, N) is itself a special case of the general
continuity principle established.

The notion of locally CTB space provides one possible constructive formu-
lation of local compactness (indeed, in the presence of Brouwer’s Fan Theorem,
it implies that the Heine-Borel property holds locally [TvD88a, 7.4.10]). Thus
domain realizability shows that ACy o is consistent with a continuity principle
for "locally compact” spaces. As the main result of this section we show that,
in contrast, extending the continuity principle to any single inhabited locally
non-compact space is inconsistent with ACy .

To obtain inconsistency, we require only a very weak continuity principle to
hold. Define the one-point compactification of N to be the subspace Nt C K:

Nt ={a€eK|VneN.(a, =1 = Vm>n.a,=0)}.

As Nt is a retract of K, it holds that CP(K,N) implies CP(N* ,N). Thus
CP(N*,N) holds in domain realizability. Once again, CP(NT,N) enjoys a pleas-
ant interaction with ACy o:

Proposition 4.4 (CP(N*,N) + ACy ) For all CSMs X and Y, it holds that
all functions from X to'Y are sequentially continuous.

Proof. Because NT is a retract of NV we have AC(N*,N). Let f: X - Y
be a function and (a;);en a sequence in X converging to z. We want to show
that (f(a;))ien converges to f(z). First we construct a function g : Nt — X
such that g(0¥) = z and ¢(0"10%) = a, for all n € N. We define g(a) =
lim, 0 h(a,n) where h(a,n) = z if af, = 0" and h(a,n) = a, if af, =
0m10" ™1, Now let ¢ > 0. For every a € N*, it holds that d(f(z),g(a)) <
e or d(f(z),g9(a)) > €/2. By AC(N',N) there exists a function ¢ : Nt —
{0,1} such that, for all @« € N*, if ¢(a) = 1 then d(f(z),g(a)) < e, and if
c(a) = 0 then d(f(z),g(a)) > /2. By CP(N*,N) there exists m € N such that
al,, = 0™ implies ¢(a) = ¢(0¥) = 1. This means that, for all n > m, we have
d(f(z), flan)) = d(f(x),g(0"10%)) < e. Therefore lim, . f(a,) = f(x). ]
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Theorem 4.5 (CP(NT,N) + ACs0) For any inhabited locally non-compact CSM
X, the continuity principle CP(X,R) is not true.

Proof. We derive a contradiction from the assumption that all functions
X — R are pointwise continuous. Let f : ZN — Z be any function. As
AC, y holds, so does AC, g, so, by Proposition 4.4, f is sequentially continuous.
By Theorem 2.3, we obtain a uniformly continuous embedding e : ZN — X
together with a function f : X — R such that f = f oe. By assumption, f is
pointwise continuous, therefore f = f o e is pointwise continuous, too. We have
derived CP(ZN,N). But, by Proposition 4.2, this contradicts ACs . m

Theorem 4.5 is a generalization of [ES02], where it is proved that RT(D)
validates the statement “not all functions C[—1,1] — R are pointwise continu-
ous”. This is so because in RT(D) it is the case that C[—1, 1] = C,[—1, 1] and,
as remarked in Section 2, C,[—1,1] is an inhabited locally non-compact CSM.
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