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Loally Non-ompat Spaesand Continuity PriniplesAndrej Bauer� Alex SimpsonyJune 10, 2003AbstratWe give a onstrutive proof that Baire spae embeds in any inhabitedloally non-ompat omplete separable metri spae, X, in suh a waythat every sequentially ontinuous funtion from Baire spae to Z extendsto a funtion fromX to R. As an appliation, we show that in the preseneof ertain hoie and ontinuity priniples, the statement \all funtionsfrom X to R is ontinuous" is false. This generalizes a result previouslyobtained by Eard�o and Streiher, in the ontext of \domain realizability",for the speial ase X = C[0; 1℄.1 IntrodutionIn a reent paper, [ES02℄, Esard�o and Streiher analyse ontinuity priniplesin the ontext of so-alled domain realizability, i.e. in realizability toposes on-struted over domain-theoreti models of the untyped �-alulus. In suh mod-els, the internal statement \all funtions from Baire spae to N are ontinuous"is known to be false (even though externally all morphisms from Baire spaeto N are ontinuous), beause it onits with hoie priniples valid in themodels. Esard�o and Streiher show that, similarly, the internal statement \allfuntions from C[0; 1℄ to R are ontinuous" is false. (One again, externally,all morphisms from C[0; 1℄ to R are ontinuous.) Their proof exploits spei�features of the spae C[0; 1℄, and requires a onrete analysis of the nature of\realizers" of ertain funtions in the model. In this paper, we show insteadhow it is possible to derive the failure of ontinuity priniples, for a wide rangeof analyti spaes, diretly from the known failure for Baire spae.Working within the ontext of onstrutive mathematis [Bis67, BB85℄, weidentify a property of omplete separable metri spaes (CSMs) whih we allloal non-ompatness. Our main result, Theorem 2.3, states that Baire spae,whih is itself loally non-ompat, embeds in any inhabited loally non-ompatCSM, X , in suh a way that every sequentially ontinuous funtion from Bairespae to Z extends to a funtion from X to R. This result is proved in Setion 3.�E-mail: Andrej.Bauer�andrej.om, Address: Department of Mathematis and Physis,University of Ljubljana, Slovenia. Researh supported by MZ�S grant Z1-3138-0101-02.yE-mail: Alex.Simpson�ed.a.uk, Address: LFCS, University of Edinburgh, Sotland.Researh supported by an EPSRC Advaned Researh fellowship.1
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In Setion 4, we apply Theorem 2.3 to derive Esard�o and Streiher's resultthat \all funtions from C[0; 1℄ to R are ontinuous" is false in domain realiz-ability [ES02℄. This is a simple onsequene of the known result for Baire spae,together with the fat that C[0; 1℄ is easily shown to be loally non-ompat.Furthermore, our approah establishes a more general result that for any in-habited loally non-ompat X , the statement \all funtions from X to R areontinuous" is false in any topos in whih ertain hoie and ontinuity priniplesare valid.We believe that Theorem 2.3 may have other appliations in omputableand onstrutive analysis. Indeed, it may provide a useful general tool forestablishing that properties of Baire spae �nd themselves reeted in analogousproperties of other loally non-ompat spaes.2 Loally non-ompat metri spaesFollowing Bishop [Bis67, BB85℄, we do mathematis using intuitionisti logi,and we assume AC0;0: the axiom of hoie for properties 8x 2 N:9y 2 N:'. Weshall not need dependent hoie. For the development that follows, it does notmatter whether real numbers are taken to be Cauhy sequenes of rationals,with equality as an equivalene relation over them, or whether real numbers aretaken to be equivalene lasses of Cauhy sequenes. The former is Bishop'sapproah to real numbers, the latter is the natural approah when reasoningin the internal logi of an elementary topos, where, beause we assume AC0;0,the objet R of equivalene lasses of Cauhy sequenes is isomorphi to thefavoured objet of Dedekind reals.We assume familiarity with the onstrutive notions of metri spae, Cauhysequene and onvergene. Beause we onsider several notions of ontinuity,we spell out eah one of them. A funtion f : X ! Y between metri spaes is:{ uniformly ontinuous when for every " > 0 there exists Æ > 0 suh that,for all x; x0 2 X , if d(x; x0) < Æ then d(f(x); f(x0)) < ".{ pointwise ontinuous at x 2 X when for every " > 0 there exists Æ > 0 suhthat, for all x0 2 X , d(x; x0) < Æ implies d(f(x); f(x0)) < ". A funtionwhih is pointwise ontinuous at every point is pointwise ontinuous.{ sequentially ontinuous when it preserves limits of onvergent sequenes:if haiii2N onverges to a in X then hf(ai)ii2N onverges to f(a) in Y .For a metri spae (X; d), we write B(x; r) for the open ball entered atx 2 X with radius r > 0, and B(x; r) for the losed ball. We say that (X; d)is separable if it ontains a ountable dense subspae; and that it is ompleteif every Cauhy sequene onverges. As is ustomary we abbreviate ompleteseparable metri spae as CSM.In Setion 3 we will need the \one" and \hill" funtions, whih we de�nenow. For a metri spae X , x 2 X , and 0 < q < r let one(x; r) : X ! R andhill(x; r; q) : X ! R be de�ned asone(x; r)(y) = max(0; 1� r�1 � d(x; y))) ;hill(x; q; r)(y) = max(0; 1� (r � q)�1 �max(0; d(x; y)� q)) :2
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rFigure 1: Graphs of one(x; r) and hill(x; q; r)See Figure 1 for a piture of a one and a hill.We next de�ne the onepts needed to formulate our main result, Theo-rem 2.3 below.De�nition 2.1 A sequene without aumulation point in a metri spae (X; d)is a sequene haiii2N with the property that for every x 2 X there exist " > 0and m 2 N suh that d(x; ai) > " for all i � m.De�nition 2.2 A metri spae (X; d) is loally non-ompat at x 2 X if forevery " > 0 the open ball B(x; ") ontains a sequene without aumulationpoint in X . It is loally non-ompat if it is loally non-ompat at every x.Any in�nite-dimensional separable Hilbert spae is loally non-ompat CSM,for example the spae `2 of square-summable sequenes; or the spae Cu[0; 1℄ ofuniformly ontinuous maps [0; 1℄! R, equipped with the supremum norm. Thelatter example generalizes as follows. An "-net in a metri spae X is a �-nite subset N � X suh that for every x 2 X there exists y 2 N for whihd(x; y) < ". A CSM is said to be omplete totally bounded (CTB) if it has an"-net for every " > 0. An injetive sequene haiii2N in X is a sequene forwhih d(an; am) > 0 whenever n 6= m. For any CTB spae X ontaining a on-vergent injetive sequene, it is straightforward to show that Cu(X) is loallynon-ompat.Another important example of a loally non-ompat CSM is the spae RNof in�nite sequenes of real numbers with metrid(x; y) = 1Xk=0min(1; jxk � ykj) � 2�k:Baire spae, whih is also a loally non-ompat CSM, an be de�ned as thesubspae ZN of RN .In the presene of Churh's Thesis CT0 [TvD88a, 4.3℄ the losed interval [0; 1℄gives a surprising example of a loally non-ompat spae. This is beause CT0implies the existene of strong Speker sequeness [TvD88a, 6.4.7℄, whih arenothing but bounded monotone sequenes of reals without aumulation point.This example shows that it is possible for a CSM to be simultaneously CTBand loally non-ompat. 3



Theorem 2.3 If X is inhabited and loally non-ompat then there exists auniformly ontinuous embedding e : ZN ! X with the property that, for everysequentially ontinuous f : ZN ! Z, there exists a funtion f : X ! R suhthat f = f Æ e.3 The Proof of Theorem 2.3In this setion we prove Theorem 2.3. Throughout we assume that X is aninhabited loally non-ompat CSM with a ountable dense subset S � X . Theproof onsists of two parts, whih are stated in the following two propositions.Proposition 3.1 There exists a uniformly ontinuous embedding e : ZN ! Xand a pointwise ontinuous map g : X ! RN suh that the following diagramommutes. X g
// RNZNe``A
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Proposition 3.2 For every sequentially ontinuous f : ZN! Z there exists afuntion h : RN ! R suh that the following diagram ommutes.RN h
// RZN?� OO f // Z?� OO

Theorem 2.3 follows immediately from Propositions 3.1 and 3.2, beause themap f = h Æ g is an extension of f along e.3.1 Proof of Proposition 3.1We begin by proving several lemmas that are needed for the proof of Proposi-tion 3.1.Lemma 3.3 A sequene that has no aumulation points has an injetive sub-sequene, whih has no aumulation points.Proof. Suppose haiii2N is a sequene without aumulation points. By AC0;0there is a hoie funtion  : N ! N whih hooses for eah n 2 N some (n) > nsuh that there exists " > 0 for whih d(an; am) > " for all m � (n). Now thesubsequene han(0)in2N is injetive, and it has no aumulation points beauseit is a subsequene of haiii2N.
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Heneforth we assume that all sequenes without aumulation point are inje-tive.Lemma 3.4 If haiii2N is a sequene without aumulation point and hbiii2N isa sequene satisfying limi!1 d(ai; bi) = 0 then hbiii2N is without aumulationpoint as well.Proof. Consider an arbitrary x 2 X . There exists " > 0 andm 2 N suh thatd(x; ai) > " for all i � m. There exists n 2 N suh that d(ai; bi) < "=2 for alli � n. Then for all i � max(m;n) we have d(x; bi) � d(x; ai)� d(ai; bi) > "=2.Lemma 3.5 For every x 2 X and " > 0 the open ball B(x; ") ontains asequene in S without an aumulation point in X.Proof. There exists a sequene haiii2N without aumulation point thatlies in B(x; "=2). By AC0;0 there exists a sequene hbiii2N in S suh thatd(ai; bi) < " � 2�i�1 for every i 2 N. By Lemma 3.4 the sequene hbiii2Nis without aumulation point. It is ontained in B(x; ") beause d(x; bi) �d(x; ai) + d(ai; bi) < "=2 + " � 2�i�1 � ".Lemma 3.6 Suppose hwiii2N is a sequene without aumulation point. Thereexists a sequene h�iii2N of positive real numbers suh that d(wi; wj) > 2(�i+�j)whenever i 6= j.Proof. By AC0;0 there exists a sequene hmiii2N of natural numbers and asequene h�iii2N of positive real numbers suh that d(wi; wj) > �i for all j � mi.Let �i = min(f�ig [ fd(wi; wj) j i 6= j ^ j � mig)=5. Now onsider any distinti; j 2 N. If j � mi then d(wi; wj) > �i � 5�i, and otherwise d(wi; wj) � 5�i.Similarly it follows that d(wi; wj) � 5�j , therefore d(wi; wj) � 5(�i + �j)=2 >2(�i + �j).Lemma 3.7 For any v 2 X and � > 0 there exists a sequene h"iii2Zof positivereal numbers, and a sequene hviii2Z in S without aumulation point in X suhthat, for all i; j 2 Z:1. d(v; vi) < �=3,2. "i < �=3 and "i < 2�jij,3. d(vi; vj) > 2("i + "j) unless i = j,4. for all x 2 X, there exists a unique k 2 Z suh that d(x; vk) < 2"k, ord(x; vi) > "i for all i 2 Z.Furthermore, we may assume that for every i 2 Z there is p 2 N suh that"i = 2�p.
5



Proof. Sine X is loally non-ompat at v, the ball B(v; �=3) ontains asequene hviii2Z in S without aumulation point, as was proved in Lemma 3.5.Clearly it is the ase that d(v; vi) < �=3. By Lemma 3.6 there exists a sequeneh�iii2Z suh that d(vi; vj) > 2(�i + �j). If we set "i = min(�i; �=3; 2�jij+1) thenthe seond ondition is satis�ed, as well as the third one beause i 6= j impliesd(vi; vj) > 2(�i + �j) � 2("i + "j).To see that the fourth requirement is satis�ed, onsider any x 2 X . Thereexists � > 0 and n1 2 N suh that d(x; vi) > � whenever jij � n1. Beause"i < 2�jij there exists n2 2 N suh that "i < � whenever jij � n2. De�nen = max(n1; n2) and observe that jij � n implies d(x; vi) > � > "i. For everyi 2 Z satisfying jij < n, d(x; vi) > "i or d(x; vi) < 2"i. Therefore, there existsj 2 Z satisfying jjj < n and d(x; vj) < 2"j , or d(x; i) > "i for all i 2 Z withjij < n. If the seond ase holds, then we may onlude that d(x; vi) > "i for alli 2 Z. In the �rst ase, there is a unique j for whih d(x; vj) < 2"j , sine anothersuh j0 implies d(vj ; vj0 ) < d(x; vj) + d(x; vj0 ) � 2("j + "j0 ), whih ontraditsd(vj ; vj0) > 2("j + "j0) unless j = j0.Finally, observe that the lemma still holds if we make all the "i's smaller. ByAC0;0, for eah i 2 Z there exists pi 2 N suh that 2�pi < "i. We may replaeh"iii2Zwith h2�piii2Z.Let Z� be the set of �nite sequenes of integers. If a 2 Z� and j 2 Z, wewrite aj for the sequene a followed by j. The empty sequene is denoted by [ ℄and the length of a is denoted by jaj.Lemma 3.8 There exist a family hÆ(a)ia2Z� of positive real numbers and afamily hw(a)ia2Z� in S without aumulation point in X suh that, for all a 2 Z�and i; j 2 Z:1. d(w(a); w(aj)) < Æ(a)=3,2. Æ(aj) < Æ(a)=3 and Æ(aj) < 2�jjj,3. d(w(ai); w(aj)) > 2(Æ(ai) + Æ(aj)) unless i = j,4. for any x 2 X, there exists a unique k 2 Z suh that d(w(ak); x) < 2Æ(ak),or d(w(ai); x) > Æ(ai) for all i 2 Z.Proof. The sort of proof that omes to mind �rst, namely an indutive on-strution of hÆ(a)ia2Z� and hw(a)ia2Z� by suessive appliations of Lemma 3.7,uses dependent hoie. We present a more areful proof that relies on separa-bility of X and only requires AC0;0.Let hsiii2N be an enumeration of S. Beause AC0;0 implies hoie fromN�N to NZ there exist hoie funtions Æ : N�N ! NZ and w : N�N ! NZ,suh that for all m;n 2 N the onditions of Lemma 3.7 are satis�ed if we takev = sm, � = 2�n, "i = 2�Æ(m;n)(i), and vi = sw(m;n)(i). De�ne mutuallyreursive funtions � : Z�! N and � : Z�! N by�([ ℄) = 0 ; �(aj) = w(�(a); �(a))(j) ;�([ ℄) = 0 ; �(aj) = Æ(�(a); �(a))(j) :Now for a 2 Z� let w(a) = s�(a) and Æ(a) = 2��(a). The desired properties ofhÆ(a)ia2Z� and hw(a)ia2Z� follow diretly from Lemma 3.7 and the de�nitionof � and �. 6



Lemma 3.9 Let hÆ(a)ia2Z� and hw(a)ia2Z� be as in Lemma 3.8. If a 2 Z� isa pre�x of b 2 Z� then B(w(b); Æ(b)) � B(w(a); 2Æ(a)=3).Proof. It follows from the �rst and the seond ondition of Lemma 3.8 thatfor any a 2 Z� and j 2 Z, B(w(aj); Æ(aj)) � B(w(a); 2Æ(a)=3). The generalase when b = abi � � � bn is then witnessed by a hain of inlusions of the formB(w(abi � � � bj); Æ(abi � � � bj)) � B(w(abi � � � bj+1); 2Æ(abi � � � bj+1)=3).Lemma 3.10 Let hÆ(a)ia2Z� and hw(a)ia2Z� be as in Lemma 3.8. For everyi 2 N and x 2 X, there exists a unique a 2 Zi suh that d(w(a); x) < Æ(a), orfor all a 2 Zi it is the ase that d(w(a); x) > Æ(a).Proof. We prove the lemma by indution on i 2 N. The base ase justlaims that d(w([ ℄); x) < 2Æ([ ℄) or d(w([ ℄); x) > Æ([ ℄), whih of ourse holds.To prove the indution step, suppose there exists a unique a 2 Zi+1 suh thatd(w(a); x) < 2Æ(a), or d(w(a); x) > Æ(a) for all a 2 Zi+1. In the �rst ase weuse the fourth ondition of Lemma 3.8 to onlude that there exists a uniqueb = aj 2 Zi+2 suh that d(w(b); x) < 2Æ(b), or that d(w(b); x) > Æ(b) for allb 2 Zi+2. In the seond ase, the �rst and the seond ondition of Lemma 3.8imply, for all aj 2 Zi+2,d(w(aj); x) > d(w(a); x) � d(w(a); w(aj)) > Æ(a)=3 > Æ(aj) :We prove Proposition 3.1. Let hÆ(a)ia2Z� and hw(a)ia2Z� be as in Lemma 3.8.Observe that Æ(a) � Æ([ ℄) � 3�jaj = 3�jaj for all a 2 Z�. De�ne the mape : ZN! X by e(�) = limi!1w(��i) :The �rst and the seond ondition of Lemma 3.8 imply that hw(��i)ii2N satis�esd(w(��i); w(��i+i)) � Æ(��i) � 3�i, whih means that it is a Cauhy sequene,hene e is well de�ned. It is the ase that d(e(�); w(��i)) � 3�i+1. To seethat e is uniformly ontinuous, onsider any " > 0. There exists k 2 N suhthat 3�k+1 < "=2. If d(�; �) < 2�k then ��k = ��k, therefored(e(�); e(�)) � d(e(�); w(��k)) + d(e(�); w(��k)) � 2 � 3�k+1 < " :This shows that e is uniformly ontinuous. Next we de�ne the map g : X ! RNas g = hgiii2N where the value of gi : X ! R at x 2 X is de�ned by the followingtwo lauses:1. if there exists a unique a = a0a1 : : : ai 2 Zi+1 suh that d(w(a); x) < 2Æ(a)then gi(x) = ai � hill(2Æ(a)=3; Æ(a))(x) ;2. if d(w(a); x) > Æ(a) for all a 2 Zi+1 thengi(x) = 0 :
7



Note that when both lauses apply they agree that gi(x) = 0, and by Lemma 3.10at least one of the ases always applies, hene gi is well de�ned.Let us prove that gi is ontinuous at x. First onsider the ase whend(x;w(a)) > Æ(a) for all a 2 Zi+1. Beause hw(a)ia2Z� is without aumu-lation point there exists � > 0 suh that d(x;w(a)) > � for all a 2 Zi+1. Bythe seond ondition of Lemma 3.8, there exists m 2 N suh that Æ(a) < �=2 ifkak1 = max(ja0j; : : : ; jaij) � m. Sine there are �nitely many a 2 Zi+1 suhthat kak1 < m, we may de�ne� = min(f�g [ fd(x;w(a)) � Æ(a) j a 2 Zi+1; kak1 < mg) :Let y 2 B(x; �=2) and a 2 Zi+1. If kak1 � m then d(w(a); y) � d(w(a); x) �d(x; y) > � � �=2 � �=2 > Æ(a). If kak1 < m then d(w(a); y) � d(w(a); x) �d(x; y) > d(w(a); x) � � > Æ(a). In either ase, y 2 B(x; �=2) implies gi(y) =0, whih means that gi is indeed ontinuous at x. Now onsider the asewhen there exists a 2 Zi+1 suh that d(w(a); x) < 2Æ(a). Then for everyy 2 B(x; 2Æ(a) � d(x;w(a))) it holds that d(w(a); y) < 2Æ(a), therefore gi re-strited to B(x; Æ(a)=2) is equal to the ontinuous funtion ai �hill(2Æ(a)=3; Æ(a))restrited to the same ball.Sine every gi is pointwise ontinuous, it is not hard to see that g is pointwiseontinuous as well. Finally, observe that, for any � 2 ZN, Lemma 3.9 impliesthat, for all i 2 N, d(e(�); w(��i)) � 2Æ(��i)=3 ;therefore, gi(e(�)) = �i � hill(2Æ(��i)=3; Æ(��i))(e(�)) = �i :Hene g(e(�)) = �, whih onludes the proof of Proposition 3.1.3.2 Proof of Proposition 3.2We move on to proving Proposition 3.2. Assume given a sequentially ontinuousf : ZN! Z. We onstrut a funtion h : RN ! R extending f .For  2 RN and � 2 ZN, de�ne a sequene hh�i ()ii2N of real numbers by:h�0 () = f(0!) ;h�i+1() = h�i () + (f(�0 : : : �i0!)� h�i ()) � iYj=0 �one(�j ; 1=4)(j)�2i�j :We say that � is adequate for  if, for all i 2 N,�i � 2=3 < i < �i + 2=3 :By AC0;0, for every  2 RN , there exists � 2 ZN adequate for .Lemma 3.11 If � and �0 are both adequate for  then h�i () = h�0i ().Proof. The proof proeeds by indution on i. Clearly h�i () = h�0i () inthe ase that �j = �0j , for all j < i. Otherwise, without loss of generality,there exists j < i suh that �j < �0j . Then, as both � and �0 are adequatefor , it holds that j � 2=3 < �j < �0j < j + 2=3. Thus �0j = �j + 1 and�j + 1=3 < j < �0j � 1=3, so one(�j ; 1=4)(j) = 0 = one(�0j ; 1=4)(j). Byindution hypothesis, h�i () = h�i�1() = h�0i�1() = h�0i ().8



The above lemma justi�es the de�nitionhi() = h�i (), for any � adequate for  :The following tehnial lemma is in preparation for Lemma 3.13 below.Lemma 3.12 If h�iii2N is a sequene in [0; 1℄ satisfying �i+1 � �2i , for all i 2 N,then the in�nite produt Q1j=0(1� �j) onverges.Proof. We need to prove onvergene of the sequene hPiii2N of partialproduts Pi = i�1Yj=0(1� �j) :We show that m � n implies Pn � Pm � (2=3)n. There are two ases. First, if�i > 1=3 for all i < n, thenPn � Pm � Pn � (2=3)n :In the seond ase there exists k < n suh that �k < 1=2 and �i > 1=3 for alli < k. Then, for all i � k, Pi � Pk � (2=3)k and �i < (1=2)2i�k , soPi � Pi+1 = Pi � �i < (2=3)k � (1=2)2i�k � (2=3)k � (1=2)1+i�k :From this we derivePn � Pm < (2=3)k � m�1Xi=n (1=2)1+i�k < (2=3)k � (1=2)n�k � (2=3)n :Lemma 3.13 For every  2 RN , the sequene hhi()ii2N onverges.Proof. Let � be adequate for . We must show that hh�i ()ii2N onverges.As f is sequentially ontinuous, there exists n suh that f(�0 : : : �m�10!) = f(�)for all m � n. Then, for m � n, the equalityh�m() = f(�) + (h�n()� f(�)) � m�1Yi=n �1� iYj=0 �one(�j ; 1=4)(j)�2i�j� (1)is easily shown by indution on m. De�ne�k = n+kYj=0 �one(�j ; 1=4)(j)�2n+k�j :By Lemma 3.12, � = Q1k=0(1 � �k) exists, and so hh�m()im2N onverges to�h�n() + (1� �)f(�).Finally, de�ne h() = limi!1hi() :Lemma 3.14 For all � 2 ZN, it holds that h(�) = f(�).9



Proof. Trivially, � = � is (the only �) adequate for �. We must showthat limm!1 h�m(�) = f(�). Let n be suh that, for all m � n, it holds thatf(�0 : : : �m0!) = f(�). Then, by (1), we have h�m() = f(�) = f(�) for allm > n, beause one(�j ; 1=4)(�j) = 1 for all j and so � = 0.This ompletes the proof of Proposition 3.2. Observe that, in addition toshowing the existene of h given f , the proof onstruts a funtion mapping anysequentially-ontinuous funtion f : ZN! Z to a orresponding hf : RN ! R.Various strengthenings of Proposition 3.2 are possible, for whih we do notinlude proofs as they are not required for our appliation. First, it is possibleto generalize the proposition to apply to any ontinuous f : ZN! R. Seond, itan be shown that the funtion hf onstruted above is sequentially ontinuous.Note that with the assertion of sequential ontinuity added, Proposition 3.2 be-omes a statement with ontent in lassial mathematis; whereas, as urrentlystated, the result is a lassial triviality.4 Continuity and Choie PriniplesContinuity priniples are statements asserting that all funtions between ertainspaes are ontinuous. Nontrivial ontinuity priniples are inonsistent withlassial mathematis, but play an important rôle in Brouwer's intuitionistimathematis. Interesting ontinuity priniples are also a feature of the internallogi of many toposes. It is well-known that there are nontrivial interationsbetween ontinuity priniples and hoie priniples. In this setion we brieysurvey a few suh results. Our main ontribution, Theorem 4.5, explains thefailure of ertain ontinuity priniples in toposes based on domain realizability.For CSM X and Y we onsider the ontinuity priniple:All funtions f : X ! Y are pointwise ontinuous. (CP(X;Y ))For sets X and Y we onsider the hoie priniple:(8x2X : 9 y2 Y : '(x; y)) =) 9 f 2Y X :8x2X :'(x; f(x)) : (AC(X;Y ))Thus AC0;0 is AC(N;N ). As is standard, we write AC1;0 for AC(NN ;N), andAC2;0 for AC(NNN;N). Easily AC1;0 implies AC0;0, and AC2;0 implies AC1;0.In Brouwer's intuitionism, and in the realizability topos RT(K2) over Kleene'sseond algebra K2 [KV65, Bau00℄, both CP(ZN;N) and AC1;0 are valid. Thesetwo priniples interat well together:Proposition 4.1 (CP(ZN;N) + AC1;0) For all CSM X;Y , the ontinuity prin-iple CP(X;Y ) holds.On the other hand, stronger forms of hoie are not ompatible with CP(ZN;N).Proposition 4.2 (CP(ZN;N)) AC2;0 does not hold.For proofs of Propositions 4.1 and 4.2, see Setions 7.2.7 and 9.6.10 of [TvD88b℄respetively. Note that Setion 7.2.7 of ibid. relies on the ontinuity prini-ple WC-N, whih follows easily from AC1;0 and CP(ZN;N).10



Given Proposition 4.2, it is natural to ask just how strong a ontinuitypriniple is still onsistent with AC2;0. In this ontext, it is interesting to lookat the realizability topos RT(D) where D is a universal Sott domain, as thisvalidates hoie between any two �nite types [BB00, Bau00℄, in partiular AC2;0.In RT(D), as a onsequene of the existene of a ontinuous modulus of uniformontinuity on K , the ontinuity priniple CP(K ;N) holds, where K � ZN isCantor spae: K = f� 2 ZN j 8 i2N : 0 � �i � 1g :(In fat a stronger ontinuity priniple holds: all funtions from K to N areuniformly ontinuous.) Again, CP(K ;N ) interats niely with AC1;0. Reall,from Setion 2, the notion of CTB spae. We say that a CSM X is loally CTBif every point in X has a CTB neighbourhood.Proposition 4.3 (CP(K ;N ) + AC1;0) For all loally CTB X and CSM Y , theontinuity priniple CP(X;Y ) holds.This result follows from Setion 7.4.4 of [TvD88b℄. Observe that, sine K isitself (loally) CTB, the priniple CP(K ;N) is itself a speial ase of the generalontinuity priniple established.The notion of loally CTB spae provides one possible onstrutive formu-lation of loal ompatness (indeed, in the presene of Brouwer's Fan Theorem,it implies that the Heine-Borel property holds loally [TvD88a, 7.4.10℄). Thusdomain realizability shows that AC2;0 is onsistent with a ontinuity priniplefor "loally ompat" spaes. As the main result of this setion we show that,in ontrast, extending the ontinuity priniple to any single inhabited loallynon-ompat spae is inonsistent with AC2;0.To obtain inonsisteny, we require only a very weak ontinuity priniple tohold. De�ne the one-point ompati�ation of N to be the subspae N+ � K :N+ = f� 2 K j 8n2N : (�n = 1 =) 8m > n :�m = 0)g :As N+ is a retrat of K , it holds that CP(K ;N ) implies CP(N+ ;N). ThusCP(N+ ;N) holds in domain realizability. One again, CP(N+ ;N) enjoys a pleas-ant interation with AC1;0:Proposition 4.4 (CP(N+ ;N) + AC1;0) For all CSMs X and Y , it holds thatall funtions from X to Y are sequentially ontinuous.Proof. Beause N+ is a retrat of NN we have AC(N+ ;N). Let f : X ! Ybe a funtion and haiii2N a sequene in X onverging to x. We want to showthat hf(ai)ii2N onverges to f(x). First we onstrut a funtion g : N+ ! Xsuh that g(0!) = x and g(0n10!) = an for all n 2 N. We de�ne g(�) =limn!1 h(�; n) where h(�; n) = x if ��n = 0n and h(�; n) = am if ��n =0m10n�m�1. Now let " > 0. For every � 2 N+ , it holds that d(f(x); g(�)) <" or d(f(x); g(�)) > "=2. By AC(N+ ;N) there exists a funtion  : N+ !f0; 1g suh that, for all � 2 N+ , if (�) = 1 then d(f(x); g(�)) < ", and if(�) = 0 then d(f(x); g(�)) > "=2. By CP(N+ ;N) there exists m 2 N suh that��m = 0m implies (�) = (0!) = 1. This means that, for all n � m, we haved(f(x); f(an)) = d(f(x); g(0n10!)) < ". Therefore limn!1 f(an) = f(x).11



Theorem 4.5 (CP(N+ ;N) + AC2;0) For any inhabited loally non-ompat CSMX, the ontinuity priniple CP(X;R) is not true.Proof. We derive a ontradition from the assumption that all funtionsX ! R are pointwise ontinuous. Let f : ZN ! Z be any funtion. AsAC2;0 holds, so does AC1;0, so, by Proposition 4.4, f is sequentially ontinuous.By Theorem 2.3, we obtain a uniformly ontinuous embedding e : ZN ! Xtogether with a funtion f : X ! R suh that f = f Æ e. By assumption, f ispointwise ontinuous, therefore f = f Æ e is pointwise ontinuous, too. We havederived CP(ZN;N). But, by Proposition 4.2, this ontradits AC2;0.Theorem 4.5 is a generalization of [ES02℄, where it is proved that RT(D)validates the statement \not all funtions C[�1; 1℄ ! R are pointwise ontinu-ous". This is so beause in RT(D) it is the ase that C[�1; 1℄ = Cu[�1; 1℄ and,as remarked in Setion 2, Cu[�1; 1℄ is an inhabited loally non-ompat CSM.Referenes[Bau00℄ A. Bauer. The Realizability Approah to Computable Analysis andTopology. PhD thesis, Carnegie Mellon University, 2000. Availableas CMU tehnial report CMU-CS-00-164.[BB85℄ E. Bishop and D. Bridges. Construtive Analysis, volume 279 ofGrundlehren der math. Wissenshaften. Springer-Verlag, 1985.[BB00℄ A. Bauer and L. Birkedal. Continuous funtionals of dependent typesand equilogial spaes. In Computer Siene Logi 2000, August 2000.[Bis67℄ Errett Bishop. Foundations of Construtive Analysis. MGraw-Hill,New York, 1967.[ES02℄ M. Esard�o and T. Streiher. In domain realizability, not all fun-tionals on C[�1; 1℄ are ontinuous. Mathematial Logi Quarterly,41(S1):41{44, 2002.[KV65℄ S.C. Kleene and R.E. Vesley. The Foundations of Intuitionisti Math-ematis, espeially in relation to reursive funtions. North-HollandPublishing Company, 1965.[TvD88a℄ A.S. Troelstra and D. van Dalen. Construtivism in Mathematis,An Introdution, Vol. 1. Number 121 in Studies in Logi and theFoundations of Mathematis. North-Holland, 1988.[TvD88b℄ A.S. Troelstra and D. van Dalen. Construtivism in Mathematis,An Introdution, Vol. 2. Number 123 in Studies in Logi and theFoundations of Mathematis. North-Holland, 1988.
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