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Lo
ally Non-
ompa
t Spa
esand Continuity Prin
iplesAndrej Bauer� Alex SimpsonyJune 10, 2003Abstra
tWe give a 
onstru
tive proof that Baire spa
e embeds in any inhabitedlo
ally non-
ompa
t 
omplete separable metri
 spa
e, X, in su
h a waythat every sequentially 
ontinuous fun
tion from Baire spa
e to Z extendsto a fun
tion fromX to R. As an appli
ation, we show that in the presen
eof 
ertain 
hoi
e and 
ontinuity prin
iples, the statement \all fun
tionsfrom X to R is 
ontinuous" is false. This generalizes a result previouslyobtained by E
ard�o and Strei
her, in the 
ontext of \domain realizability",for the spe
ial 
ase X = C[0; 1℄.1 Introdu
tionIn a re
ent paper, [ES02℄, Es
ard�o and Strei
her analyse 
ontinuity prin
iplesin the 
ontext of so-
alled domain realizability, i.e. in realizability toposes 
on-stru
ted over domain-theoreti
 models of the untyped �-
al
ulus. In su
h mod-els, the internal statement \all fun
tions from Baire spa
e to N are 
ontinuous"is known to be false (even though externally all morphisms from Baire spa
eto N are 
ontinuous), be
ause it 
on
i
ts with 
hoi
e prin
iples valid in themodels. Es
ard�o and Strei
her show that, similarly, the internal statement \allfun
tions from C[0; 1℄ to R are 
ontinuous" is false. (On
e again, externally,all morphisms from C[0; 1℄ to R are 
ontinuous.) Their proof exploits spe
i�
features of the spa
e C[0; 1℄, and requires a 
on
rete analysis of the nature of\realizers" of 
ertain fun
tions in the model. In this paper, we show insteadhow it is possible to derive the failure of 
ontinuity prin
iples, for a wide rangeof analyti
 spa
es, dire
tly from the known failure for Baire spa
e.Working within the 
ontext of 
onstru
tive mathemati
s [Bis67, BB85℄, weidentify a property of 
omplete separable metri
 spa
es (CSMs) whi
h we 
alllo
al non-
ompa
tness. Our main result, Theorem 2.3, states that Baire spa
e,whi
h is itself lo
ally non-
ompa
t, embeds in any inhabited lo
ally non-
ompa
tCSM, X , in su
h a way that every sequentially 
ontinuous fun
tion from Bairespa
e to Z extends to a fun
tion from X to R. This result is proved in Se
tion 3.�E-mail: Andrej.Bauer�andrej.
om, Address: Department of Mathemati
s and Physi
s,University of Ljubljana, Slovenia. Resear
h supported by MZ�S grant Z1-3138-0101-02.yE-mail: Alex.Simpson�ed.a
.uk, Address: LFCS, University of Edinburgh, S
otland.Resear
h supported by an EPSRC Advan
ed Resear
h fellowship.1
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In Se
tion 4, we apply Theorem 2.3 to derive Es
ard�o and Strei
her's resultthat \all fun
tions from C[0; 1℄ to R are 
ontinuous" is false in domain realiz-ability [ES02℄. This is a simple 
onsequen
e of the known result for Baire spa
e,together with the fa
t that C[0; 1℄ is easily shown to be lo
ally non-
ompa
t.Furthermore, our approa
h establishes a more general result that for any in-habited lo
ally non-
ompa
t X , the statement \all fun
tions from X to R are
ontinuous" is false in any topos in whi
h 
ertain 
hoi
e and 
ontinuity prin
iplesare valid.We believe that Theorem 2.3 may have other appli
ations in 
omputableand 
onstru
tive analysis. Indeed, it may provide a useful general tool forestablishing that properties of Baire spa
e �nd themselves re
e
ted in analogousproperties of other lo
ally non-
ompa
t spa
es.2 Lo
ally non-
ompa
t metri
 spa
esFollowing Bishop [Bis67, BB85℄, we do mathemati
s using intuitionisti
 logi
,and we assume AC0;0: the axiom of 
hoi
e for properties 8x 2 N:9y 2 N:'. Weshall not need dependent 
hoi
e. For the development that follows, it does notmatter whether real numbers are taken to be Cau
hy sequen
es of rationals,with equality as an equivalen
e relation over them, or whether real numbers aretaken to be equivalen
e 
lasses of Cau
hy sequen
es. The former is Bishop'sapproa
h to real numbers, the latter is the natural approa
h when reasoningin the internal logi
 of an elementary topos, where, be
ause we assume AC0;0,the obje
t R of equivalen
e 
lasses of Cau
hy sequen
es is isomorphi
 to thefavoured obje
t of Dedekind reals.We assume familiarity with the 
onstru
tive notions of metri
 spa
e, Cau
hysequen
e and 
onvergen
e. Be
ause we 
onsider several notions of 
ontinuity,we spell out ea
h one of them. A fun
tion f : X ! Y between metri
 spa
es is:{ uniformly 
ontinuous when for every " > 0 there exists Æ > 0 su
h that,for all x; x0 2 X , if d(x; x0) < Æ then d(f(x); f(x0)) < ".{ pointwise 
ontinuous at x 2 X when for every " > 0 there exists Æ > 0 su
hthat, for all x0 2 X , d(x; x0) < Æ implies d(f(x); f(x0)) < ". A fun
tionwhi
h is pointwise 
ontinuous at every point is pointwise 
ontinuous.{ sequentially 
ontinuous when it preserves limits of 
onvergent sequen
es:if haiii2N 
onverges to a in X then hf(ai)ii2N 
onverges to f(a) in Y .For a metri
 spa
e (X; d), we write B(x; r) for the open ball 
entered atx 2 X with radius r > 0, and B(x; r) for the 
losed ball. We say that (X; d)is separable if it 
ontains a 
ountable dense subspa
e; and that it is 
ompleteif every Cau
hy sequen
e 
onverges. As is 
ustomary we abbreviate 
ompleteseparable metri
 spa
e as CSM.In Se
tion 3 we will need the \
one" and \hill" fun
tions, whi
h we de�nenow. For a metri
 spa
e X , x 2 X , and 0 < q < r let 
one(x; r) : X ! R andhill(x; r; q) : X ! R be de�ned as
one(x; r)(y) = max(0; 1� r�1 � d(x; y))) ;hill(x; q; r)(y) = max(0; 1� (r � q)�1 �max(0; d(x; y)� q)) :2
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rFigure 1: Graphs of 
one(x; r) and hill(x; q; r)See Figure 1 for a pi
ture of a 
one and a hill.We next de�ne the 
on
epts needed to formulate our main result, Theo-rem 2.3 below.De�nition 2.1 A sequen
e without a

umulation point in a metri
 spa
e (X; d)is a sequen
e haiii2N with the property that for every x 2 X there exist " > 0and m 2 N su
h that d(x; ai) > " for all i � m.De�nition 2.2 A metri
 spa
e (X; d) is lo
ally non-
ompa
t at x 2 X if forevery " > 0 the open ball B(x; ") 
ontains a sequen
e without a

umulationpoint in X . It is lo
ally non-
ompa
t if it is lo
ally non-
ompa
t at every x.Any in�nite-dimensional separable Hilbert spa
e is lo
ally non-
ompa
t CSM,for example the spa
e `2 of square-summable sequen
es; or the spa
e Cu[0; 1℄ ofuniformly 
ontinuous maps [0; 1℄! R, equipped with the supremum norm. Thelatter example generalizes as follows. An "-net in a metri
 spa
e X is a �-nite subset N � X su
h that for every x 2 X there exists y 2 N for whi
hd(x; y) < ". A CSM is said to be 
omplete totally bounded (CTB) if it has an"-net for every " > 0. An inje
tive sequen
e haiii2N in X is a sequen
e forwhi
h d(an; am) > 0 whenever n 6= m. For any CTB spa
e X 
ontaining a 
on-vergent inje
tive sequen
e, it is straightforward to show that Cu(X) is lo
allynon-
ompa
t.Another important example of a lo
ally non-
ompa
t CSM is the spa
e RNof in�nite sequen
es of real numbers with metri
d(x; y) = 1Xk=0min(1; jxk � ykj) � 2�k:Baire spa
e, whi
h is also a lo
ally non-
ompa
t CSM, 
an be de�ned as thesubspa
e ZN of RN .In the presen
e of Chur
h's Thesis CT0 [TvD88a, 4.3℄ the 
losed interval [0; 1℄gives a surprising example of a lo
ally non-
ompa
t spa
e. This is be
ause CT0implies the existen
e of strong Spe
ker sequen
ess [TvD88a, 6.4.7℄, whi
h arenothing but bounded monotone sequen
es of reals without a

umulation point.This example shows that it is possible for a CSM to be simultaneously CTBand lo
ally non-
ompa
t. 3



Theorem 2.3 If X is inhabited and lo
ally non-
ompa
t then there exists auniformly 
ontinuous embedding e : ZN ! X with the property that, for everysequentially 
ontinuous f : ZN ! Z, there exists a fun
tion f : X ! R su
hthat f = f Æ e.3 The Proof of Theorem 2.3In this se
tion we prove Theorem 2.3. Throughout we assume that X is aninhabited lo
ally non-
ompa
t CSM with a 
ountable dense subset S � X . Theproof 
onsists of two parts, whi
h are stated in the following two propositions.Proposition 3.1 There exists a uniformly 
ontinuous embedding e : ZN ! Xand a pointwise 
ontinuous map g : X ! RN su
h that the following diagram
ommutes. X g
// RNZNe``A

A

A

A

A

A

A

A

A

A

A

?�

OO

Proposition 3.2 For every sequentially 
ontinuous f : ZN! Z there exists afun
tion h : RN ! R su
h that the following diagram 
ommutes.RN h
// RZN?� OO f // Z?� OO

Theorem 2.3 follows immediately from Propositions 3.1 and 3.2, be
ause themap f = h Æ g is an extension of f along e.3.1 Proof of Proposition 3.1We begin by proving several lemmas that are needed for the proof of Proposi-tion 3.1.Lemma 3.3 A sequen
e that has no a

umulation points has an inje
tive sub-sequen
e, whi
h has no a

umulation points.Proof. Suppose haiii2N is a sequen
e without a

umulation points. By AC0;0there is a 
hoi
e fun
tion 
 : N ! N whi
h 
hooses for ea
h n 2 N some 
(n) > nsu
h that there exists " > 0 for whi
h d(an; am) > " for all m � 
(n). Now thesubsequen
e ha
n(0)in2N is inje
tive, and it has no a

umulation points be
auseit is a subsequen
e of haiii2N.
4



Hen
eforth we assume that all sequen
es without a

umulation point are inje
-tive.Lemma 3.4 If haiii2N is a sequen
e without a

umulation point and hbiii2N isa sequen
e satisfying limi!1 d(ai; bi) = 0 then hbiii2N is without a

umulationpoint as well.Proof. Consider an arbitrary x 2 X . There exists " > 0 andm 2 N su
h thatd(x; ai) > " for all i � m. There exists n 2 N su
h that d(ai; bi) < "=2 for alli � n. Then for all i � max(m;n) we have d(x; bi) � d(x; ai)� d(ai; bi) > "=2.Lemma 3.5 For every x 2 X and " > 0 the open ball B(x; ") 
ontains asequen
e in S without an a

umulation point in X.Proof. There exists a sequen
e haiii2N without a

umulation point thatlies in B(x; "=2). By AC0;0 there exists a sequen
e hbiii2N in S su
h thatd(ai; bi) < " � 2�i�1 for every i 2 N. By Lemma 3.4 the sequen
e hbiii2Nis without a

umulation point. It is 
ontained in B(x; ") be
ause d(x; bi) �d(x; ai) + d(ai; bi) < "=2 + " � 2�i�1 � ".Lemma 3.6 Suppose hwiii2N is a sequen
e without a

umulation point. Thereexists a sequen
e h�iii2N of positive real numbers su
h that d(wi; wj) > 2(�i+�j)whenever i 6= j.Proof. By AC0;0 there exists a sequen
e hmiii2N of natural numbers and asequen
e h�iii2N of positive real numbers su
h that d(wi; wj) > �i for all j � mi.Let �i = min(f�ig [ fd(wi; wj) j i 6= j ^ j � mig)=5. Now 
onsider any distin
ti; j 2 N. If j � mi then d(wi; wj) > �i � 5�i, and otherwise d(wi; wj) � 5�i.Similarly it follows that d(wi; wj) � 5�j , therefore d(wi; wj) � 5(�i + �j)=2 >2(�i + �j).Lemma 3.7 For any v 2 X and � > 0 there exists a sequen
e h"iii2Zof positivereal numbers, and a sequen
e hviii2Z in S without a

umulation point in X su
hthat, for all i; j 2 Z:1. d(v; vi) < �=3,2. "i < �=3 and "i < 2�jij,3. d(vi; vj) > 2("i + "j) unless i = j,4. for all x 2 X, there exists a unique k 2 Z su
h that d(x; vk) < 2"k, ord(x; vi) > "i for all i 2 Z.Furthermore, we may assume that for every i 2 Z there is p 2 N su
h that"i = 2�p.
5



Proof. Sin
e X is lo
ally non-
ompa
t at v, the ball B(v; �=3) 
ontains asequen
e hviii2Z in S without a

umulation point, as was proved in Lemma 3.5.Clearly it is the 
ase that d(v; vi) < �=3. By Lemma 3.6 there exists a sequen
eh�iii2Z su
h that d(vi; vj) > 2(�i + �j). If we set "i = min(�i; �=3; 2�jij+1) thenthe se
ond 
ondition is satis�ed, as well as the third one be
ause i 6= j impliesd(vi; vj) > 2(�i + �j) � 2("i + "j).To see that the fourth requirement is satis�ed, 
onsider any x 2 X . Thereexists � > 0 and n1 2 N su
h that d(x; vi) > � whenever jij � n1. Be
ause"i < 2�jij there exists n2 2 N su
h that "i < � whenever jij � n2. De�nen = max(n1; n2) and observe that jij � n implies d(x; vi) > � > "i. For everyi 2 Z satisfying jij < n, d(x; vi) > "i or d(x; vi) < 2"i. Therefore, there existsj 2 Z satisfying jjj < n and d(x; vj) < 2"j , or d(x; i) > "i for all i 2 Z withjij < n. If the se
ond 
ase holds, then we may 
on
lude that d(x; vi) > "i for alli 2 Z. In the �rst 
ase, there is a unique j for whi
h d(x; vj) < 2"j , sin
e anothersu
h j0 implies d(vj ; vj0 ) < d(x; vj) + d(x; vj0 ) � 2("j + "j0 ), whi
h 
ontradi
tsd(vj ; vj0) > 2("j + "j0) unless j = j0.Finally, observe that the lemma still holds if we make all the "i's smaller. ByAC0;0, for ea
h i 2 Z there exists pi 2 N su
h that 2�pi < "i. We may repla
eh"iii2Zwith h2�piii2Z.Let Z� be the set of �nite sequen
es of integers. If a 2 Z� and j 2 Z, wewrite aj for the sequen
e a followed by j. The empty sequen
e is denoted by [ ℄and the length of a is denoted by jaj.Lemma 3.8 There exist a family hÆ(a)ia2Z� of positive real numbers and afamily hw(a)ia2Z� in S without a

umulation point in X su
h that, for all a 2 Z�and i; j 2 Z:1. d(w(a); w(aj)) < Æ(a)=3,2. Æ(aj) < Æ(a)=3 and Æ(aj) < 2�jjj,3. d(w(ai); w(aj)) > 2(Æ(ai) + Æ(aj)) unless i = j,4. for any x 2 X, there exists a unique k 2 Z su
h that d(w(ak); x) < 2Æ(ak),or d(w(ai); x) > Æ(ai) for all i 2 Z.Proof. The sort of proof that 
omes to mind �rst, namely an indu
tive 
on-stru
tion of hÆ(a)ia2Z� and hw(a)ia2Z� by su

essive appli
ations of Lemma 3.7,uses dependent 
hoi
e. We present a more 
areful proof that relies on separa-bility of X and only requires AC0;0.Let hsiii2N be an enumeration of S. Be
ause AC0;0 implies 
hoi
e fromN�N to NZ there exist 
hoi
e fun
tions 
Æ : N�N ! NZ and 
w : N�N ! NZ,su
h that for all m;n 2 N the 
onditions of Lemma 3.7 are satis�ed if we takev = sm, � = 2�n, "i = 2�
Æ(m;n)(i), and vi = s
w(m;n)(i). De�ne mutuallyre
ursive fun
tions � : Z�! N and � : Z�! N by�([ ℄) = 0 ; �(aj) = 
w(�(a); �(a))(j) ;�([ ℄) = 0 ; �(aj) = 
Æ(�(a); �(a))(j) :Now for a 2 Z� let w(a) = s�(a) and Æ(a) = 2��(a). The desired properties ofhÆ(a)ia2Z� and hw(a)ia2Z� follow dire
tly from Lemma 3.7 and the de�nitionof � and �. 6



Lemma 3.9 Let hÆ(a)ia2Z� and hw(a)ia2Z� be as in Lemma 3.8. If a 2 Z� isa pre�x of b 2 Z� then B(w(b); Æ(b)) � B(w(a); 2Æ(a)=3).Proof. It follows from the �rst and the se
ond 
ondition of Lemma 3.8 thatfor any a 2 Z� and j 2 Z, B(w(aj); Æ(aj)) � B(w(a); 2Æ(a)=3). The general
ase when b = abi � � � bn is then witnessed by a 
hain of in
lusions of the formB(w(abi � � � bj); Æ(abi � � � bj)) � B(w(abi � � � bj+1); 2Æ(abi � � � bj+1)=3).Lemma 3.10 Let hÆ(a)ia2Z� and hw(a)ia2Z� be as in Lemma 3.8. For everyi 2 N and x 2 X, there exists a unique a 2 Zi su
h that d(w(a); x) < Æ(a), orfor all a 2 Zi it is the 
ase that d(w(a); x) > Æ(a).Proof. We prove the lemma by indu
tion on i 2 N. The base 
ase just
laims that d(w([ ℄); x) < 2Æ([ ℄) or d(w([ ℄); x) > Æ([ ℄), whi
h of 
ourse holds.To prove the indu
tion step, suppose there exists a unique a 2 Zi+1 su
h thatd(w(a); x) < 2Æ(a), or d(w(a); x) > Æ(a) for all a 2 Zi+1. In the �rst 
ase weuse the fourth 
ondition of Lemma 3.8 to 
on
lude that there exists a uniqueb = aj 2 Zi+2 su
h that d(w(b); x) < 2Æ(b), or that d(w(b); x) > Æ(b) for allb 2 Zi+2. In the se
ond 
ase, the �rst and the se
ond 
ondition of Lemma 3.8imply, for all aj 2 Zi+2,d(w(aj); x) > d(w(a); x) � d(w(a); w(aj)) > Æ(a)=3 > Æ(aj) :We prove Proposition 3.1. Let hÆ(a)ia2Z� and hw(a)ia2Z� be as in Lemma 3.8.Observe that Æ(a) � Æ([ ℄) � 3�jaj = 3�jaj for all a 2 Z�. De�ne the mape : ZN! X by e(�) = limi!1w(��i) :The �rst and the se
ond 
ondition of Lemma 3.8 imply that hw(��i)ii2N satis�esd(w(��i); w(��i+i)) � Æ(��i) � 3�i, whi
h means that it is a Cau
hy sequen
e,hen
e e is well de�ned. It is the 
ase that d(e(�); w(��i)) � 3�i+1. To seethat e is uniformly 
ontinuous, 
onsider any " > 0. There exists k 2 N su
hthat 3�k+1 < "=2. If d(�; �) < 2�k then ��k = ��k, therefored(e(�); e(�)) � d(e(�); w(��k)) + d(e(�); w(��k)) � 2 � 3�k+1 < " :This shows that e is uniformly 
ontinuous. Next we de�ne the map g : X ! RNas g = hgiii2N where the value of gi : X ! R at x 2 X is de�ned by the followingtwo 
lauses:1. if there exists a unique a = a0a1 : : : ai 2 Zi+1 su
h that d(w(a); x) < 2Æ(a)then gi(x) = ai � hill(2Æ(a)=3; Æ(a))(x) ;2. if d(w(a); x) > Æ(a) for all a 2 Zi+1 thengi(x) = 0 :
7



Note that when both 
lauses apply they agree that gi(x) = 0, and by Lemma 3.10at least one of the 
ases always applies, hen
e gi is well de�ned.Let us prove that gi is 
ontinuous at x. First 
onsider the 
ase whend(x;w(a)) > Æ(a) for all a 2 Zi+1. Be
ause hw(a)ia2Z� is without a

umu-lation point there exists � > 0 su
h that d(x;w(a)) > � for all a 2 Zi+1. Bythe se
ond 
ondition of Lemma 3.8, there exists m 2 N su
h that Æ(a) < �=2 ifkak1 = max(ja0j; : : : ; jaij) � m. Sin
e there are �nitely many a 2 Zi+1 su
hthat kak1 < m, we may de�ne� = min(f�g [ fd(x;w(a)) � Æ(a) j a 2 Zi+1; kak1 < mg) :Let y 2 B(x; �=2) and a 2 Zi+1. If kak1 � m then d(w(a); y) � d(w(a); x) �d(x; y) > � � �=2 � �=2 > Æ(a). If kak1 < m then d(w(a); y) � d(w(a); x) �d(x; y) > d(w(a); x) � � > Æ(a). In either 
ase, y 2 B(x; �=2) implies gi(y) =0, whi
h means that gi is indeed 
ontinuous at x. Now 
onsider the 
asewhen there exists a 2 Zi+1 su
h that d(w(a); x) < 2Æ(a). Then for everyy 2 B(x; 2Æ(a) � d(x;w(a))) it holds that d(w(a); y) < 2Æ(a), therefore gi re-stri
ted to B(x; Æ(a)=2) is equal to the 
ontinuous fun
tion ai �hill(2Æ(a)=3; Æ(a))restri
ted to the same ball.Sin
e every gi is pointwise 
ontinuous, it is not hard to see that g is pointwise
ontinuous as well. Finally, observe that, for any � 2 ZN, Lemma 3.9 impliesthat, for all i 2 N, d(e(�); w(��i)) � 2Æ(��i)=3 ;therefore, gi(e(�)) = �i � hill(2Æ(��i)=3; Æ(��i))(e(�)) = �i :Hen
e g(e(�)) = �, whi
h 
on
ludes the proof of Proposition 3.1.3.2 Proof of Proposition 3.2We move on to proving Proposition 3.2. Assume given a sequentially 
ontinuousf : ZN! Z. We 
onstru
t a fun
tion h : RN ! R extending f .For 
 2 RN and � 2 ZN, de�ne a sequen
e hh�i (
)ii2N of real numbers by:h�0 (
) = f(0!) ;h�i+1(
) = h�i (
) + (f(�0 : : : �i0!)� h�i (
)) � iYj=0 �
one(�j ; 1=4)(
j)�2i�j :We say that � is adequate for 
 if, for all i 2 N,�i � 2=3 < 
i < �i + 2=3 :By AC0;0, for every 
 2 RN , there exists � 2 ZN adequate for 
.Lemma 3.11 If � and �0 are both adequate for 
 then h�i (
) = h�0i (
).Proof. The proof pro
eeds by indu
tion on i. Clearly h�i (
) = h�0i (
) inthe 
ase that �j = �0j , for all j < i. Otherwise, without loss of generality,there exists j < i su
h that �j < �0j . Then, as both � and �0 are adequatefor 
, it holds that 
j � 2=3 < �j < �0j < 
j + 2=3. Thus �0j = �j + 1 and�j + 1=3 < 
j < �0j � 1=3, so 
one(�j ; 1=4)(
j) = 0 = 
one(�0j ; 1=4)(
j). Byindu
tion hypothesis, h�i (
) = h�i�1(
) = h�0i�1(
) = h�0i (
).8



The above lemma justi�es the de�nitionhi(
) = h�i (
), for any � adequate for 
 :The following te
hni
al lemma is in preparation for Lemma 3.13 below.Lemma 3.12 If h�iii2N is a sequen
e in [0; 1℄ satisfying �i+1 � �2i , for all i 2 N,then the in�nite produ
t Q1j=0(1� �j) 
onverges.Proof. We need to prove 
onvergen
e of the sequen
e hPiii2N of partialprodu
ts Pi = i�1Yj=0(1� �j) :We show that m � n implies Pn � Pm � (2=3)n. There are two 
ases. First, if�i > 1=3 for all i < n, thenPn � Pm � Pn � (2=3)n :In the se
ond 
ase there exists k < n su
h that �k < 1=2 and �i > 1=3 for alli < k. Then, for all i � k, Pi � Pk � (2=3)k and �i < (1=2)2i�k , soPi � Pi+1 = Pi � �i < (2=3)k � (1=2)2i�k � (2=3)k � (1=2)1+i�k :From this we derivePn � Pm < (2=3)k � m�1Xi=n (1=2)1+i�k < (2=3)k � (1=2)n�k � (2=3)n :Lemma 3.13 For every 
 2 RN , the sequen
e hhi(
)ii2N 
onverges.Proof. Let � be adequate for 
. We must show that hh�i (
)ii2N 
onverges.As f is sequentially 
ontinuous, there exists n su
h that f(�0 : : : �m�10!) = f(�)for all m � n. Then, for m � n, the equalityh�m(
) = f(�) + (h�n(
)� f(�)) � m�1Yi=n �1� iYj=0 �
one(�j ; 1=4)(
j)�2i�j� (1)is easily shown by indu
tion on m. De�ne�k = n+kYj=0 �
one(�j ; 1=4)(
j)�2n+k�j :By Lemma 3.12, � = Q1k=0(1 � �k) exists, and so hh�m(
)im2N 
onverges to�h�n(
) + (1� �)f(�).Finally, de�ne h(
) = limi!1hi(
) :Lemma 3.14 For all � 2 ZN, it holds that h(�) = f(�).9



Proof. Trivially, � = � is (the only �) adequate for �. We must showthat limm!1 h�m(�) = f(�). Let n be su
h that, for all m � n, it holds thatf(�0 : : : �m0!) = f(�). Then, by (1), we have h�m(
) = f(�) = f(�) for allm > n, be
ause 
one(�j ; 1=4)(�j) = 1 for all j and so � = 0.This 
ompletes the proof of Proposition 3.2. Observe that, in addition toshowing the existen
e of h given f , the proof 
onstru
ts a fun
tion mapping anysequentially-
ontinuous fun
tion f : ZN! Z to a 
orresponding hf : RN ! R.Various strengthenings of Proposition 3.2 are possible, for whi
h we do notin
lude proofs as they are not required for our appli
ation. First, it is possibleto generalize the proposition to apply to any 
ontinuous f : ZN! R. Se
ond, it
an be shown that the fun
tion hf 
onstru
ted above is sequentially 
ontinuous.Note that with the assertion of sequential 
ontinuity added, Proposition 3.2 be-
omes a statement with 
ontent in 
lassi
al mathemati
s; whereas, as 
urrentlystated, the result is a 
lassi
al triviality.4 Continuity and Choi
e Prin
iplesContinuity prin
iples are statements asserting that all fun
tions between 
ertainspa
es are 
ontinuous. Nontrivial 
ontinuity prin
iples are in
onsistent with
lassi
al mathemati
s, but play an important rôle in Brouwer's intuitionisti
mathemati
s. Interesting 
ontinuity prin
iples are also a feature of the internallogi
 of many toposes. It is well-known that there are nontrivial intera
tionsbetween 
ontinuity prin
iples and 
hoi
e prin
iples. In this se
tion we brie
ysurvey a few su
h results. Our main 
ontribution, Theorem 4.5, explains thefailure of 
ertain 
ontinuity prin
iples in toposes based on domain realizability.For CSM X and Y we 
onsider the 
ontinuity prin
iple:All fun
tions f : X ! Y are pointwise 
ontinuous. (CP(X;Y ))For sets X and Y we 
onsider the 
hoi
e prin
iple:(8x2X : 9 y2 Y : '(x; y)) =) 9 f 2Y X :8x2X :'(x; f(x)) : (AC(X;Y ))Thus AC0;0 is AC(N;N ). As is standard, we write AC1;0 for AC(NN ;N), andAC2;0 for AC(NNN;N). Easily AC1;0 implies AC0;0, and AC2;0 implies AC1;0.In Brouwer's intuitionism, and in the realizability topos RT(K2) over Kleene'sse
ond algebra K2 [KV65, Bau00℄, both CP(ZN;N) and AC1;0 are valid. Thesetwo prin
iples intera
t well together:Proposition 4.1 (CP(ZN;N) + AC1;0) For all CSM X;Y , the 
ontinuity prin-
iple CP(X;Y ) holds.On the other hand, stronger forms of 
hoi
e are not 
ompatible with CP(ZN;N).Proposition 4.2 (CP(ZN;N)) AC2;0 does not hold.For proofs of Propositions 4.1 and 4.2, see Se
tions 7.2.7 and 9.6.10 of [TvD88b℄respe
tively. Note that Se
tion 7.2.7 of ibid. relies on the 
ontinuity prin
i-ple WC-N, whi
h follows easily from AC1;0 and CP(ZN;N).10



Given Proposition 4.2, it is natural to ask just how strong a 
ontinuityprin
iple is still 
onsistent with AC2;0. In this 
ontext, it is interesting to lookat the realizability topos RT(D) where D is a universal S
ott domain, as thisvalidates 
hoi
e between any two �nite types [BB00, Bau00℄, in parti
ular AC2;0.In RT(D), as a 
onsequen
e of the existen
e of a 
ontinuous modulus of uniform
ontinuity on K , the 
ontinuity prin
iple CP(K ;N) holds, where K � ZN isCantor spa
e: K = f� 2 ZN j 8 i2N : 0 � �i � 1g :(In fa
t a stronger 
ontinuity prin
iple holds: all fun
tions from K to N areuniformly 
ontinuous.) Again, CP(K ;N ) intera
ts ni
ely with AC1;0. Re
all,from Se
tion 2, the notion of CTB spa
e. We say that a CSM X is lo
ally CTBif every point in X has a CTB neighbourhood.Proposition 4.3 (CP(K ;N ) + AC1;0) For all lo
ally CTB X and CSM Y , the
ontinuity prin
iple CP(X;Y ) holds.This result follows from Se
tion 7.4.4 of [TvD88b℄. Observe that, sin
e K isitself (lo
ally) CTB, the prin
iple CP(K ;N) is itself a spe
ial 
ase of the general
ontinuity prin
iple established.The notion of lo
ally CTB spa
e provides one possible 
onstru
tive formu-lation of lo
al 
ompa
tness (indeed, in the presen
e of Brouwer's Fan Theorem,it implies that the Heine-Borel property holds lo
ally [TvD88a, 7.4.10℄). Thusdomain realizability shows that AC2;0 is 
onsistent with a 
ontinuity prin
iplefor "lo
ally 
ompa
t" spa
es. As the main result of this se
tion we show that,in 
ontrast, extending the 
ontinuity prin
iple to any single inhabited lo
allynon-
ompa
t spa
e is in
onsistent with AC2;0.To obtain in
onsisten
y, we require only a very weak 
ontinuity prin
iple tohold. De�ne the one-point 
ompa
ti�
ation of N to be the subspa
e N+ � K :N+ = f� 2 K j 8n2N : (�n = 1 =) 8m > n :�m = 0)g :As N+ is a retra
t of K , it holds that CP(K ;N ) implies CP(N+ ;N). ThusCP(N+ ;N) holds in domain realizability. On
e again, CP(N+ ;N) enjoys a pleas-ant intera
tion with AC1;0:Proposition 4.4 (CP(N+ ;N) + AC1;0) For all CSMs X and Y , it holds thatall fun
tions from X to Y are sequentially 
ontinuous.Proof. Be
ause N+ is a retra
t of NN we have AC(N+ ;N). Let f : X ! Ybe a fun
tion and haiii2N a sequen
e in X 
onverging to x. We want to showthat hf(ai)ii2N 
onverges to f(x). First we 
onstru
t a fun
tion g : N+ ! Xsu
h that g(0!) = x and g(0n10!) = an for all n 2 N. We de�ne g(�) =limn!1 h(�; n) where h(�; n) = x if ��n = 0n and h(�; n) = am if ��n =0m10n�m�1. Now let " > 0. For every � 2 N+ , it holds that d(f(x); g(�)) <" or d(f(x); g(�)) > "=2. By AC(N+ ;N) there exists a fun
tion 
 : N+ !f0; 1g su
h that, for all � 2 N+ , if 
(�) = 1 then d(f(x); g(�)) < ", and if
(�) = 0 then d(f(x); g(�)) > "=2. By CP(N+ ;N) there exists m 2 N su
h that��m = 0m implies 
(�) = 
(0!) = 1. This means that, for all n � m, we haved(f(x); f(an)) = d(f(x); g(0n10!)) < ". Therefore limn!1 f(an) = f(x).11



Theorem 4.5 (CP(N+ ;N) + AC2;0) For any inhabited lo
ally non-
ompa
t CSMX, the 
ontinuity prin
iple CP(X;R) is not true.Proof. We derive a 
ontradi
tion from the assumption that all fun
tionsX ! R are pointwise 
ontinuous. Let f : ZN ! Z be any fun
tion. AsAC2;0 holds, so does AC1;0, so, by Proposition 4.4, f is sequentially 
ontinuous.By Theorem 2.3, we obtain a uniformly 
ontinuous embedding e : ZN ! Xtogether with a fun
tion f : X ! R su
h that f = f Æ e. By assumption, f ispointwise 
ontinuous, therefore f = f Æ e is pointwise 
ontinuous, too. We havederived CP(ZN;N). But, by Proposition 4.2, this 
ontradi
ts AC2;0.Theorem 4.5 is a generalization of [ES02℄, where it is proved that RT(D)validates the statement \not all fun
tions C[�1; 1℄ ! R are pointwise 
ontinu-ous". This is so be
ause in RT(D) it is the 
ase that C[�1; 1℄ = Cu[�1; 1℄ and,as remarked in Se
tion 2, Cu[�1; 1℄ is an inhabited lo
ally non-
ompa
t CSM.Referen
es[Bau00℄ A. Bauer. The Realizability Approa
h to Computable Analysis andTopology. PhD thesis, Carnegie Mellon University, 2000. Availableas CMU te
hni
al report CMU-CS-00-164.[BB85℄ E. Bishop and D. Bridges. Constru
tive Analysis, volume 279 ofGrundlehren der math. Wissens
haften. Springer-Verlag, 1985.[BB00℄ A. Bauer and L. Birkedal. Continuous fun
tionals of dependent typesand equilogi
al spa
es. In Computer S
ien
e Logi
 2000, August 2000.[Bis67℄ Errett Bishop. Foundations of Constru
tive Analysis. M
Graw-Hill,New York, 1967.[ES02℄ M. Es
ard�o and T. Strei
her. In domain realizability, not all fun
-tionals on C[�1; 1℄ are 
ontinuous. Mathemati
al Logi
 Quarterly,41(S1):41{44, 2002.[KV65℄ S.C. Kleene and R.E. Vesley. The Foundations of Intuitionisti
 Math-emati
s, espe
ially in relation to re
ursive fun
tions. North-HollandPublishing Company, 1965.[TvD88a℄ A.S. Troelstra and D. van Dalen. Constru
tivism in Mathemati
s,An Introdu
tion, Vol. 1. Number 121 in Studies in Logi
 and theFoundations of Mathemati
s. North-Holland, 1988.[TvD88b℄ A.S. Troelstra and D. van Dalen. Constru
tivism in Mathemati
s,An Introdu
tion, Vol. 2. Number 123 in Studies in Logi
 and theFoundations of Mathemati
s. North-Holland, 1988.
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