

Edinburgh Research Explorer

ABC-Fun: A Probabilistic Programming Language for Biology
Citation for published version:
Georgoulas, A, Hillston, J & Sanguinetti, G 2013, ABC-Fun: A Probabilistic Programming Language for
Biology. in A Gupta & TA Henzinger (eds), Computational Methods in Systems Biology: 11th International
Conference, CMSB 2013, Klosterneuburg, Austria, September 22-24, 2013. Proceedings. Lecture Notes in
Computer Science, vol. 8130, Springer-Verlag GmbH, pp. 150-163, The 11th Conference on Computational
Methods in Systems Biology (CMSB 2013), Klosterneuburg, Austria, 23/09/13. DOI: 10.1007/978-3-642-
40708-6_12

Digital Object Identifier (DOI):
10.1007/978-3-642-40708-6_12

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Computational Methods in Systems Biology

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28975695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-642-40708-6_12
https://www.research.ed.ac.uk/portal/en/publications/abcfun-a-probabilistic-programming-language-for-biology(a630ed65-e4b1-46e4-a1b2-ac47d99dfd4a).html

ABC–Fun: A Probabilistic Programming
Language for Biology

Anastasis Georgoulas1, Jane Hillston1,2, and Guido Sanguinetti1,2

1 School of Informatics, University of Edinburgh
2 SynthSys — Synthetic and Systems Biology, University of Edinburgh

Abstract. Formal methods have long been employed to capture the
dynamics of biological systems in terms of Continuous Time Markov
Chains. The formal approach enables the use of elegant analysis tools
such as model checking, but usually relies on a complete specification of
the model of interest and cannot easily accommodate uncertain data. In
contrast, data-driven modelling, based on machine learning techniques,
can fit models to available data but their reliance on low level mathemat-
ical descriptions of systems makes it difficult to readily transfer methods
from one problem to the next. Probabilistic programming languages po-
tentially offer a framework in which the strengths of these two approaches
can be combined, yet their expressivity is limited at the moment.
We propose a high-level framework for specifying and performing infer-
ence on descriptions of models using a probabilistic programming lan-
guage. We extend the expressivity of an existing probabilistic program-
ming language, Infer.NET Fun, in order to enable inference and sim-
ulation of CTMCs. We demonstrate our method on simple test cases,
including a more complex model of gene expression. Our results suggest
that this is a promising approach with room for future development on
the interface between formal methods and machine learning.

1 Introduction

Continuous Time Markov Chains (CTMCs) have long been established as a
framework for the description and analysis of dynamical systems, including those
encountered in the life sciences. Of particular interest, and also widespread, is
their use within high-level formalisms, such as process algebras. Adopting a
high-level language rather than working with the CTMC itself offers various
advantages: a friendlier language to specify the system, easier modification and
some degree of inbuilt error-checking, among others. It also gives access to an
array of tools to analyse and reason about the behaviour of the system, such as
stochastic simulation and model-checking. The major weakness of this framework
is that the models implicitly assume complete mechanistic knowledge of the
system. Therefore it does not offer support for integrating experimental data
into models or inferring parameters from observations.

In contrast, machine learning techniques applied to models of biological pro-
cesses are designed to predict a system’s behaviour in the presence of uncertainty.

ttotterd
Typewritten Text
Georgoulas, A., Hillston, J., & Sanguinetti, G. (2013). ABC-Fun: A Probabilistic Programming Language for Biology. In Gupta, A., & Henzinger, T. A. (Eds.), Computational Methods in Systems Biology. (pp. 150-163). (Lecture Notes in Computer Science). Springer Berlin / Heidelberg. doi: 10.1007/978-3-642-40708-6_12

An important category of such methods is concerned with using (possibly noisy)
observations from the system in order to refine our understanding of it, a task
often referred to as learning and which can be broken down into two aspects:
learning the structure of the system in question, or learning its parameters (for
a given structure). These methods mostly work on mathematical descriptions of
systems, often in the form of ordinary, partial or stochastic differential equations.
For example, Bayesian Networks, a graphical framework for describing proba-
bilistic models, while intuitive and widely used are still essentially a front-end
to the underlying equations. Working with the low-level description negates the
advantages afforded by high-level languages, as described above, thus limiting
the applicability of the inference techniques.

Some common ground between the two approaches may be found in the
field of probabilistic programming. Probabilistic programming promises to offer
a high-level language that can be used for both describing and learning non-
deterministic systems. Using a programming language and the expressive power
it affords makes the the process of specifying a system easier, while at the same
time offering a range of other features such as modularity and type systems. Ad-
ditionally, we also obtain a unified, general framework for automatically perform-
ing inference on a given model, eliminating the need to write bespoke solutions
and learning algorithms for every system of interest.

While the field of probabilistic programming has generated considerable in-
terest in recent years, current probabilistic programming languages are limited
in the types of models they can describe, as well as in the inference method-
ologies they implement. In particular, to our knowledge, continuous time, non-
parametric models such as CTMCs cannot be handled by current probabilis-
tic programs. Several techniques have been proposed, including approximations
based on finite dimensional projections [1], sampling methodologies (e.g.[15, 3]),
and variational inference approaches [12]. However, these methods all require a
low level mathematical description of the system (usually a way of approximately
solving the chemical master equation).

In this paper, we explore the potential for a framework which encompasses
the strengths of both high-level formalisms and machine learning by extending
an existing probabilistic programming language, Infer.NET Fun [2], in order to
enable stochastic simulation and approximate Bayesian inference for CTMCs.
We call the resulting approach ABC–Fun and illustrate it on two examples of
biological significance, showing the potential of probabilistic programming as an
effective tool for modelling in systems biology. Our focus, however, is not on
presenting a fully-formed solution but rather on exploring the applicability of a
novel approach, with the ultimate aim of facilitating interfacing of models and
experiments.

The rest of the paper is structured as follows: we give an overview of proba-
bilistic programming and the platform we are using, Infer.NET Fun; we briefly
describe our implementation of Gillespie’s stochastic simulation algorithm, the
basis of our approach, before presenting the inference process; finally, we describe
our experiments and discuss their results.

2 Background

2.1 Bayesian Inference

In this work, we focus on the Bayesian approach to learning, which uses prob-
ability distributions to model and quantify uncertainty about all aspects of the
system under study, including its structure or parameters. Assume the system
to be characterised by a set of parameter values Θ (e.g. transition rates of a
certain CTMC). We are also given a set of (partial) observations of the system
y. The principal ingredients of the Bayesian approach are two: the prior distri-
bution p(Θ) encodes any initial beliefs about the values of the parameters. The
likelihood p(y|Θ) (sometimes called observation model) gives the probability of
the observations given the values of the parameters. Since the observations are
fixed, this is a function of the parameter values. Bayes’ rule combines these two
ingredients to provide a mathematically sound way of estimating the impact of
the observations on our beliefs over the parameters,

p (Θ|y) =
1

Z
p (y|Θ) p (Θ) . (1)

p (Θ|y) is the posterior distribution over the parameters, which quantifies the
uncertainty over the parameters implied by the data and the prior beliefs.

A major computational hurdle in applying Bayes’ rule is the estimation of the
proportionality constant Z in equation (1). This term, the marginal likelihood or
evidence, represents the probability of the data under all possible settings of the
parameters; its value is obtained by performing (usually analytically intractable)
integrals over the parameter space, which become prohibitive in even moderate
dimensions. In the case of CTMCs, this problem is further compounded by the
fact that (in general) even the likelihood cannot be computed analytically: the
probability of the state of a CTMC taking a particular value at a certain time can
only be obtained by solving the chemical master equation, which is impossible
in most cases. In general, Bayesian inference in CTMCs remains a challenging
problem: current methods either resort to approximations to the chemical master
equations [12, 1] or sampling approximations [15, 3]. In all of these approaches,
inference relies on a low level mathematical description of the system as a Markov
transition system, and often specific characteristics of the system (e.g. functional
form of the transition rates) are hard-wired in any accompanying code, greatly
reducing the ease of portability and applicability of the approach.

2.2 Probabilistic Programming

Probabilistic programs can be thought of as an extension of conventional, deter-
ministic programs, in which expressions describe stochastic experiments. Rather
than having a concrete value, then, an expression corresponds to a whole dis-
tribution over values and evaluating it means performing the experiment and
recording its outcome [13]. Constraining some variables within an expression to

have a specified value is equivalent to performing inference, with the observations
representing constraints.

Historically, probabilistic programming languages have been primarily tar-
geted at graphical models, a popular class of models in machine learning. Briefly,
a graphical model is a specification of a finite number of random variables and
the (conditional) dependence relationship which define their joint distribution.
The name graphical model derives from the fact that such models can be repre-
sented as graphs or networks; this graphical representation enables a quick and
intuitive formulation of the model, and also encodes several properties which are
important for simplifying inference. For a thorough review, we refer the reader
to the excellent book [7].

Examples of languages for probabilistic programming include IBAL [13] and
Church [5]. Both of these use a functional language to specify probabilistic mod-
els, equipped with a way of performing inference on them. The generation of the
inference code is automated and tailored to the model at hand, which means
the user can focus on describing the model and not on adjusting or rewriting
code for every different model. However, the automation of inference comes at
a cost, either in terms of the class of models that can be considered (IBAL for
example only considers finite graphical models), or of the inference methodol-
ogy employed (Church only allows the Metropolis-Hastings sampling algorithm,
which requires an analytically tractable likelihood function).

Infer.NET [9] is a probabilistic programming framework developed by Mi-
crosoft Research for specifying probabilistic models and performing Bayesian in-
ference on them. More specifically, it offers a high-level, programming language
interface for the description of graphical models. Further to this, Infer.NET in-
cludes an inference engine that can use a number of different algorithms, such as
Expectation Propagation and Gibbs Sampling, to obtain estimates of the distri-
bution of the model’s parameters, informed by the knowledge of some observed
data. Infer.NET also provides bindings for programming languages such as C#
and Python and these can be used to describe a model and the desired inference
queries, which are then compiled into source code. The resulting code can then
itself be compiled and executed, returning the results of the inference queries.
An additional component of Infer.NET is Fun ([2, 6]), an F# interface that aims
to make the process of describing a model even more similar to “conventional”
programming. As such, its syntax is very lightweight and consists of simple ad-
ditions to the standard F# syntax, resulting in a user-friendly framework.

A model expressed in Fun can be used in two different yet related ways. The
first is to view it as a generative model, that is, a description of how data points
are generated. In this case, every random expression produces a sample from the
given distribution. The model can therefore be “run forwards”, giving rise to a
set of values in a style similar to ancestral sampling.

The second way to use a model is to pass it to the Infer.NET inference engine.
The model is then “run backwards”. We use observe expressions to specify
observed data and condition the model on them — when such an expression is
encountered, if its condition is not met, the execution is marked as failed. The

result of this procedure is that we can obtain the posterior distributions on the
random variables of the model, i.e. the distribution when only considering those
executions which satisfy all the observations.

To illustrate what models probabilistic programming languages can handle,
and see why they are not sufficient for CTMCs, we consider the kind of systems
that can be modelled in Fun. In the simplest case, a Fun model can describe a
static system with a finite number of random variables. In this case, one would
describe how the variables depend on one another by specifying their conditional
distributions. Some of these distributions may be parametrized, and the unknown
parameters are also treated like random variables, in the Bayesian style.

A more complex example which can still be modelled in Fun is a dynamical
system with a known number of steps. The state at each time depends only on the
previous state, thus the system can be represented as a Markov Chain. Describing
this would result in a recursive definition, which is not supported by Infer.NET.
However, in the functional programming paradigm, this can be reformulated as
a folding operation, to avoid explicit recursion. Folding a function over an array
involves applying it to all elements of the array sequentially. The result of every
application is used to obtain a new function, which is then applied to the next
element, and so on. This technique has been applied to one of the examples
in [6], but it should be noted that this is made possible because the number of
steps in the system is known a priori.

3 Probabilistic programming for CTMCs

In this section we highlight the limitations of Fun and describe how these can
be addressed in an economic way by exploiting Fun’s parent language, F#.

Infer.NET, and Fun in particular, is designed to address graphical models,
i.e. models with a known, finite number of random variables. In particular, the
number of random variables is hard-wired in the definition of a Fun model type.
In the case of CTMCs, however, the number of transitions that may occur in a
given time is generally unknown, therefore so is the number of random variables
(since every transition is associated with two random variables, one each for the
choice of transition and delay). This means both that we do not have an array
to fold over, and so cannot eliminate the recursion, and that we must use lists
instead of arrays, since the latter have a fixed size while the former can grow
indefinitely. However, these are not features supported by Fun or Infer.NET, so
we must leave Fun for a different language. A major implication of this is that
the inbuilt inference engine of Infer.NET cannot be used, so that alternative
inference strategies need to be used (detailed in Section 3.2).

As we would like to retain some of the functionality of Fun, such as drawing
samples, we turn to its base language, F#, and use Fun as a library for the oper-
ations we need. This way, we can retain useful language structures and features
such as random number generators for various different probability distributions,
although the final code will not be compatible with the Infer.NET inference en-
gine. Moreover the F# code has been packaged as a library for FUN making

it available to other users who are not necessarily familiar with the implemen-
tation details for CTMCs. This illustrates our aim to lift the data generation
and inference techniques into a high-level language, supporting their use by a
wide-range of users as transparently as possible.

3.1 Implementing the Stochastic Simulation Algorithm

The ability to simulate CTMCs is central for both modelling and inference. We
describe here the ABC-Fun implementation of Gillespie’s Stochastic Simulation
Algorithm [4]; this is given in considerable detail both because of its importance
and in order to provide the reader with a concrete example of ABC-Fun syntax.

We handle models as chemical reactions: a model with N species and K
reactions is comprised of a stoichiometry matrix and a list of kinetic laws. The
stoichiometry matrix is implemented as a list of lists; each of its K sub-lists has
length N , corresponds to a reaction and contains the updates for the population
of each species when that reaction occurs. Each reaction also has an associated
kinetic law, which is a function that acts on a list of integers (the state of the
system) and returns a real value (the rate of the reaction); these are collected
in the second component of the model. A model can also be parametrized –
such a model is essentially a function that takes a list of parameters and returns
a concrete model, as described above. We define a Model constructor, which
combines the two elements (list of rates and stoichiometry matrix) and creates
a model object. Technically, this has the F# type:

(i n t l i s t −> f l o a t) l i s t ∗ (i n t l i s t) l i s t −> model

This provides an interface through which one can specify models, without
concern for how the simulation is performed. For example, a model of a single
species birth-process can be encoded as follows:

let r1 1 l = 0 .1 ∗ f l o a t (L i s t . head l)
let r1 2 l = 20 .0 // constant ra t e
let rateLaws1 = [r1 1 ; r1 2]
let s t o i c h 1 = [[− 1] ; [1]]
let m1 = Model (rateLaws1 , s t o i c h 1)

A trace (one possible run of the CTMC) can then be obtained simply by calling
the function pathSample, which accepts a model, an initial state and the stop-
ping time, and returns a trajectory through the state space (a list of states and
a list of the corresponding times). Its type is therefore

model −> i n t l i s t −> f l o a t −> i n t l i s t l i s t ∗ f l o a t l i s t

In order to generate a trace, we must make explicit the sampling steps in-
volved in the SSA. To do so in a probabilistic programming language, we use
some of the Fun in-built functions (primarily the random number generators).
The SSA can be recast in probabilistic programming terms if we consider that,
at every step, the next reaction to occur is a discrete random variable, with each
possible value having a probability that can be calculated from the reaction

rates at the current state. Similarly, the time to the next state is also a random
variable. Both of these probabilities are encoded in the kinetic parameters of the
model. In order to simulate the CTMC, we keep the parameter fixed; we will
see in the next section how to vary the parameters in an inference scheme. The
code below shows how we implement the standard version of the SSA in F#
using Fun as a library. The part shown here specifies how the next reaction and
delay are chosen. It is straightforward to use this in order to recursively build the
trajectory, keeping a list of the states and transition times and stopping when
we reach the final time.

let nextStateAndTime s t a t e rateFunct ions s t o i c h =
let r a t e s = [| for r in ra teFunct ions −> r s t a t e |]
let sumRates = Seq . sum r a t e s

i f sumRates > 0 .0 then
let delay = ExponentialSample sumRates
let r e a c t i o n = random (D i s c r e t e (Vector . FromArray r a t e s))
let newState = updateState s t a t e (L i s t . nth s t o i c h r e a c t i o n)

(newState , de lay)
else // a l l r a t e s are 0 , we can stop

(s ta te , i n f i n i t y)

Note that the code above uses the random construct from Fun to sample from
a distribution. ExponentialSample is also defined using random to draw from
an exponential distribution with the specified rate:

let Exponent ia lDist r a t e = GammaFromShapeAndRate (1 . 0 , r a t e)
let ExponentialSample ra t e = random (Exponent ia lDis t r a t e)

updateState simply calculates the next state given the current state and the
row of the stoichiometry matrix corresponding to the chosen reaction. As both
these arguments are represented as lists, this can be expressed as the pairwise
sum of their elements.

3.2 Choosing an Inference engine

As explained earlier, the limitations of the Infer.NET engine mean that we must
adopt a different inference method. For the purposes of this work, we use Ap-
proximate Bayesian Computation (ABC) [19], a parameter inference scheme that
constructs an approximation of the posterior distribution by repeated simula-
tions of the system. This enables us to use our implementation of the SSA to
also perform inference, as described below.

ABC works by generating samples of parameters. For each such parameter,
the behaviour of the system is simulated, in our case producing a path through
the state space. If the path obtained this way matches the observed data, under
some given metrics and tolerance, the parameter sample is kept, otherwise it
is discarded. The process is repeated until a sufficient number of samples has
been accepted, and the resulting set of accepted parameter values serves as
the approximate representation of the posterior. ABC can therefore be thought

of as a way of converting simulation into an inference technique. The choice
of tolerance can be significant, as there is a trade-off between accuracy and
efficiency of the algorithm. The lower the tolerance, the harder it is to accept a
sample, which means more sampling attempts will be required in order to reach
the desired number of accepted samples (as the rejection rate will be higher) but
the final set will be more representative of the true posterior distribution.

There are different versions of the algorithm (as described, for example,
in [17]), depending on how the parameter samples are generated. The simplest
approach is to sample independently from a prior distribution, which may how-
ever prove to be inefficient, while another is to have each sample depend on the
previous one, giving rise to a Markov Chain Monte Carlo (MCMC) scheme.

Choosing a metric to evaluate the distance between a simulated trace and the
observed data is an important issue. Assume we have a series of successive obser-
vations along with the corresponding measurement times {(y1, t1), ..., (yN , tN)},
and a simulated trace {(x1, τ1), ..., (xM , τM)}, with M > N3. In this work,
the first thing we do is “shift” and thin the trace, keeping the value at ev-
ery ti. Formally, we define a new time-series x̂ such that x̂i = xm, where
m = argmaxj(τj ≤ ti), for i = 1, .., N .

The simplest way to calculate the distance between x and y is to take the
absolute difference between x̂ and y, averaged over all points:

d(x, y) =
1

N

N∑
i=1

|x̂i − yi| (2)

In the case of CTMCs, a plausible alternative could be to rescale the difference
between x̂ and y adaptively according to the value of y; this can be justified
by noticing that noise in CTMCs is usually multiplicative. We therefore also
consider the following metric

d̃(x, y) =
1

N

N∑
i=1

|x̂i − yi|√
yi

(3)

which may be more suitable when the observations span a wide range of values.
In this work, we perform parameter estimation using the MCMC version of

the ABC algorithm. This works by constructing a Markov chain in parameter
space which asymptotically will converge to an approximation of the posterior
distribution. Given data and an initial set of parameter values, we sample a
new set of parameter values from a proposal distribution which depends on the
current parameters (in our application, a Gaussian centred at the old parameter
values). We then simulate the system (by running the model forwards using
these values), compare the trace obtained this way with the input data and
decide whether to accept it or not, depending on the “distance” between the
two traces, our tolerance level and the prior and proposal distributions. We

3 Notice that our measurements are counts at individual times, not transition times;
therefore, an analytical expression for the likelihood is in general not available.

repeat this sampling scheme for a previously specified number of steps, then use
the samples collected this way as a representation of the posterior distribution
of the parameters.

4 Experiments

4.1 Birth-death process

We have tested ABC–Fun on a simple model of a birth-death process, in which
a single species can be created at a constant rate or degraded according to
mass-action kinetics (i.e. at a rate proportional to its amount). We initially fix
the death rate and reduce the problem to a one-dimensional one, where we try
to estimate the birth rate. We use a uniform prior, reflecting a belief that all
parameter values are equally likely in the absence of any data.After 105 steps,
the distribution of samples is clearly centred around the true parameter value
(Figure 1). A common issue with MCMC schemes is the difficulty of assessing
whether the process has converged, i.e. whether the samples are truly repre-
sentative of the posterior distribution and have “overcome” the influence of the
initial state. Experimenting with different initial samples indicated that this con-
vergence to the true value was robust, although it required more samples when
the initial point was further away from the true value (Figure 2).

1 2 3 4 5 6 7
0

2000

4000

6000

8000

10000

12000

Birth rate

F
re

qu
en

cy

Fig. 1. Histogram showing the number of accepted samples after 100000 steps of the
ABC-MCMC algorithm when inferring only the birth rate. The true value of the pa-
rameter is 2, shown by the vertical line.

We then considered the problem of inferring the full model, i.e. estimating
both rates. The parameters chosen for the simulation were a birth rate of 2

0 2000 4000 6000 8000 10000
0

1

2

3

4

5

6

7

8

9

10

Number of steps

S
am

pl
e

va
lu

e

Fig. 2. Accepted samples when inferring only the birth rate, showing convergence to
the true value. The algorithm was run for 10000 steps, starting from an initial value of
6 (red) or 10 (blue). Similar results occur for all tested initializations.

and a death rate of 0.02, leading to the steady state of 100 being reached after
about 250 time units. The data that was used as input for the inference came
from a single stochastic simulation, taking 20 samples from the resulting trace
(approximately 15 during the transient phase and 5 at the steady state).

This time, the results are not as clear-cut: the heat map (Figure 3b) indi-
cates there are multiple value pairs that match the observed data. This reflects an
identifiability issue with the system, which can be easily explained if we consider
that the probability of choosing one reaction over the other depends only on the
ratio between the two rates. Therefore, there exist multiple parameterizations
which would give the same relative probabilities, and the unknown parameters
can only be estimated up to a multiplicative constant. It is possible to reduce
this uncertainty by considering information about the timing of the reactions, as
the duration of the reactions does depend on the concrete values of the param-
eters, rather than just their ratio — intuitively, higher rates will result in faster
reactions.

The results show that the highest number of accepted samples is concentrated
around the true values of the parameters. Additionally, the other areas with a
significant number of samples lie on a diagonal line, indicating a constant ratio
between the two parameters, matching our expectation. If we plot the ratio of
the two parameters for each of the accepted samples (Figure 3a), we can see that
this quantity is most often close to 100, its true value. In short, the inference
procedure manages to distinguish the true parameter pair from the others that
give a similar behaviour.

0 50 100 150
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Ratio of rates

F
re

qu
en

cy

(a) histogram of birth to death rate ratio
for the accepted samples (true value: 100)

Death rate

B
irt

h
ra

te

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

10

 9

 8

 7

 6

 5

 4

 3

 2

 1

 0

(b) heat map of accepted samples (true
values: 2 and 0.02)

Fig. 3. Accepted samples when inferring both kinetic rates in the new experimental
configuration

4.2 Regulation of gene expression in single cells

As a more biologically meaningful example, we consider the classic on/ off model
of gene expression (e.g. [14]). Here, the rate of mRNA production is assumed to
depend solely on the state of the gene promoter: thus, mRNA can be produced at
a high rate (promoter ON) or a low rate (promoter OFF). The inference task is to
reconstruct both mRNA production/ decay rates and the promoter occupancy
state from gene expression time series. This model was recently used in [18]
to tease apart bursting kinetics in mRNA production; there the parameters
were estimated by maximum likelihood. Bayesian inference methodologies for
this model have been recently proposed assuming mRNA concentrations to be
continuous variables [16, 11]; here, we consider the Bayesian inference problem
when mRNA counts are discrete, and are thus governed by a birth/ death process
whose birth rate depends on an unobserved binary process4. The importance
of this model lies not only in its fundamental role as a mechanism for gene
expression, but also in the possibility of using it as a building block for modelling
complex gene regulatory networks [10].

To slightly simplify the task, we assumed that the promoter state only per-
formed two transitions within the time frame under consideration (i.e., it starts
in the OFF condition, turns ON at a random time, and then turns OFF again).
We then tested the ABC–Fun approach on simulated data under ten different
configurations of the model parameters/ switching times. For these experiments
we used the modified distance metric d̃ (Equation 3). Figure 4 shows the pos-
terior probabilities of the ON and OFF times in a particular run, with the true
values indicated by a vertical line. As we can see, the posterior distribution is
approximately centred around the true value. The inferred posterior distribu-
tions for the promoter activity (difference between birth rate in the two states)

4 This can be seen as a special case of Bayesian inference for Markov Jump Processes
[12, 20], albeit employing a different inference methodology.

and the decay rate are shown in Figure 5. We can see that the posterior distribu-
tion has substantial mass concentrated around the true value, but is quite wide
due to the identifiability problems already mentioned in Section 4.1. Results for
other configurations of the parameters gave qualitatively similar results.

0 50 100 150 200 250 300 350 400
0

1000

2000

3000

4000

5000

6000

ON time

F
re

qu
en

cy

(a)

400 450 500 550 600 650 700 750 800
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

OFF time

F
re

qu
en

cy
(b)

Fig. 4. Accepted samples when inferring the (a) switch-on and (b) switch-off time (real
value shown by red vertical line)

0 2 4 6 8 10
0

1000

2000

3000

4000

5000

6000

Birth rate

F
re

qu
en

cy

(a)

0 0.02 0.04 0.06 0.08 0.1
0

1000

2000

3000

4000

5000

6000

7000

8000

Death rate

F
re

qu
en

cy

(b)

Fig. 5. Accepted samples when inferring the (a) promoter activity A) and (b) degra-
dation rate λ (real value shown by red vertical line)

5 Discussion and conclusions

We have presented ABC–Fun, a probabilistic programming language which han-
dles biological models expressed as CTMCs with uncertain rates. Our approach

uses features of an existing probabilistic programming language, Infer.NET-Fun;
however, the non-parametric nature of CTMCs cannot directly be handled by
Fun, so that we have to extend it by defining new types in F#, and use a different
inference engine to perform approximate Bayesian inference. Our initial results
on two simple but biologically relevant models show that this approach can be a
valuable addition to the systems biology toolkit: in particular, the two different
models only required minimal coding changes. We expect this high portability
to be an increasingly important feature as systems biology matures to handle
ever more complex models.

Our method extends the range of systems and inference methodologies that
can be modelled using probabilistic programming languages, in addition to pro-
viding a test case for applying the latter in a biological context. We note that
semi-automated inference packages using ABC have been proposed before: for
example, [8] will take as input an SBML file and perform ABC-based inference
on model parameters. Nevertheless, their approach is not based on a probabilis-
tic programming language, and this has drawbacks: for example, it is not easy to
express in SBML models with latent variables like the ON-OFF model of gene
expression. In a probabilistic programming environment, this is straightforward
as it is merely the addition of a further random variable.

Our choice of ABC as an inference engine was primarily motivated by its im-
plementation ease and its applicability in intractable likelihood problems (such
as CTMCs). Nevertheless, ABC has several drawbacks, both in terms of com-
putational efficiency, and in terms of relying on a tolerance parameter which is
difficult to tune in a principled way. Exploring alternative inference approaches
which can ameliorate these problems will be key to extending our methodology
to larger, more relevant models.

Acknowledgements This work was supported by Microsoft Research through
its PhD Scholarship Programme. JH acknowledges support from the EU FET-
Proactive programme through QUANTICOL grant 600708. GS acknowledges
support from the European Research Council through grant MLCS306999. The
authors would like to thank Luca Cardelli and Andy Gordon for useful discussion.

References

1. Andreychenko, A., Mikeev, L., Spieler, D., Wolf, V.: Approximate maximum like-
lihood estimation for stochastic chemical kinetics. EURASIP Journal on Bioinfor-
matics and Systems Biology 2012(1) (2012) 9

2. Borgström, J., Gordon, A.D., Greenberg, M., Margetson, J., Van Gael, J.: Measure
transformer semantics for Bayesian machine learning. In: Proceedings of the 20th
European conference on Programming languages and systems: part of the joint
European conferences on theory and practice of software. ESOP’11/ETAPS’11,
Berlin, Heidelberg, Springer-Verlag (2011) 77–96

3. Boys, R., Wilkinson, D., Kirkwood, T.: Bayesian inference for a discretely observed
stochastic kinetic model. Statistics and Computing 18 (2008) 125–135

4. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal
of Physical Chemistry 81(25) (1977) 2340–2361

5. Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.:
Church: a language for generative models. In: UAI. (2008) 220–229

6. Gordon, A., Aizatulin, M., Borgström, J., Claret, G., Graepel, T., Nori, A., Raja-
mani, S., Russo, C.: A model-learner pattern for Bayesian reasoning. In: Proceed-
ings of the ACM SIGPLAN Conference on Principles of Programming Languages
(POPL). (2013)

7. Koller, D., Friedman, N.: Probabilistic Graphical Models. MIT Press, Cambridge
MA (2010)

8. Liepe, J., Barnes, C., Cule, E., Erguler, K., Kirk, P., Toni, T., Stumpf, M.P.:
ABC-SysBio—approximate Bayesian computation in Python with GPU support.
Bioinformatics 26(14) (2010) 1797–1799

9. Minka, T., Winn, J., Guiver, J., Knowles, D.: Infer.NET 2.5 (2012) Microsoft
Research Cambridge. http://research.microsoft.com/infernet.

10. Ocone, A., Millar, A.J., Sanguinetti, G.: Hybrid Regulatory Models: a statistically
tractable approach to model regulatory network dynamics. Bioinformatics 29(7)
(2013) 910–916

11. Opper, M., Ruttor, A., Sanguinetti, G.: Approximate inference for Gaussian-jump
processes. In: Advances in Neural Information Processing Systems 24. (2010)

12. Opper, M., Sanguinetti, G.: Variational inference for Markov jump processes. In
Platt, J., Koller, D., Singer, Y., Roweis, S., eds.: Advances in Neural Information
Processing Systems 20. MIT Press, Cambridge, MA (2008) 1105–1112

13. Pfeffer, A.: The Design and Implementation of IBAL: A General-Purpose Prob-
abilistic Language. In Getoor, L., Taskar, B., eds.: Introduction to Statistical
Relational Learning. The MIT Press (2007)

14. Ptashne, M., Gann, A.: Genes and signals. Cold Harbor Spring Laboratory Press,
New York (2002)

15. Rao, V., Teh, Y.W.: Fast MCMC sampling for Markov jump processes and con-
tinuous time Bayesian networks. In: UAI. (2011)

16. Sanguinetti, G., Ruttor, A., Opper, M., Archambeau, C.: Switching regulatory
models of cellular stress response. Bioinformatics 25(10) (2009) 1280–1286

17. Sisson, S.A., Fan, Y., Tanaka, M.M.: Sequential Monte Carlo without likelihoods.
Proceedings of the National Academy of Sciences 104(6) (2007) 1760–1765

18. Suter, D.M., Molina, N., Gatfield, D., Schneider, K., Schibler, U., Naef, F.: Mam-
malian genes are transcribed with widely different bursting kinetics. Science
332(6028) (2011 Apr 22) 472–474

19. Toni, T., Welch, D., Strelkowa, N., Ipsen, A., Stumpf, M.P.: Approximate Bayesian
computation scheme for parameter inference and model selection in dynamical
systems. Journal of The Royal Society Interface 6(31) (2009) 187–202

20. Zechner, C., Pelet, S., Peter, M., Koeppl, H.: Recursive Bayesian estimation of
stochastic rate constants from heterogeneous cell populations. In: CDC-ECE, IEEE
(2011) 5837–5843

