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a category of posets realized by cpos

Alex K. Simpson
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JCMB, The King’s Buildings, Edinburgh, EH9 3JZ

Email: Alex.Simpson@dcs.ed.ac.uk

Abstract. We construct a powerdomain in a category whose objects are
posets of data equipped with a cpo of “intensional” representations of
the data, and whose morphisms are those monotonic functions between
posets that are “realized” by continuous functions between the associated
cpos. The category of cpos is contained as a full subcategory that is pre-
served by lifting, sums, products and function spaces. The construction
of the powerdomain uses a cpo of binary trees, these being intensional
representations of nondeterministic computation. The powerdomain is
characterized as the free semilattice in the category. In contrast to the
other type constructors, the powerdomain does not preserve the sub-
category of cpos. Indeed we show that the powerdomain has interest-
ing computational properties that differ from those of the usual convex
powerdomain on cpos. We end by considering the solution of recursive
domain equations. The surprise here is that the limit-colimit coincid-
ence fails. Nevertheless; by moving to a setting in which one considers
“realizability” at the level of functors, algebraic compactness is achieved.

1 Introduction

In a recent paper [2], Anderson and Power suggest using certain binary trees as
primitive models of nondeterministic computation. These trees are labelled at
the leaves with the possible results of computation, and the branching repres-
ents the nondeterministic choices encountered along the way. When the output
domain is a cpo, the set of such trees also forms a natural cpo. However, the
elements of the cpo only provide “intensional” representations of nondetermin-
ism in the sense that “extensionally” equivalent computations, i.e. ones with the
same sets of possible outputs, have many different representations. Semantically
one does not want to distinguish between different representations of the same
extensional computation. Anderson and Power make the desired identifications
by (essentially) quotienting the cpo of trees in the category of cpos. In doing so
they recover the standard convex powerdomain construction on cpos.

In this paper we consider an alternative approach for dealing with such cpos of
intensional representations of computational behaviour. Rather than quotienting
by the desired extensional equivalence, we retain the existing intensional cpo and
we equip 1t with its intended equivalence relation as extra structure. Actually,
in this paper we assume that the desired equivalence relation is derived from a
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more primitive preorder. This is intuitively reasonable. In many situations, one
thinks of an extensional notion of computational behaviour as being determined
by a class of observable tests on computations. Such tests determine, in the first
instance, a preorder defined by x < y if and only if y satisfies any test that x
satisfies. A natural notion of behavioural equivalence is then easily derived from
the preorder.

The above ideas lead to the consideration of a category each of whose ob-
jects is a cpo equipped with a (suitable) preorder. There is a natural notion of
morphism between such objects, corresponding to the idea that a program should
compute with intensional representations, and it should do so in an extension-
ally meaningful way. Thus a program should determine to a continuous function
between the underlying cpos that respects the extensional preorder. Further, we
do not wish to distinguish between two programs that have the same observa-
tional behaviour on extensionally equivalent data. Therefore a morphism should
be a function between equivalence classes under extensional equivalence that is
“realized” by some continuous function that preserves the preorder.

In Section 2 we give a formal presentation of the category motivated above.
It turns out to have all the basic structure that one would expect of a category
of domains. Moreover, the category of cpos is included as a full subcategory.
Therefore our category extends the usual universe of denotational semantics.
Further, the subcategory of cpos is closed under lifting, sums, products and
function spaces in the larger category. Indeed deterministic programs are given
their usual semantics when interpreted in our category.

However, the main goal of this paper is to treat nondeterministic computa-
tion in this way. For this we base our construction on the cpo of binary trees
discussed above. In Section 3 we define an appropriate preorder over this cpo,
thereby obtaining a powerdomain, which is characterized, in Section 4, as giving
the free semilattice in our category. Then in Section 5 we consider some of its
computational properties. In contrast to the other type constructors, the power-
domain is shown not to preserve the subcategory of cpos. It seems that this fact
has direct computational relevance to issues concerning a semantic treatment of
nondeterministic computability. We also consider the nondeterministic version
of PCF investigated by Sieber [16]. There he showed that full abstraction fails
for an interpretation of the language using the standard convex powerdomain on
cpos. We show that Sieber’s counterexample is not available when the language is
interpreted using our powerdomain. Thus it appears that our powerdomain may
help with issues of full abstraction. However, we do not know if our powerdomain
does give a fully abstract model of Sieber’s language.

In Section 6 we investigate the solution of recursive domain equations. Such
solutions cannot be constructed as “bilimits” of w-chains as the limit-colimit
coincidence fails in our category. Nevertheless, other techniques are available
for constructing solutions. Indeed our category is algebraically compact in an
appropriate sense, which involves extending the notions of “realizability” to the
level of categories and functors between them.

Finally, in Section 7 we discuss possible developments of our work.



2 The realizability categories

In this section we define the realizability categories we are interested in, and
establish their basic structure. First some preliminaries. By pointed poset we
mean a poset with least element, for which we usually write L. A monotonic
function between two pointed posets 1s said to be strict if it preserves the least
element. A monotonic function in two arguments is said to be bistrictif it is strict
in each argument separately. We write Pposet for the category of pointed posets
and monotonic functions, and Pposet, for its subcategory of strict monotonic
functions. A monotonic function between posets is said to be continuous if it
preserves existing least-upper-bounds (lubs) of ascending w-chains. By a cpo we
mean a pointed poset for which every ascending w-chain has a lub. A subset of
a cpo is said to be w-inductive if it is closed under lubs of ascending w-chains. A
binary relation on a cpo X is said to be w-inductive if it forms an w-inductive
subset of X x X. We write Cpo for the category of cpos and continuous functions,
and Cpo, for the subcategory of strict continuous functions. We assume that the
reader has a basic knowledge of enriched category theory [11]. We shall enrich
over various categories, always taking the monoidal structure to be given by
cartesian product.

For denotational semantics, the essential properties of Cpo are that it is
cartesian closed and that it has a least-fixed-point operator characterized as the
unique fixed-point operator satisfying a condition known as uniformity. The es-
sential properties of Cpo, are: it is symmetric monoidal closed, it is bicartesian,
it has a strong “lift” comonad for which Cpo is isomorphic to the co-Kleish
category (all the structure so far gives Cpo; as a model of intuitionistic linear
type theory [3]), and it is algebraically compact for a wide class of endofunctors.

The goal of this section is to establish analogues of Cpo and of Cpo, based
on the idea of equipping cpos of intensional representations of data with exten-
sional preorders. These categories will retain the essential properties of Cpo and
Cpo, highlighted above. Our analogous categories will be called QWP (Quo-
tients of w-inductive Preorders) and QwP, respectively.

As motivated in the introduction, an object A of either of these categories
will consist of a cpo, (|| A|,E4), of intensional realizers together with a preorder
=4 corresponding to the order induced by extensional observations. We require
that <4 satisfy the following properties (omitting subscripts):

1. 2 C y implies ¢ 2 y,
2. < is w-inductive, and
3. z X L implies # = L (where L is the least element of |A]).

We call any preorder < on | A| satistying the above properties admissible. Con-
ditions 1 and 2 on admissibility are fundamental to the technical development
throughout the paper. In contrast, condition 3 may be omitted without loss. It
is included only because 1t leads to certain minor technical simplifications.

As motivated in the introduction, we want the morphisms from A to B in
QwP to be determined by those continuous functions f from |A| to |B| that



preserve the preorder (i.e. such that z <4 y implies f(z) <p f(y)). However, we
would like to identify morphisms induced by different continuous functions whose
behaviour is extensionally indistinguishable. More precisely, we want any f and
¢ for which # ~4 y implies f(z) ~p ¢(y) (where we write ~ for the equivalence
relation induced by <) to determine the same morphism. Thus the morphisms
from A to B should be equivalence classes of preorder-preserving continuous
functions modulo the stated equivalence. However, we prefer to adopt an equi-
valent viewpoint in which morphisms are functions. Note that each equivalence
class of preorder-preserving continuous functions determines a distinct function
from |A|/=~a to |B|/~a. Thus it is natural to take the morphisms from A to
B to be those functions from |A|/=~4 to | B[/~ that arise in this way.

In fact, we shall adopt a slightly different definition of QwP, giving a category
equivalent to that sketched above. The only difference is that, in order to avoid
working with quotiented sets and equivalence classes, we allow |A|/~4 to be
represented by a chosen set |A]. For this we require a “quotient” function ¢4 from
| Al to |A] which is surjective and such that  ~4 y if and only if ga(z) = ¢a(y).
As g4 1s surjective, X4 induces an obvious partial order <4 on |A|. Further, we
can recover = 4 from <4 because # X4 yifand only if g4(2) <4 ga(y). Indeed we
shall consider |A[|, <4 and ¢4 as the primitive structure on objects of QwP, and
we shall derive <4 as above. To this end we give an intrinsic characterization
of the appropriate structures. Given a pointed partial order (|A],<4), a cpo
(JAl,E4) and a function ¢4 from |A| to |A| we say that g4 is an admissible
quotient if it is surjective, monotonic, continuous' and reflects the least element.
The following proposition, whose straightforward proof is omitted, shows that
the concept of admissibility for g4 coincides with that for <4.

Proposition 2.1

1. Given a cpo (|A|,C4) and an admissible preorder <4 on |A|, the function
mapping an element of (|A|,Ca) to its equivalence class in the partial order
(1Al /=, 24/ =) is an admussible quotient.

2. Given a partial order (JA|,<4), a cpo (|A|,C4) and a surjective function
qa from |A| onto |A|, define # X4 y whenever ga(z) <a qa(y). Then 24 is
admassible if and only if g4 s an admissible quotient.

This motivates the definition of the structures that will form the objects of QwP.

Definition 2.2 (Realized poset) A realized poset is a structure

A = ((|Al,<4), (A, E4), 44)

where: (JA|,<4) is a pointed poset, (|A|,E4) is a cpo and g4 : |A| — |A] is an
admassible quotient.

! Warning! As (JA|, <4) need not be a cpo, we are using continuity in the wider sense
between posets defined earlier.



We use the term realized poset because we think of the poset (|A|, <4) as giving
the “elements” of the structure, whereas the cpo (|A|,C4) gives hidden “real-
izability” information of how one may compute with the elements. We say that
an element a € |A] is realized by any element z € |A| for which ¢qa(z) = a
(we also say that x realizes a). Clearly each x realizes a unique a (although in
general a has many realizers). Given a realized poset, we derive <4 as in Pro-
position 2.1(2). Henceforth we freely use Proposition 2.1 to move between the
admissibility of ¢4 and the admissibility of <4 without further comment.

The objects of QwP will be the realized posets. As discussed above, the
morphisms from A to B are to be determined by the continuous functions from
| 4] to | B| that preserve the < preorder. Now any preorder-preserving function f
is easily seen to induce a unique monotonic function ¢ from (| A|, <4) to (| B, <p)
such that ¢ oqq = qp o f. Moreover, for any monotonic ¢ and continuous f such
that ¢ 0 g4 = qg o f it holds that f is preorder-preserving. Thus we are led to
consider the following functions between realized posets.

Definition 2.3 (Realized function) A realized function from a realized posel
A to another B is a monotonic function ¢ from (|A], <a) to (|B|, <p) for which
there exists a continuous f from (|A|,Ca) to (| B|,Ep) such that the diagram
below commutes.

f
1Al |B]
94 g8
¢
Al Bl

We say that a morphism ¢ is realized by any continuous f making the diagram
commute, and that f realizes ¢. Clearly if f realizes ¢ then ¢ is strict if and
only if f is strict (this is one of the technical conveniences of requirement 3 on
admissible preorders). We say that f is a realizing function if it is continuous and
it realizes some (necessarily unique) ¢. By the above discussion, a continuous f
is a realizing function if and only if it preserves the induced preorders.

Definition 2.4 (QwP and QwP, ) QuwP is the category whose objects are real-
1zed posets and whose morphisms are realized functions, with the obvious identity
and composition. Qw P s the subcategory of strict realized functions.

We note various facts about QwP and QwP, . Under the pointwise ordering
on hom-sets they form Pposet-categories. They do not however form Cpo-
categories under this ordering (counterexamples will be given later). However,
the hidden realizer structure in the categories does give rise to natural Cpo-
categories “sitting above” QwP and QwP, .

Definition 2.5 (wP and wP. ) wP is the category whose objects are realized
posets and whose morphisms are realizing functions, with the obvious identity
and composition. w P s the subcategory of strict realizing functions.



A morphism in wP (or wPy) is thus a continuous function from (|A|,C4) to
(|B],Cg). It is easily checked that, under the pointwise ordering, the hom-sets
are cpos (using the w-inductivity of <p) and that composition in each case is
continuous. Thus wP and wP, are indeed Cpo-categories.

It i1s worth commenting on the different roles of the categories. The categories
of main interest for semantics are QwP and QwP,, as in these categories the
equality of morphisms corresponds to identical extensional behaviour. In con-
trast, wP and wP, distinguish between intensionally different functions with
the same extensional behaviour. Nevertheless, operations on QwP and QwP
are often conveniently considered as being induced by operations on wP and
wP, . This view will prove essential when we consider the solution of recursive
domain equations in Section 6.

There are some useful functors between the different categories. There is an
evident forgetful functor U : wP — Cpo mapping 4 to (|A|,CE4). This has a
left adjoint 7 : Cpo — wP which maps any cpo (X,C) to the realized poset
((X,0), (X,E), 1x). I is injective on objects and full and faithful, and thus
exhibits Cpo as a full coreflective subcategory of wP. Further, these functors
are Cpo-enriched and the adjunction holds in the enriched sense. There is also
a Pposet-functor ) : wP — QwP which is the identity on objects and which
maps any realizing f : |A| — || B| to the unique ¢ : |A| — |B] it realizes. @ is full
and 1t is faithful on those objects of wP that lie in the image of I. Thus Cpo is
also contained as a full subcategory of QwP. However, @ 1s certainly not faithful
in general. All the functors described above cut down to functors between the
relevant strict subcategories with the same properties. To complete the picture,
there are also the evident inclusion functors from the strict categories to their
containing categories. These all have left-adjoints giving “lift” functors in the
different categories.

We now turn to the categorical structure of QwP and QwP, useful for
interpreting the usual type constructors. We assume the reader is familiar with
the basic constructions on cpos [14]. We write: x for binary product in both
Cpo and Cpo, ; 0, for the terminal object in Cpo and zero object in Cpo, ; +
for binary coproduct in Cpo, (coalesced sum); ® for smash product in Cpoy ;
1, for its unit (Sierpinski space); Ny for the natural number object in Cpo, ;
and finally L for the lift functor on both Cpo and Cpo,. We note that all
these operations are inherited from their obvious counterparts in Pposet and
Pposet, , and we shall use the same notation for the associated operations there.

We now define the analogous operations on realized posets, and again we
retain the same notation. The objects 0, 1; and IN; are given as realized posets
by applying I : Cpo — wP to their cpos. For the other constructions we make
the following definitions (using self-explanatory notation).

A x B 1s defined by
(|A X B|a SAXB) = (|A|a SA) X (|B|a SB) in PpOSQtJ_,
(I4x Bl,Eaxs) = (JAl,E4) x (|B],Cp) in Cpoy,
qaxs((z,y)) (ga(2),9B(v)).



A+ B is defined by

(IA+ Bl,<asB)
(IA+ Bl,CayB)

(JA], <a) + (|B|,<p) in Pposet, ,
(IAl,E4) + (IB],Cg) in Cpo,,
1 ifz=1,

qa+p(2) = inl(ga(®)) If z = inl(x), where z # L,
inr(qp(y)) If z = inr(x), where x # L.

A® B is defined by:

(|A®B|a§A®B) (|A|a§A)®(|B|a§B) in PpOSQtJ_,
(14 Bl.Cass) = (IA].Ca) @ (IB].Cs) in Cpoy
{J_ if 2= 1,
(ga(®),qB(y)) if z = (2, y), where z,y £ L.

qaeB(?)

LA is defined by:

(|ILA], <za) = L(JA],<4) in Pposet, ,
(IZA],Cra) L(JAl,E4) in Cpo,,
(x) = { 1 ifz =1,
BT Ugate)] i = = [a].
The above definitions are easily checked to be good, i.e. the defined ¢ functions

are indeed all admissible quotients.
All the above operations were defined on realized posets using the associated

constructions in Pposet and Cpo. This is not the case for the two function space
constructors. We shall write A = B for the realized poset of realized functions
from A to B and A = B for that of strict realized functions. These are given
by the definitions below, which use the Pposet-enriched structure of QwP and
QwP,, and the Cpo-enriched structure of wP and wP; .

A = B is defined by:
(|A:>B|a§A:>B) = Q""’P(AaB)a
(A= B[,EasB) = wP(A, B),
qa=p(f) = the unique ¢ realized by f.
A =, B is defined by:
(|4 =1 Bl,<a=.8) = QwP.(4,B),
(”A =L B”aEA:M_B) = ""’PJ-(AaB)’
qa=p(f) = the unique ¢ realized by f.

In order to check that these are good definitions it is convenient to work with
the induced preorders. For example, in the case of A = B one shows first that
f Za=p g if and only if, for all # € |A|, it holds that f(z) <p g(z). It is then
straightforward to show that <4— p is admissible, using the admissibility of <p.



Note that the objects in the image of I : Cpo — wP are preserved under
the above operations. Thus none of the operations take one outside of the world
of cpos. However, the operations are well defined on the larger universe of real-
1zed posets and, as the theorem below shows, they have the desired universal
properties there.

Theorem 2.6

1. QwP (resp. wP) is a cartesian-closed category with finite products given by
0, and A x B and with exponentials given by A = B.

2. QwP, (resp. wPB ) has: a natural number object Ny ; finite products given
by 0, and A x B; finite coproducts given by 0. and A+ B; a symmetric
monoidal structure given by 1, and A ® B; and a closed (relative to ®)
structure given by A =, B.

3. L is the functor part of a strong comonad on QwP, (resp. wP. ) whose
co-Kleisli category is isomorphic to QwP (resp. wP).

4. The above statements all hold in their Pposet-enriched (resp. Cpo-enriched)
Versions.

5 @ wP— QwP and Q : wP. — QwbP, preserve all the above structure.

The proof, although lengthy, is just a matter of checking the details.

To conclude this section we consider the canonical fixed-point operators in
QwP and wP. Consider the usual continuous function fiz : |4 = A| — |A|
defined by:

fia(f) = L f1(L).
It is easily seen that f <a=p ¢ implies fiz(f) Sa fiz(g), using the w-inductivity

of X4. Thus (4 = A) ﬁ» A is a morphism in wP. We write @Qfiz for the QwP
morphism that it realizes.

Theorem 2.7 For any ¢ € |A = A|, it holds that Qfix(¢) is the least-fized-point
of ¢ (under <, ). Further Qfiz is “uniform” in the sense that, for any A ¢, A,

B —Y+ B and strict A —— B for which the diagram below commutes,

¢

A A
6 6
B v B

it holds that Qfiz(v) = 0(Qfiz(¢)).

The proof is entirely standard and hence omitted. Exactly the same properties
hold of fiz in wP. We mention that Qfiz (and fiz) are characterized by the
property of uniformity. However, we shall not need this fact (whose proof is
again standard).



3 Construction of the powerdomain

In this section we construct, for each realized poset A, a realized poset P(A), rep-
resenting the domain of nondeterministic computations which, if they terminate,
produce values in A.

We begin the construction of by describing the cpo of realizers, |P(A)|. The
idea is to have |P(A)| as a cpo of intensional representations of nondeterministic
computations. It is natural to represent such computations as possibly infinite
binary trees. The branching of the trees represents the possible nondeterministic
choices encountered during the computation. The leaves of the trees represent
points beyond which no more nondeterministic choices are encountered. From
such a point the computation proceeds deterministically, either eventually ter-
minating with a value in |A|\{L} (we take L as representing nontermination) or
continuing for ever. The above account distinguishes between nondeterministic
nontermination — exemplified by the infinite leafless tree; and deterministic
nontermination. Because of our requirement on admissible preorders that un-
definedness have exactly one intensional representation, we must identify the
different forms of nontermination. For technical convenience, we take the infin-
ite leafless tree as the canonical representation of nontermination. This gives us
the same class of trees considered in [2].

So far we have discussed only the elements of |P(A)|. These elements do
indeed have a natural partial order forming a cpo. Indeed we shall see that
(JP(A)|,E4) is determined up to isomorphism as the initial solution in Cpo,
of the recursive domain equation:

[P = 1AL+ AP > [P

However, we shall require a concrete description of |[P(A)|. This we now develop.

We shall index the nodes of binary trees by elements of {0, 1}" (the set of finite
sequences of elements of {0,1}). We use o, 7,... to range over such sequences.
We write: € for the empty sequence; i (where ¢ € {0,1}) and o7 for the evident
concatenated sequences; o < 7 (resp. ¢ < T) to mean ¢ is a prefix (resp. proper
prefix) of 7; and |o| for the length of o.

We give a slightly cryptic definition of the trees we are interested in. Recall
that an antichain in a poset is a subset in which any two distinct elements are
incomparable. An (|| A|-labelled) computation tree, t, is a partial function from
{0,1}" to |A\{L} whose domain is an antichain in ({0,1}*, <). The domain of
t represents the set of leaves of the tree, and we write Leaves(t) for this set. The
set of nodes of t is recovered by:

Nodes(t) = {o | there does not exist 7 € Leaves(t) with 7 < o}.

One sees that the computation trees do indeed correspond to the trees described
informally earlier.

Henceforth, we use s,t, ... to range over computation trees. We say that ¢ is
finite if Nodes() is finite. We say that t is finitely generated if Leaves(t) is finite.
Clearly finite implies finitely generated, but not vice-versa.



Define:

[P(A)| = the set of |A]-labelled computation trees,
s Cpayt if Leaves(s) C Leaves(t) and, for all o € Leaves(s), s(o) Ca t(0).

[P(A)| is indeed a cpo with this ordering. The least element is given by the
unique tree with the emptyset of leaves. Given a chain tg Ep(4) t1 Cp(a) - - -, its
lub is defined by?

tw = {(o,2z)|for some i, ¢ € Leaves(t;) and » = |_|]»>Z» ti(o)}.

It is readily checked that #, is indeed both a computation tree and the lub of
the ascending sequence.

A useful fact is that every computation tree is the lub of an ascending se-
quence of finitely generated computation trees. Specifically, for any n > 0, define:

th = {(ezx)et | |o| <nl,

which is obviously finitely generated. It is easily seen t[o Cp(a) tli Cp(a) - 18
an ascending chain and that ¢ = | |, ¢[;. Note that the map ¢ — ¢[, is continuous.
Indeed it is the projection from |P(A)| to its n-th iterate as a solution of the
recursive domain equation given earlier. Thus the equation ¢ = | |, ¢[; establishes
that indeed |P(A)| is the initial solution of this equation (see [18]).

It remains to consider the additional structure on P(A), the partial order of
extensional elements and its associated quotient map. We shall define these by
first determining the desired extensional preorder <p(ay on [P(A4)].

Fundamentally, we want to identify those computation trees that give the
same set of possible results (including nontermination). Thus we begin by defin-
ing the set of results of a computation tree. The set of (intensional) results of t

is the subset of | A| defined by:

Res(t) = {t(o) | ¢ € Leaves(t)} if ¢ is finite,
° =\ {t(o) | o € Leaves(t)} U{L} ift is infinite.

The second case includes bottom because, by Konig’s Lemma, an infinite tree
must have an infinite branch corresponding to a possible infinite execution se-
quence. We write Res for the family {Res(t) | t € |P(A)|} of all possible result
sets. Note that

Res={X C|P(A)| | X is finite nonempty, or X is countable and contains L}.

As ®p(4) 1s supposed to be an extensional equivalence we cannot be inter-
ested in the particular intensional representations of values in Res(t). Therefore
we certainly want to require more of ~p(4) than that it equate those s and ¢ for
which Res(s) = Res(t). Indeed it is natural to ask that s =~p(4) t holds whenever
qa(Res(s)) = qa(Res(t)) (where we extend g4 to act elementwise on sets).

2 Here and henceforth we define computation trees by giving their graphs.



One might hope to define <p(4) so that also s =p(4) t only if ga(Res(s)) =
qa(Res(t)). However, certain considerations will prevent us from achieving this.
We shall want P(A) to have an associated nondeterministic choice operator

P(A) x P(A) Y, P(A), and this must preserve the preorder and have a con-
tinuous realizer. The preservation of the preorder forces us to identify sets which
have the same “convex closure”. The continuity of the realizer (coupled with
the w-inductivity of the preorder) forces us also to identify result sets that have
the same set of “limit points”. The necessity of making such identities is clearly
spelled out by Plotkin in [14], and, for lack of space, we do not repeat the argu-
ments here. However, the naturality of the additional identifications will be made
clear by Theorem 4.1. We now turn to each of the two forms of identification in
detail.

Given any preorder X on a set Z, we define a preorder =¥ (the Egli-Milner
preorder over X) on its powerset, ©(Z), by defining X <F* Y to hold if:

1. for all # € X there exists y € Y such that z < y, and
2. for all y € Y there exists € X such that < y.

When ~ is the equivalence relation induced by < we write =* for the equi-

valence relation induced by jEM.S A subset X C 7 is called conver if, for all
z,y € X and # € Z we have that x < z % y implies 2 € X. For any X C Z
define:

Conv(X) = {z € Z | there exist x,y € X such that z <z S y}.

It is easily checked that Conu(-) is a closure operator mapping any subset X C 7
to the least convex set containing it. It is clear that X =#* Conv(X). Also
X ~™ Y if and only if Conv(X) = Conv(Y). Thus =¥ partially orders the
family of convex sets.

The preorder we are seeking on P(A) will contain <. It differs from =<7
only on account of the extra “limit point” identifications referred to above. We
say that a subset X C ||A4| is w-convez if it is both convex under <4 and
w-inductive. It is easily seen that w-convexity determines a closure operator,
w-Conu(-), assigning to each set X a least w-convex subset containing it.

The extensional preorder on |P(A)| is defined by

s Zpayt if w-Conv(Res(s)) 35 w-Conv(Res(t)).

Proposition 3.1 Zp(a) s admissible.

The importance of the proposition (whose proof is given below) is that we have
now determined, up to isomorphism, an object P(A4) of QwP. For a standard

® Warning! There is an ambiguity in the notation here. Although any equivalence
relation is a preorder, we write ~#™ for the kernel of <FM and not for the Egli-
Milner preorder (indeed equivalence relation) generated by =~.



definition we choose [P(A)| as a subset of ((]|A[), thus obtaining canonical rep-
resentations for nondeterministic computations as sets of values. Define:

P(A)] = {ga(w-Conv(X)) [ X C Res},
D<pay B if DIV E,
gpa)(t) = qa(w-Conv(Res(t))).

For P(A) to indeed be an object of QwP, one must check that s <pa) t if
and only if ¢p(4)(5) <p(a) ¢p(a)(t), and that <p(4) is indeed a partial order on
|P(A)|. This is all routine.

The above definition is perhaps not as good a definition as one might hope
for. In particular |P(A)| is defined crucially using the structure of |A| via the
definition of w-convexity. It can be shown that this use of |A| is unavoidable
in the sense that [P(A4)| cannot be determined from the poset | 4| alone, as one
can find objects whose underlying posets are isomorphic, but the posets of their
powerdomains are not. On the other hand, the partial order on [P(A4)] is defined
entirely in terms of the partial order on |A|.

One pleasant fact concerning the definition of the powerdomain is that, for
an arbitrary object A of QwP, we have achieved a good representation of P(A)
as a family of sets. For the convex powerdomain in Cpo, such representations
are only known for certain kinds of w-algebraic cpo [13, 14]. The simplification in
our setting is due to every infinite set in Res containing L. In Section 5 we shall
discuss the computational significance of this fact. Its technical significance is
that we avoid needing any of the limiting sequences that are usually dealt with
using the Lawson topology (see [13, 14]). Instead, it suffices for us to consider
limits of ascending w-chains, as in the definition of w-convexity.

We conclude this section with the proof of Proposition 3.1.

Lemma 3.2 If X C |A| is finile then the following hold.

1. For any ascending chain zo T4 z1 Ta ... in |A|, if, for all i, there exisis
x; € X such that z; Sa x; then there exists x € X such that | |,z Sa .
2. Conv(X) = w-Conv(X).

Proof.

1. Let z; be an ascending chain satisfying the condition. As X is finite, there
exists some x € X such that # = x; for infinitely many ¢. For every i, we
have z; <4 x, because <4 contains C4. But <4 is w-inductive, so indeed
LIz Sa .

2. We show that Conv(X) is w-inductive. Suppose that zo E4 21 C4 ... Is an
ascending chain in Conv(X). Then for each z there exist y;, #; € X such
that y; <4 2z =S4 #;. By part 1, we have that there exists € X such that
Ll;z <4 . Also it is clear that yo <a | |; 2. So indeed | |, z; € Conv(X).

Lemma 3.3

1. If Res(t) is finite then s Zp(ayt if and only if Res(s) 35 Res(t).



2. If L € Res(t) then s Spay t if and only if L € Res(s) and Res(s) C
w-Conv(Res(t)).
3. s Speay t if and only if Res(s) 35 w-Conv( Res(t)).

Proof.

1. Suppose Res(t) is finite. Then Res(t) =% Conv(Res(t)) = w-Conv(Res(t)),

the equality by Lemma 3.2(2). So we need only show that w-Conv(Res(s)) <5M
Res(t) if and only if Res(s) <&M Res(t).
When Res(s) is finite this is trivial as Res(s) &% w-Conv(Res(s)), as above.
Suppose Res(s) is infinite. Then L € Res(s). So Res(s) <% w-Conv(Res(s)).
Thus we have that w-Conv(Res(s)) =5 Res(t) implies Res(s) <5M Res(t). It
remains to prove the converse. Suppose Res(s) <ZM Res(t). As L € Res(s), it
suffices to show that w-Conv(Res(s)) C {x € |A| | Jy € Res(t) st. x Za y}.
But this holds because the right-hand set is w-convex (w-inductivity follows
from Lemma 3.2(1)) and contains Res(s) (as Res(s) %% Res(t)).

2. Suppose L € Res(t). Then w-Conv(Res(s)) =5 w-Conv(Res(t)) if and only
if L € w-Conv(Res(s)) and w-Conv(Res(s)) C w-Conuv(Res(t)). But, by ele-
mentary properties of the closure operator w-Conu(-), this holds if and only
if L € Res(s) and Res(s) C w-Conuv(Res(t)) as required.

3. Follows easily from the above.

Lemma 3.4 s Cp(a)t implies Res(s) <5 Res(t).

Proof. Suppose that s Cp(a) t.

For any « € Res(s) we must find y € Res(t) such that & <4 y. This is trivial
if # = L. Otherwise, x = s(o) for some o. But s(o) C4 t(0) € Res(t). So t(o) is
the required y.

Conversely, for any y € Res(t) we must find « € Res(s) such that <4 y. If
1 € Res(s) this is trivial. Otherwise y # L (as L & Res(t)) so y = t(o) for some
o. But then o € Leaves(s) (as L & Res(s)) and s(c) E4 t(o). Thus s(o) is the
required x.

Proof of Proposition 3.1. There are three conditions to verify.

1. Suppose s Cp(a) t. We must show that s Zpay .
By Lemma 3.4, we have that Res(s) <% Res(t). So, when Res(t) is finite
we have s <p(4) t by Lemma 3.3(1). When Res(t) is infinite we have L €
Res(t). So L € Res(s) and Res(s) € Conuv(Res(t)). But Conu(Res(t)) C
w-Conv(Res(t)). So indeed s <p(4) t by Lemma 3.3(2).

2. For the w-inductivity of <p(4), it suffices to show that, for any ascending
chain sg Cpe4) 51 Epa) -.., and for any ¢ such that, for all ¢, we have
s;i Spay t, it holds that | |;s; <pc4) t. Suppose then that s; and ¢ are as
above. Define s, = |_|ZSZ We use Lemma 3.3 to show that s, jp(A) t.
Case 1:t is finite. We show that Res(s.) <5 Res(t).
Suppose # € Res(s,, ). We must show that there exists y € Res(t) such that
2 24 y. If 2= L then any y € Res(t) will do. Otherwise z = s, (o) for some
o € Leaves(s,). But then « = | [{si(0) | o € Leaves(s;)}, and for each such



s;(c) we have that there exists y; € Res(t) such that s;(¢) <a yi (because
s; M t). So, by Lemma 3.2(1), there indeed exists y € Res(t) such that
r 324y
Now suppose y € Res(t). We must show that there exists # € Res(s,,) such
that © <4 y. This is trivial if 1 € Res(s,, ). Otherwise Leaves(s,) is finite.
Let n be such that, for all ¢ > n, it holds that Leaves(s;) = Leaves(sy).
For all i > n, we have s; Zp(a) t, so there exists o; € Leaves(s,) such
that s;(0;) <4 y. As Leaves(s, ) is finite, some o € Leaves(s, ) equals o; for
infinitely many ¢. But then, for all ¢ > n, we have s;(0) Sa y. So, as =S4 is
w-inductive, | |5, si(c) is the sought .
Case 2: ¢ is infinite. We show L € Res(s,) and Res(s,) C w-Conv(Res(t)).
By Lemma 3.3(2), we have L € Res(s;) and Res(s;) C w-Conv(Res(t)). Tt
follows easily that L € Res(s, ). Consider now any « # L in Res(s, ). Then
& = s,(0) for some ¢ € Leaves(s, ). Also x = | |{si(¢) | o € Leaves(s;)}, and
each such s;(0) is in w-Conwv( Res(t)). So, as w-Conv( Res(t)) is w-inductive,
we have that « € w-Conv(Res(t)) as required.

3. It is easily checked that ¢ <p(4) L impliest = 1.

4 Characterization of the powerdomain

In this section we consider some of the basic operations associated with P(A).
Following [9], two operations are given as primitive and the others are derived
using a characterization of P(A) as the free semilattice in QwP, . This char-
acterization underlines the naturality of the construction given in the previous
section.

One basic operation associated with P(A) is the singleton function from A
to P(A), which maps a to a deterministic computation whose result is a. This
is the QwP morphism A L P(A) given by the function mapping a € |A] to
{a}. It is realized by the continuous function [ : |A| — |P(A)| defined by:

2) = {(en) | o # L),
The other primitive operation is the nondeterministic choice operator. This is
the QwP morphism P(A) x P(A) Y, P(A) defined by:

DUFE = w-Conv(DUE),

where, for D C |A| we write w-Conv(D) to mean qA(w-Conv(qjl(D))). Actually,
one can replace w-Conv with Conv in the above formula, as can be shown by a
case analysis on the forms of D and E. This is interesting as Conv(D U E) can

be calculated using the poset (]A4|,<4) alone. A realizer for U is given by the
continuous function (-, ) : [P(A)| x |P(A)| — |P(A)| defined by:

(s,t) = {(0c,2) | (o,2) €s} U{(lm,2) | (r,2) €1}

Note that both {-} and U are strict morphisms.



The other operations of interest will be obtained via a universal property
characterizing P(A) as a free algebra. We now consider the general form of such
algebras. A realized semilattice (henceforth just semilattice) in QwP is given

by an object B together with a morphism B x B Y+ B such that, for all
a,b,c € |B| we have that:

1. aVa=a,
2. aVb=bVa, and
3.av(bve)=(aVvb)Ve.

Note that equation 1 implies that V 1s strict. A linear morphism from one semil-
attice (B, V) to another (B’, V') is a QwP morphism ¢ from B to B’ such that,
for all b,b" € | B|, it holds that ¢(bV b') = ¢(b) V' ¢(¥').

Any object P(A) forms a semilattice with the required map given by U (the
equalities are easily checked). Indeed, the next theorem characterizes P(A) as
the free semilattice in the category QwP, of strict maps.

Theorem 4.1 Let (B, V) be any semilattice. For any strict morphism A . B,

N
there is a unique strict linear morphism (P(A),V) ., (B,V) such that the
diagram below commutes.

It
Moreover, there is a strict morphism (A = B) oL (P(A) =1L B) mapping

any ¢ to its associated ¢'.

It is interesting to note that the condition of strictness cannot be dropped from
the theorem, as there are examples of non-strict ¢ for which there exist no linear
o (strict or non-strict) making the diagram commute. Thus, unlike the convex
powerdomain in Cpo [9, 14], P(A) is not the free semilattice in QwP. This
situation arises because the definition of P(A) treats the least element of A as
a distinguished value representing nontermination, whereas the non-strict maps
of QwP treat it like any other value. It appears that no free semilattice exists
in QwP.

The construction of ¢ from ¢ is via an operation on realizers. Given (B,V),
let U be a chosen realizer for V. Let f be any morphism in wP (A, B). Define
f1 to be the least solution in Cpo, (|P(A)],|B]) of:

[ ) if t = (),
fo = {fwsl)uﬁ(sz) if ¢ = {s1, 52).

It is easy to check that f1 is well-defined, but note that the strictness of f is
needed for the equation to be consistent when Leaves(t) = 0.



Proposition 4.2 For any f,9 € wP (A, B) and s,t € |P(A)|, f f Sa=.r ¢
and s Zpcay t then fT(S) =B gT(t)~

We delay the proof until the end of the section. An immediate consequence of
the proposition is that if f realizes ¢ then f realizes a QwP, morphism from
P(A) to B. Define #' to be this morphism.

Proof of Theorem 4.1. By its definition (/)T is strict. By the definition of fJr
we have that fT((s,t)) = fT(s) u fT(t) and fT(l(x)) = f(«). Thus (;ST(DUE) =
QST(D) \ (;ST(E) and QST({a}) = ¢(a). So #' is linear and the diagram commutes.

For uniqueness suppose we have a strict, linear 1) making the diagram com-
mute. Let h be a realizer for ¢. The linearity of ¢ gives us that:

h({s,t)) ~p h(s)Uh(t),

and the commutativity of the diagram gives us:

h(l(z)) =B f(2).

We must show that h(?) ~p 1t (t) for all .

This is proved first for finitely generated . An important observation is that
all the finitely generated computation trees are generated from trees of the form
[(a) by a finite number of applications of (-, -}. Using this fact, it is easy to show
that h(t) ~p Jil (t) for finitely generated ¢, by induction on the structure of ¢
using the two equivalences above.

For arbitrary ¢ we have, as in Section 3, that ¢t = | |, ¢[; where each t[; is
finitely generated. But then

h(t) = Ltk =8 U 1R = 1),

because h and fT are continuous and ~p is w-inductive.
N
It remains to show that (A =, B) HOIN (P(A) =1 B) is a morphism in
QwP, . This follows from Proposition 4.2. X

Theorem 4.1 implies that P(.) is the action on objects of the functor part
of a strong monad on QwP,. We now derive the associated operations, giving
explicit descriptions of the action of their underlying functions and associated
realizers.

The multiplication of the monad, |}) : P(P(A4)) — P(A), is obtained as
(17>(A))T. Concretely, it is the expected function,

W(D) = w-Comv(| ] D),
which is realized by the function mapping s € |P(P(A))]| to:
{(o7, 2) | (0,t) € s and (1,2) € 1}.

Incidentally, as with J above, one can replace w-Conv with Conv in the formula

defining (D).



The operation of the P(-) functor on strict morphisms works by mapping
A+ Bto ({-} o ¢)!. Concretely, this is the strict morphism P(A) kidS2} P(B)

defined by:
P($)D) = w-Conv(e(D)).
If f realizes ¢ then P(¢) is realized by the function mapping s € [P(A4)] to:

{(o, f(z)) | (0,2) € s and f(x) # L}.
In contrast to the previous operations, it is not in general possible to replace
w-Conv with Conv in the definition of P(¢)(D).
The strength of the monad, A ® P(B) o, P(A ® B), is obtained from

N
(A= B) 1Rl (P(A) =L B) in the usual way (see Kock [12]). Concretely it is

the unique strict map satisfying:
st({a, D)) = {{a,b) |be D\{L}} U {L|LeD}

(note that this set is automatically w-convex). The strength is realized by the
unique strict function mapping (x,t) € |[A ® P(B)]| to

{(o,{z,9)) | (0,9) €1}

The remainder of the section is devoted to the promised proof of Proposition
4.2. Throughout the proof we use f, g to range over elements of wP; (A, B) and
s, to range over elements of |P(A)].

Lemma 4.3 For finitely generated s,t, if Res(s) = Res(t) then fT(s) ~pg f! (t).

Proof. This follows easily from the semilattice axioms, using the fact that any
finitely generated tree is obtained from trees of the form [(a) by a finite number
of applications of (-, ).

Lemma 4.4 If x € w-Conv(Res(t)) then fT(t) ~pB fT((t, 1(x))).
Proof. We show that X = {z € |A| | fT(t) = fT({t,1(x)))} is w-convex and

contains Res(t).
Suppose © € Res(t). Let n be such that € Res(t],). Then, for all i > n,
Res(t[;) = Res({t, (%)} [i+1)- So

1@ = Usn 1B~ Uisa /UG 1) 1) = F1(( 1)),

because fT is continuous, ~p is w-inductive and fT(t|;) ~pB fT((t, ()Y iv1) by
Lemma 4.3. Therefore Res(t) C X.
For convexity, suppose we have y,z € X with y =4 & <4 2. Then

1) = i) = fOUfly) 2 fOUSE) = ()

because y € X, and f and U respect the X preorders. A similar argument using
z shows that fT((t, l(z))) 3B Jil (t). Thus indeed = € X.



For w-inductivity, suppose we have 29 T4 x1 C4 ... 1n X. Then indeed

) =~ U 11D = £ HUa)))

because ~pg 1s w-inductive and all the functions are continuous.
Proof of Proposition 4.2. We must show that if f <4=,p g and s Zpay t

then f1(s) ;] ).
Case 1: s and ¢ finitely generated.
Suppose s Sp(a) t. Then Res(s) 2% Res(t), by Lemma 3.3(1). So we can

write Res(s) as {x1,..., 2z} and Res(t) as {y1,...,ys} where x; Z4 y; for each
i (1<i<k).So, by Lemma 4.3, we have:

fT(s) ~B fT((l(xl),...,l(xk))) = f(z1)U...U f(x), and
g' ()~ d"((L), - ) = g(y)U ... Ugly).

But also:

fle)U.. U f(zr) =p gly)U...Ug(y)
because U respects the preorder and f <4, g g. Thus indeed f1(s) <p g'(1).

Case 2: s finitely generated and ¢ infinite.

Suppose s Zpa) t. Then L € Res(s) and Res(s) C w-Conuv(Res(t)), by
Lemma 3.3(2). Suppose Res(s) = {x1,...,zx}. Define ¢’ = (t,1(x1),...,1(zk)).
Clearly Res(s) C Res(t'). So for some n we have that Res(s) C Res(t'[;) for all
i > n. As L € Res(s) we have, by Lemma 3.3(2), that s <p(a) t'[; for such
i. Hence, by Case 1 above, fT(s) =B gT(t/fi). But ¢ = | |,5, t'[;. So, by the
w-inductivity of <p and continuity of g, we have fT(s) ;] gT(t/). However, by
the definition of ¢', it follows from & iterates of Lemma 4.4 that gT(t) ~p gT(t/).
Thus indeed fT(s) ;] gT(t).

Case 3: s and t arbitrary.

Suppose s Xp(a) t. Then, for any i, we have s]; <p(4) t. So, by the appropriate
case above, fT(sz) =B gT(t). But s = | |, s[;. So by the w-inductivity of <g and
continuity of fT, we have fT(s) ;] gT(t) as required.

5 Properties of the powerdomain

In this section we consider some additional properties of our powerdomain, which
expose its differences from the convex powerdomain on Cpo.

First we show that the powerdomain does not preserve the objects in the
image of [ : Cpo — wP. In other words, the powerdomain takes one outside
the world of cpos. A simple example is given by P(NL = Ny ). For k& > 0 define
Iy C|NL =1 Ni| by:

In = {feML =L Ny | | f(n) €{0,1}if 0<n <k and f(n) = L otherwise}.



Then, for all &k, we have I, € |[P(NL =1 Ny)|, as is easily checked. Further, as
k < limplies Iy <{'_ , I, we have that In <p =, n) [t <pvi=ing ---
is an ascending chain in [P(NL = Ny)|. We claim that this chain has no lub
(indeed no upper bound). Thus the underlying poset of P(N. = N, ) is not a
¢po, and hence P(NL =, Nj) is not isomorphic to any object in the image of
I : Cpo — wP. This shows that, as stated earlier, QwP and QwP, are indeed
not Cpo-enriched under the pointwise order on hom-sets.

To justify the claim, suppose that D € |P(Ny =, Ny )| is an upper bound
of the chain. Thus, for each £, it holds that [, <& D. We show that these

. .o, . . . . . _NJ_zJ_NJ_
inequalities imply that D is an infinite subset of

I, = {feNL=1 N | f(n)€{0,1} for all n}.

First we show that D C I,. Take any f € D. Then, for each n, there exists
¢ € Iny1 such that g <py, = n, f. But then g(n) € {0,1} and so f(n) € {0,1} as
required. Now suppose that D were finite. Take any k such that |D]| < 2% There
must be some ¢ € I, for which there is no f € D with ¢ <y,=, n, f. But this
contradicts D being an upper bound of the chain.

It only remains to show that |P(INL = N, )| contains no infinite subsets of
I,. As I, does not contain Ly, r, we have that any subset £ C I, for which
E € [P(NL =, Ny)| must be of the form w-Conv(E") for some finite £’ C E.
But it is easily checked that any finite subset of I, is already w-convex. Therefore
E must be finite. Thus indeed the I; chain has no upper bound.

It is interesting to note that the above example has direct computational
relevance. The elements of P(NL = Ny ) should be viewed as denotations of
nondeterministic programs which, if they terminate, output a deterministic pro-
gram giving a (somewhere defined) partial function on the natural numbers. By
Konig’s lemma, any such program that necessarily terminates may only output
a finite number of such partial functions. Each of the sets I corresponds to an
intuitively computable, necessarily terminating nondeterministic program. As
argued above, any upper bound of the chain would be an infinite subset of I, .
This could not be the denotation of a program because it would correspond to
a necessarily terminating computation (as Ly, =, r, is not in the set) with an
infinite number of possible outputs. Thus it is computationally reasonable that
no upper bound exists.

Of course, one would expect P(NL =, N, ) to contain many elements that
cannot be the denotation of any program, so one may question the relevance of
whether or not an upper bound to the I; exists. The relevance is that, ideally,
one would like a notion of “computable element”, singling out those elements
that a program could possibly denote. In Cpo such questions of computability
are handled using effective w-algebraic cpos, and the standard convex powerdo-
main operates upon such cpos. One defines a “computable element” of a cpo
to be the lub of a recursive chain of compact elements. However, I; defines a
recursive ascending chain of compact elements in the appropriate cpo. So in the
conventional setting this chain has a lub which is deemed to be “computable”.
Our avoidance of such elements suggests that our powerdomain might provide a



more appropriate setting for defining a notion of “computability” for denotations
of nondeterministic computation.

The Konig’s lemma argument that a nondeterministic program should be
represented by a set of results that if infinite necessarily contains 1, apparently
relies upon the assumption that a nonterminating program has no observable
behaviour. This assumption is not always valid. For example, suppose we have
a class of nonterminating nondeterministic programs that can output natural
numbers during execution. One might be tempted to model such programs as
elements of P(Streams) where Streams is (inherited from) the initial solution (in
Cpo, ) of the recursive domain equation:

Streams = N ® L(Streams).

Observe that P(Streams) contains an evident analogue of the I; chain, but this
time one would like a lub to exist, for this should represent the computation
that repeatedly chooses between outputting a 0 and outputting a 1. As before,
this lub is available if one uses the standard convex powerdomain on cpos, but
not with our powerdomain. Thus it might seem that our powerdomain cannot
be used to model standard features such as mid-execution output. However, this
is not the case. Rather than taking P(Streams) as the domain of denotations,
one should instead take the initial solution in QwP, of the recursive domain
equation:

A = PN ®LA)

(we will show how to solve such domain equations in Section 6). This equation
amounts to modelling bisimilarity between programs, whereas P(Streams) at-
tempted to model trace equivalence. It should also be possible to model trace
equivalence by moving to the category of (realized) semilattices and linear maps
and solving a recursive domain equation involving the tensor product that clas-
sifies bilinear maps, as in [9].

The above differences between our powerdomain and the classical one, in-
volved the existence and nonexistence of infinite behaviours. Next we point out
an entirely finitary difference, adapting an example due to Sieber [16]. We show
that there is no QwP morphism (1 x 1) N P(1yx1; x1; x1;) representing
the function:

(L, L) = {(xL, L, 1), (L L, L#}
oL, %) = {{x L= l) (L%, L, %)},
( ’J-) = {<*’* 1 J—> <J—aJ—a*a*>}a
Gk, %) = {{k %, L), (6, L% %)}

Suppose, for contradiction, that f realizes ¢. Then there must be some o €
Leaves(f(L, L)) such that f(L, L)(¢) = {(x, L, L, L}. So, by the monotonicity of
f, it must hold that f(L,*)(c) = (*, L,*, L) and hence f(x,*)(0) = (*, L, *,*).
Similarly, f(*, L)(¢) = {(*,%, L, 1) and hence f(*,*)(c) = {*,*, L *). We now
have two contradictory values for f(x, %), so indeed ¢ has no realizer. On the other
hand, as ¢ is monotonic, it does give a morphism if the convex powerdomain in
Cpo is used.



Above, we have considered examples using domains such as P(N. =, Nj)
and P(1L x 1; x 1y x 11), which do not correspond to natural domains for
interpreting nondeterministic computation. We chose these domains in order to
illustrate the various phenomena in simple settings. Similar phenomena do also
arise in more natural domains for nondeterministic programs, for example, in
the domains used to interpret Sieber’s nondeterministic, call-by-value version of
PCF [16]. To interpret this language in QwP, , one would interpret types by:

[[L]] = NJ—a
[o =71 = L{lel=1 [P("D),

and the denotation of a program of type o would be an element of P([o]). It is
straightforward to interpret all of Sieber’s language including his exists oper-
ator. Sieber interpreted his language using the standard convex powerdomain on
cpos. He showed that full abstraction fails because there is a non-definable finite
element in [(¢ — ¢) — (¢ — ¢)]. This non-definable element is a variant of the
function ¢ defined above, and, as with ¢ above, it does not exist if our power-
domain is used. Thus Sieber’s counterexample to full abstraction fails when the
language is interpreted in QwP, . We do not know if the interpretation in QwP,
gives rise to a fully abstract model. It would be interesting to investigate this
question, but the analysis might well involve developing a theory of “algebraic”
or even “bifinite” realized posets. It would also be interesting to investigate the
possibility of obtaining a universality theorem. As with the earlier discussion for
P(INL =1 N.), it seems that our powerdomain offers the possibility of a bet-
ter account of nondeterministic computability in the interpretations of the PCF
types. But such an investigation would probably require a theory of “effective
algebraic” realized posets. We leave such developments for future work.

6 Recursive domain equations

In this section we show that QwP, is algebraically compact for a good class of
endofunctors, allowing us to find canonical solutions to recursive domain equa-
tions.

First we make an observation concerning the construction of solutions to
recursive domain equations in QwP, . Consider the w-chain of morphisms:

1 Ll 1

0, L0, L?0,

The colimit of this diagram in QwP, is the object A defined (up to isomorphism)
by:
1Al = {{m,n) [m,n>1 m<npu{l}
pCaq if either p= 1L or: p={(m,n), ¢ = (m,n') and n < n’,
p2aq if either p= Lor:p=(m,n), ¢=(m' n') and n <n'.



It is easily checked that A is not isomorphic to LA. Thus one cannot solve a

recursive domain equation in QwP, by taking the colimit of the usual w-chain.

Note also that the underlying poset of A 1s not a cpo. This gives another example

of how QwP and QwP, are not Cpo-enriched under the pointwise ordering.
Now, consider the w-chain:

! ! LA

L0, L?0,

0L

The limit of this diagram in QwP, is the object B defined by:

1Bl = w+1,
alpf if a<p,
aZpf i a<p,

which is indeed the expected solution to B = L B. Thus the colimit of the chain
obtained by iterating the functor L is not isomorphic to the limit of its associated
co-chain.

Recall that in any Pposet-category an embedding is a morphism A N B

for which there exists a morphism B —2+ A such that gof=14and fog <lp.
Any ¢ that arises from an embedding in this way is called a projection. An
embedding determines its associated projection and vice-versa. In the above
example, one sees that the original w-chain is a chain of embeddings, and the
w-chain consists of the associated projections. Thus in QwP; we do not have
the limit-colimit coincidence of classical domain theory [18].

The above observations show that one cannot expect to construct solutions
to recursive domain equations as w-colimits in QwP, , but leave open the pos-
sibility that solutions to recursive domain equations could be constructed as
wP-limits. However, although we lack a counterexample, this does not seem to
be the correct way to proceed. Instead we make use of the fact that all the
functors of interest on QwP, are induced by Cpo-functors on wP. As wP_
is a Cpo-category, recursive domain equations can be solved there in the usual
way. These solutions are transported by the functor ) to QwP, . Although the
limiting and colimiting properties of the solution are not preserved by @, other
relevant universal properties are.

The relevant universal properties concern initial algebras and terminal coal-
gebras. We review the basic facts about these. Given any endofunctor F' on a
category, an F'-algebra is any morphism F'A —+ A. An F-algebra homomorph-
ism from FA —+ A to FB —— B is any morphism A —~ + B such that
zoa = bo F(x). An initial F-algebra is an initial object in the category of
F-algebras and homomorphisms. A famous lemma of Lambek shows that when
FA —+ Ais an initial F-algebra then a is an isomorphism (see e.g. [18]).

An important fact about initial algebras is that they can be found functorially
in the following sense. Suppose that G : D x C — C is a functor such that, for any
object A of D, the endofunctor Gi(A, L) has an initial algebra G(A, Cx) 24 Oy

in C. Then there exists a canonical initial-algebra-finding functor G : D — C



that maps each A to C'4. On morphisms A L Bin D, one defines GT(f) to be
the unique morphism in C (given by the initiality of a4 ) that makes the diagram
below commute.

aA

G(A,Ca) Ca
G(A,GY(1) EUTHINCY
GA, Cp) —2C8) g o) 2B oy

The functoriality of GT follows from the uniqueness of the morphism.

An F-coalgebra is just an F°P-algebra in C°". The above facts about initial
F-algebras are easily dualized to terminal F-coalgebras. Following Freyd [7, 8],
we shall be interested in structures that are simultaneously initial algebras and

terminal coalgenras. A free F'-algebra is an isomorphism F'A —%+ A such that
a is an initial F-algebra and a*! is a terminal F-coalgebra. C is said to be
algebraically compact if every endofunctor has a free algebra, where “every”
usually ranges over an understood class of functors, for example over suitably
enriched functors [5]. Algebraically compact categories allow the construction
of canonical solutions to recursive domain equations involving bifunctorial type
constructors [7, 5].

Our goal in this section is to show that QwP, is algebraically compact rel-
ative to a good class of endofunctors including the powerdomain as well as all
functors derived from the type constructors considered in Section 2. More gener-
ally one wants to solve recursive domain equations for multi-arity mixed-variance
functors, which means having to work with functors from (QwP, x Qwpr)k to
QwP, . In order to obtain a setting in which one can treat such generalizations
of simple endofunctors uniformly, we consider a class of “realized” categories,
which includes all categories (QwP, x Qwpr)k as well as QwP, itself, and
an associated class of “realized” functors between them, which includes the bi-
functors of interest. It will turn out that all realized categories are algebraically
compact relative to the class of realized endofunctors.

Definition 6.1 (Realized category) A realized category is a Pposet-calegory,
RC, together with a Cpo-category C and a functor R : C — RC satisfying:

1. C and RC have the same objects and R is the identity on objects.

2. For all objects A, B the functions Rap : C(A, B) — RC(A, B) are admissible
quotients.

3. Composition wn C is a bistrict morphism in Cpo.

4. C has a terminal object and limits of all WP -chains of projections.

If RC and SD are realized categories then so is RC x SD in the evident way. It
is more interesting that (RC)°" is also a realized category. Here the non-obvious
point is that C°F satisfies condition 4. C°” has a terminal object because the
bistrictness of composition means that the terminal object in C is in fact a zero



object. Also, the limit of an w’-chain of projections in C°" corresponds to the
colimit of an w-chain of embeddings in C. This colimit is given as the limit of
the induced w-chain of projections in C, by the limit-colimit coincidence for
Cpo-categories [18]. Lastly, QwP, is a realized category, its associated Cpo-
category is wPy and its associated functor is @ : wP, — QwP, . Condition 4
holds because the forgetful from wP; to Cpo creates limits.

Definition 6.2 (Realized functor) A realized functor from RC to SD is a
Pposet-functor @ : RC — SD for which there exists a Cpo-functor F :C — D
making the diagram below commute.

F
C D
R S
P
RC RD

All the type constructors we have on QwP, are indeed realized functors between
appropriate realized categories. Specifically: x, + and ® are realized functors
from QwP, x QwP, to QwP,; L and P(-) are realized functors from QwP, to
QwP,; and = and = are realized functors from QwP” x QwP, to QwP, . For
all constructions except P(-) this follows from Theorem 2.6. For the powerdomain
it is clear from the action of P(-) on realizers described in Section 4.

We can now state the main theorem of this section. This shows that any
realized category is algebraically compact relative to the class of realized endo-
functors. Further, it shows that for a class of realized endofunctors given para-
metrically in another realized category, the initial-algebra-finding functor defined
earlier 1s also a realized functor. This gives parameterized algebraic compactness
in the sense of Fiore [5].

Theorem 6.3 (Parameterized algebraic compactness)

1. Buvery realized endofunctor @ : RC — RC has a free algebra in RC.
2. For any realized functorV : SDx RC — RC the initial-algebra-finding functor
U SD — RC is realized.

Theorem 6.3 is all that is needed to solve recursive domain equations. More
specifically, one uses the parameterized algebraic compactness of QwP; x QwP/”
as all type constructors give rise to multi-arity functors on this category. Moreover
the “symmetry” of such functors allows the solutions to be found “on the diag-
onal”. The reader is referred to Fiore’s thesis [5, Ch. 6] for full details.

The remainder of this section is devoted to the proof of Theorem 6.3. Let @
be any realized endofunctor on RC, and let F' be any functor realizing @. The
conditions on C in the definition of realized category are enough to guarantee
that C is algebraically compact relative to all Cpo-enriched endofunctors [5,

Ch. 7]. Thus C has a free F-algebra F/A —%+ A. To prove Theorem 6.3(1), we



would like to show that ®A Rla), A is a free ®-algebra in RC. This does not
follow by elementary diagram chasing, but it does follow using an alternative
equational characterization of free algebras as special invariant objects. These
were introduced in the Cpo-enriched case by Freyd [6]. Our treatment, which
fits into the general setting of [17], involves regarding C as an wP-enriched
category and RC as a QwP-enriched one.

To emphasize the enrichment under consideration, we shall write wP-C for
the wP-enriched version of € and QwP-RC for the QwP-enriched version of
RC. The hom-objects wP-C(A, B) and QwP-RC(A, B) are the same realized
poset (RC(A, B), C(A, B), Rap). The identity and composition maps are obvi-
ous. Note that composition in wP-C is a bistrict morphism in wP, and compos-
ition in QwP-C is a bistrict morphism in QwP. Note also that @) : wP — QwP
maps the objects, 1dentities and composition of wP-C to those of QwP-RC.
Thus QwP-RC is the QwP-category (. wP-C in the notation of Filenberg and
Kelly [4]. Tt follows that @) induces an evident (ordinary) functor (called Q¢ in
[4]) from the underlying category C of wP-C to the underlying category RC of
QwP-RC. This functor is none other than R : C — RC.

Next we consider how the enrichment extends to realized functors. Let @ :
RC — SD be realized by F : C — D. One sees that the continuous function
Fap :C(A,B) — D(F'A, I B) realizes the monotone function @45 : RC(A, B) —
SD(PA,PB) from the realized poset (RC(A, B), C(A4, B), Rap) to the realized
poset (SD(A, B), D(A, B), Sap). It follows that I enriches to an wP-functor
from wP-C to wP-D. Similarly, @ enriches to a QwP-functor from QwP-RC to
QwP-5D. Further, ) : wP — QwP maps the action of F' to the action of @.
Thus @ is the QwP-functor Q. F in the notation of [4].

We can now define the alternative characterization of free algebras. Suppose

that @ : RC — RC is realized by F': C — C. Given an isomorphism F'A A
in C, the wP-enriched structure of C and F gives us an evident wP morphism:

aoF(J_)oaJ‘1

wP-C(A, A) wP-C(A, A).

We say that FA ——» A is special F-invariant if fir(a o F(L) o a“) = 1y4.
Similarly, given an isomorphism @ A 2. Ain RC, the QwP-enriched structure
of RC and @ gives us an evident QwP morphism:

aod(Ll)o at?

QwP-RC(A, A) QwP-RC(A, A).

We say that @A —— A is special @-invariant if Qfir(c o d(L)oarl) =14,
Proposition 6.4 Suppose that & : RC — RC is realized by F' : C — C and that

FA—+ Aisan tsomorphism. Consider the following statements.

1. FA -2+ A is an initial F-algebra in C.
41
2. A2+ FAis a terminal F-coalgebra i C.

3. FA—"+ Ais spectal F-invariant.



4. PA Bla) A s an initial O-algebra in RC.
41
5. A R, DA 1s a terminal @-coalgebra in RC.

6. A Rla) A s special D-invariant.

Then 1=2=3=4=5=6.
Proof.

3 = 6. A straightforward consequence of () preserving the fixed-point operator
and all the enriched structure.

4 = 6. Suppose that A —%. Ais an initial @-algebra in RC. Then it 1s easily
checked that Qfiz(ao®(L)o oz“) is a ®-algebra homomorphism from « to
itself. But 1,4 is the unique such homomorphism.

6 = 4. Suppose that @A 2. Ais special @-invariant. We show that it is an

initial @-algebra. Given any @B %, B wehave a QwP-morphism:

Bod(L)oatt

QwP-RC(A, B) QwP-RC(A, B).

It is easily checked that Qfiz(3o®(L)o oz“) is a ®-algebra homomorphism

from « to . For uniqueness, let A —~ + B be any such homomorphism.
There i1s an evident QwP-morphism:

ro L
QwP—RC(A,A) D QwP—RC(A,B),

which, by the bistrictness of composition in QwP-RC, is strict. As z is a
@-algebra homomorphism, the diagram below commutes:

aod(Ll)o at?

QwP-RC(A, A) QwP-RC(A, A)
rzo l ro l
Bod(L)oatt
QwP-RC(A, B) QwP-RC(A, B).

So, by the uniformity of Qfiz, it holds that (z o L) o Qfiz(a o $(L) o oz“) =
Qfir(3 o P(L) o aJ‘l). Whence, as « is special @-invariant, it follows that
= Qfir(fod(Ll)o oz“) as required. (This argument is from [17].)

5 = 6. Dual to 4 = 6.

1 =2 = 3. By asimilar proof to 4 =5=6. X

Part 1 of Theorem 6.3 follows easily. By earlier remarks, C has a free F-algebra
FA 25 A So, by the proposition, @A Rla) A is a free @-algebra in RC.

It remains to prove part 2. Suppose that ¥ : SD x RC — RC is realized by
G : D x C — C. For any object A of D, let G(A, Ca) 4, (4 be a chosen free

G(A, L)-algebra in C. This choice determines the initial-alegra-finding functor



G':D — C. Now, for any P morphism A A B, the wP-enriched structure of
C, D and G gives us an wP morphism:

ap o G(f, J_)oaij1

wP—C(CA,CB) wP—C(CA,CB).

It is easy to check that diagram (1) for G still commutes if one replaces GT(f)
with fir(ap o G(f, L) o ajl). Therefore GT(f) = furlapoG(f, L)o ajl). Thus the
following wP-morphism shows that Gl is wP-enriched, hence Cpo-enriched.

L1
WP-D(A.B) [ — firlap o G(f,L)oay")

wP-C(C4,Cp).

By Proposition 6.4, (A, Cy) Rlaa), Cy4 is a free W(A, L)-algebra in RC.
This choice determines W' : SD — RC. As above, one shows that, for any SD
morphism A —+ B, it holds that ¥!(¢) = Qfix(apo¥(4, L)oa’t") and that w'!
1s QwP-enriched, hence Pposet-enriched. Moreover, as () preserves the fixed-
point-operator and enriched structure, it is clear that GT realizes ¥ as required.

7 Further work

In this paper we have constructed and analysed a powerdomain in a new category
of domains based on realized posets. Our original motivation for this investiga-
tion was to obtain a powerdomain avoiding Sieber’s problem with full abstraction
for his nondeterministic call-by-value PCF [16]. As discussed in Section 5, we
do indeed avoid this particular problem. However, the question of whether we
achieve full abstraction remains to be investigated.

Also in [16], Sieber points out the impossibility of achieving full abstraction
for a treatment of total correctness based on the upper powerdomain in cpos. It
is possible that a variation on our powerdomain, using a cpo of intensional rep-
resentations of necessarily terminating nondeterministic programs, might help
with this problem too. It would be interesting to see if such a treatment arises
from the standard algebraic characterization of the upper powerdomain [14].
Partial correctness and the lower powerdomain are perhaps less interesting, as
these can already be adequately treated using the existing lower powerdomain
in Cpo (again see [16]). Nevertheless, for the sake of completeness, it would
be worth having an analogous construction on realized posets. It would also be
interesting to investigate whether the logical characterizations of the powerdo-
mains using modalities on observable properties (as in [15]) hold in our setting.
Indeed, the informal motivation for considering extensional preorders on inten-
sional cpos, given in the introduction, could be best underpinned by a proper
theory of intensional and extensional observable properties.

It would also be worthwhile to investigate interpretations of more complic-
ated nondeterministic (and concurrent) behaviours. For this it might be natural
to move from QwP; to the category of realized semilattices and strict linear
morphisms. As mentioned in Section 5, this category should allow one to model



trace equivalence. It should also support important variant powerdomains. For
example, every realized semilattice has a second associated partial order, the
incluston order, determined by the semilattice structure. This order is preserved
by every linear morphism. Thus there should be a forgetful functor from the
category of realized semilattices to an appropriate category of realized double
posets (sets with two partial orders). The left adjoint to this forgetful should
produce a powerdomain generating the free inclusion-order-preserving semilat-
tice. It appears that such a powerdomain might provide a good (fully abstract?)
interpretation of Sieber’s nondeterministic PCF without its computationally un-
natural exists operator.

Another direction for research is to consider variations on the construction of
QwP. Rather than working with cpos equipped with w-inductive preorders, one
could use w-inductive equivalence relations, partial equivalence relations or par-
tial preorders instead. The third of these would give rise to a different category
of realized posets, the other two to categories of realized sets. It would be inter-
esting to see all the variations as instances of some general construction. Quite
possibly the associated categories of realized categories and realized functors
would also be instances, perhaps at the 2-categorical level. It would be remark-
able if it were also possible to incorporate the standard realizability examples
(such as the category of modest sets [10]) into the same theory. It would also be
interesting to relate these constructions to the categories of games defined by
Abramsky et al in there is a similar passage from intensional representations to
extensional equivalence [1].

It appears that the above variations on QwP may well have interesting ap-
plications. For example, sometimes the identification of any two nondeterministic
computations whose sets of results have the same convex closure is not desirable.
For us such identifications were forced by working with a category of realized
posets. It seems that one approach to avoiding them would be to work instead
with one of the categories of realized sets mentioned above.

In general, the main benefit of these realizability categories seems to be that
quotients are more easily defined than in Cpo. For example, in QwP coequalisers
leave the underlying cpo unchanged, modifying only the extensional preorder.
There are many situations in denotational semantics in which one easily con-
structs domains of intensional representations, but has difficulty in quotienting
them. It is plausible that realizability categories might help with such problems.
Indeed, independently of us, Andy Pitts has been led to consider similar real-
izability categories in order to resolve similar quotienting problems associated
with the interpretation of programs involving local variables (private commu-
nication). Another speculative application is to concurrency where one might be
able to model weak bisimulation as a quotient of strong bisimulation.
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