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The convex powerdomain ina category of posets realized by cposAlex K. SimpsonLFCS, Department of Computer Science, University of Edinburgh,JCMB, The King's Buildings, Edinburgh, EH9 3JZEmail: Alex.Simpson@dcs.ed.ac.ukAbstract. We construct a powerdomain in a category whose objects areposets of data equipped with a cpo of \intensional" representations ofthe data, and whose morphisms are those monotonic functions betweenposets that are \realized" by continuous functions between the associatedcpos. The category of cpos is contained as a full subcategory that is pre-served by lifting, sums, products and function spaces. The constructionof the powerdomain uses a cpo of binary trees, these being intensionalrepresentations of nondeterministic computation. The powerdomain ischaracterized as the free semilattice in the category. In contrast to theother type constructors, the powerdomain does not preserve the sub-category of cpos. Indeed we show that the powerdomain has interest-ing computational properties that di�er from those of the usual convexpowerdomain on cpos. We end by considering the solution of recursivedomain equations. The surprise here is that the limit-colimit coincid-ence fails. Nevertheless, by moving to a setting in which one considers\realizability" at the level of functors, algebraic compactness is achieved.1 IntroductionIn a recent paper [2], Anderson and Power suggest using certain binary trees asprimitive models of nondeterministic computation. These trees are labelled atthe leaves with the possible results of computation, and the branching repres-ents the nondeterministic choices encountered along the way. When the outputdomain is a cpo, the set of such trees also forms a natural cpo. However, theelements of the cpo only provide \intensional" representations of nondetermin-ism in the sense that \extensionally" equivalent computations, i.e. ones with thesame sets of possible outputs, have many di�erent representations. Semanticallyone does not want to distinguish between di�erent representations of the sameextensional computation. Anderson and Power make the desired identi�cationsby (essentially) quotienting the cpo of trees in the category of cpos. In doing sothey recover the standard convex powerdomain construction on cpos.In this paper we consider an alternative approach for dealing with such cpos ofintensional representations of computational behaviour. Rather than quotientingby the desired extensional equivalence, we retain the existing intensional cpo andwe equip it with its intended equivalence relation as extra structure. Actually,in this paper we assume that the desired equivalence relation is derived from a
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more primitive preorder. This is intuitively reasonable. In many situations, onethinks of an extensional notion of computational behaviour as being determinedby a class of observable tests on computations. Such tests determine, in the �rstinstance, a preorder de�ned by x - y if and only if y satis�es any test that xsatis�es. A natural notion of behavioural equivalence is then easily derived fromthe preorder.The above ideas lead to the consideration of a category each of whose ob-jects is a cpo equipped with a (suitable) preorder. There is a natural notion ofmorphismbetween such objects, corresponding to the idea that a program shouldcompute with intensional representations, and it should do so in an extension-ally meaningful way. Thus a program should determine to a continuous functionbetween the underlying cpos that respects the extensional preorder. Further, wedo not wish to distinguish between two programs that have the same observa-tional behaviour on extensionally equivalent data. Therefore a morphism shouldbe a function between equivalence classes under extensional equivalence that is\realized" by some continuous function that preserves the preorder.In Section 2 we give a formal presentation of the category motivated above.It turns out to have all the basic structure that one would expect of a categoryof domains. Moreover, the category of cpos is included as a full subcategory.Therefore our category extends the usual universe of denotational semantics.Further, the subcategory of cpos is closed under lifting, sums, products andfunction spaces in the larger category. Indeed deterministic programs are giventheir usual semantics when interpreted in our category.However, the main goal of this paper is to treat nondeterministic computa-tion in this way. For this we base our construction on the cpo of binary treesdiscussed above. In Section 3 we de�ne an appropriate preorder over this cpo,thereby obtaining a powerdomain, which is characterized, in Section 4, as givingthe free semilattice in our category. Then in Section 5 we consider some of itscomputational properties. In contrast to the other type constructors, the power-domain is shown not to preserve the subcategory of cpos. It seems that this facthas direct computational relevance to issues concerning a semantic treatment ofnondeterministic computability. We also consider the nondeterministic versionof PCF investigated by Sieber [16]. There he showed that full abstraction failsfor an interpretation of the language using the standard convex powerdomain oncpos. We show that Sieber's counterexample is not availablewhen the language isinterpreted using our powerdomain. Thus it appears that our powerdomain mayhelp with issues of full abstraction. However, we do not know if our powerdomaindoes give a fully abstract model of Sieber's language.In Section 6 we investigate the solution of recursive domain equations. Suchsolutions cannot be constructed as \bilimits" of !-chains as the limit-colimitcoincidence fails in our category. Nevertheless, other techniques are availablefor constructing solutions. Indeed our category is algebraically compact in anappropriate sense, which involves extending the notions of \realizability" to thelevel of categories and functors between them.Finally, in Section 7 we discuss possible developments of our work.



2 The realizability categoriesIn this section we de�ne the realizability categories we are interested in, andestablish their basic structure. First some preliminaries. By pointed poset wemean a poset with least element, for which we usually write ?. A monotonicfunction between two pointed posets is said to be strict if it preserves the leastelement. A monotonic function in two arguments is said to be bistrict if it is strictin each argument separately. We write Pposet for the category of pointed posetsand monotonic functions, and Pposet? for its subcategory of strict monotonicfunctions. A monotonic function between posets is said to be continuous if itpreserves existing least-upper-bounds (lubs) of ascending !-chains. By a cpo wemean a pointed poset for which every ascending !-chain has a lub. A subset ofa cpo is said to be !-inductive if it is closed under lubs of ascending !-chains. Abinary relation on a cpo X is said to be !-inductive if it forms an !-inductivesubset ofX�X. We writeCpo for the category of cpos and continuous functions,andCpo? for the subcategory of strict continuous functions. We assume that thereader has a basic knowledge of enriched category theory [11]. We shall enrichover various categories, always taking the monoidal structure to be given bycartesian product.For denotational semantics, the essential properties of Cpo are that it iscartesian closed and that it has a least-�xed-point operator characterized as theunique �xed-point operator satisfying a condition known as uniformity. The es-sential properties of Cpo? are: it is symmetric monoidal closed, it is bicartesian,it has a strong \lift" comonad for which Cpo is isomorphic to the co-Kleislicategory (all the structure so far gives Cpo? as a model of intuitionistic lineartype theory [3]), and it is algebraically compact for a wide class of endofunctors.The goal of this section is to establish analogues of Cpo and of Cpo? basedon the idea of equipping cpos of intensional representations of data with exten-sional preorders. These categories will retain the essential properties of Cpo andCpo? highlighted above. Our analogous categories will be called Q!P (Quo-tients of !-inductive Preorders) and Q!P? respectively.As motivated in the introduction, an object A of either of these categorieswill consist of a cpo, (jjAjj;vA), of intensional realizers together with a preorder-A corresponding to the order induced by extensional observations. We requirethat -A satisfy the following properties (omitting subscripts):1. x v y implies x - y,2. - is !-inductive, and3. x - ? implies x = ? (where ? is the least element of jjAjj).We call any preorder - on jjAjj satisfying the above properties admissible. Con-ditions 1 and 2 on admissibility are fundamental to the technical developmentthroughout the paper. In contrast, condition 3 may be omitted without loss. Itis included only because it leads to certain minor technical simpli�cations.As motivated in the introduction, we want the morphisms from A to B inQ!P to be determined by those continuous functions f from jjAjj to jjBjj that



preserve the preorder (i.e. such that x -A y implies f(x) -B f(y)). However, wewould like to identify morphisms induced by di�erent continuous functions whosebehaviour is extensionally indistinguishable. More precisely, we want any f andg for which x hA y implies f(x) hB g(y) (where we write h for the equivalencerelation induced by -) to determine the same morphism. Thus the morphismsfrom A to B should be equivalence classes of preorder-preserving continuousfunctions modulo the stated equivalence. However, we prefer to adopt an equi-valent viewpoint in which morphisms are functions. Note that each equivalenceclass of preorder-preserving continuous functions determines a distinct functionfrom jjAjj=hA to jjBjj=hA. Thus it is natural to take the morphisms from A toB to be those functions from jjAjj=hA to jjBjj=hA that arise in this way.In fact, we shall adopt a slightly di�erent de�nition ofQ!P, giving a categoryequivalent to that sketched above. The only di�erence is that, in order to avoidworking with quotiented sets and equivalence classes, we allow jjAjj=hA to berepresented by a chosen set jAj. For this we require a \quotient" function qA fromjjAjj to jAj which is surjective and such that x hA y if and only if qA(x) = qA(y).As qA is surjective, -A induces an obvious partial order �A on jAj. Further, wecan recover -A from�A because x -A y if and only if qA(x) �A qA(y). Indeed weshall consider jAj, �A and qA as the primitive structure on objects of Q!P, andwe shall derive -A as above. To this end we give an intrinsic characterizationof the appropriate structures. Given a pointed partial order (jAj;�A), a cpo(jjAjj;vA) and a function qA from jjAjj to jAj we say that qA is an admissiblequotient if it is surjective, monotonic, continuous1 and reects the least element.The following proposition, whose straightforward proof is omitted, shows thatthe concept of admissibility for qA coincides with that for -A.Proposition 2.11. Given a cpo (jjAjj;vA) and an admissible preorder -A on jjAjj, the functionmapping an element of (jjAjj;vA) to its equivalence class in the partial order(jjAjj=h; -A=h) is an admissible quotient.2. Given a partial order (jAj;�A), a cpo (jjAjj;vA) and a surjective functionqA from jjAjj onto jAj, de�ne x -A y whenever qA(x) �A qA(y). Then -A isadmissible if and only if qA is an admissible quotient.This motivates the de�nition of the structures that will form the objects ofQ!P.De�nition 2.2 (Realized poset) A realized poset is a structureA = ((jAj;�A); (jjAjj;vA); qA)where: (jAj;�A) is a pointed poset, (jjAjj;vA) is a cpo and qA : jjAjj ! jAj is anadmissible quotient.1 Warning! As (jAj;�A) need not be a cpo, we are using continuity in the wider sensebetween posets de�ned earlier.



We use the term realized poset because we think of the poset (jAj;�A) as givingthe \elements" of the structure, whereas the cpo (jjAjj;vA) gives hidden \real-izability" information of how one may compute with the elements. We say thatan element a 2 jAj is realized by any element x 2 jjAjj for which qA(x) = a(we also say that x realizes a). Clearly each x realizes a unique a (although ingeneral a has many realizers). Given a realized poset, we derive -A as in Pro-position 2.1(2). Henceforth we freely use Proposition 2.1 to move between theadmissibility of qA and the admissibility of -A without further comment.The objects of Q!P will be the realized posets. As discussed above, themorphisms from A to B are to be determined by the continuous functions fromjjAjj to jjBjj that preserve the - preorder. Now any preorder-preserving function fis easily seen to induce a unique monotonic function � from (jAj;�A) to (jBj;�B)such that �� qA = qB �f . Moreover, for any monotonic � and continuous f suchthat � � qA = qB � f it holds that f is preorder-preserving. Thus we are led toconsider the following functions between realized posets.De�nition 2.3 (Realized function) A realized function from a realized posetA to another B is a monotonic function � from (jAj;�A) to (jBj;�B) for whichthere exists a continuous f from (jjAjj;vA) to (jjBjj;vB) such that the diagrambelow commutes. jjAjj f - jjBjjjAjqA? � - jBj?qBWe say that a morphism � is realized by any continuous f making the diagramcommute, and that f realizes �. Clearly if f realizes � then � is strict if andonly if f is strict (this is one of the technical conveniences of requirement 3 onadmissible preorders). We say that f is a realizing function if it is continuous andit realizes some (necessarily unique) �. By the above discussion, a continuous fis a realizing function if and only if it preserves the induced preorders.De�nition 2.4 (Q!P and Q!P?) Q!P is the category whose objects are real-ized posets and whose morphisms are realized functions, with the obvious identityand composition. Q!P? is the subcategory of strict realized functions.We note various facts about Q!P and Q!P?. Under the pointwise orderingon hom-sets they form Pposet-categories. They do not however form Cpo-categories under this ordering (counterexamples will be given later). However,the hidden realizer structure in the categories does give rise to natural Cpo-categories \sitting above" Q!P and Q!P?.De�nition 2.5 (!P and !P?) !P is the category whose objects are realizedposets and whose morphisms are realizing functions, with the obvious identityand composition. !P? is the subcategory of strict realizing functions.



A morphism in !P (or !P?) is thus a continuous function from (jjAjj;vA) to(jjBjj;vB). It is easily checked that, under the pointwise ordering, the hom-setsare cpos (using the !-inductivity of -B) and that composition in each case iscontinuous. Thus !P and !P? are indeed Cpo-categories.It is worth commenting on the di�erent roles of the categories. The categoriesof main interest for semantics are Q!P and Q!P?, as in these categories theequality of morphisms corresponds to identical extensional behaviour. In con-trast, !P and !P? distinguish between intensionally di�erent functions withthe same extensional behaviour. Nevertheless, operations on Q!P and Q!P?are often conveniently considered as being induced by operations on !P and!P?. This view will prove essential when we consider the solution of recursivedomain equations in Section 6.There are some useful functors between the di�erent categories. There is anevident forgetful functor U : !P ! Cpo mapping A to (jjAjj;vA). This has aleft adjoint I : Cpo ! !P which maps any cpo (X;v) to the realized poset((X;v); (X;v); 1X). I is injective on objects and full and faithful, and thusexhibits Cpo as a full coreective subcategory of !P. Further, these functorsare Cpo-enriched and the adjunction holds in the enriched sense. There is alsoa Pposet-functor Q : !P ! Q!P which is the identity on objects and whichmaps any realizing f : jjAjj ! jjBjj to the unique � : jAj ! jBj it realizes. Q is fulland it is faithful on those objects of !P that lie in the image of I. Thus Cpo isalso contained as a full subcategory ofQ!P. However, Q is certainly not faithfulin general. All the functors described above cut down to functors between therelevant strict subcategories with the same properties. To complete the picture,there are also the evident inclusion functors from the strict categories to theircontaining categories. These all have left-adjoints giving \lift" functors in thedi�erent categories.We now turn to the categorical structure of Q!P and Q!P? useful forinterpreting the usual type constructors. We assume the reader is familiar withthe basic constructions on cpos [14]. We write: � for binary product in bothCpo and Cpo?; 0? for the terminal object in Cpo and zero object in Cpo?; +for binary coproduct in Cpo? (coalesced sum); 
 for smash product in Cpo?;1? for its unit (Sierpinski space); N? for the natural number object in Cpo?;and �nally L for the lift functor on both Cpo and Cpo?. We note that allthese operations are inherited from their obvious counterparts in Pposet andPposet?, and we shall use the same notation for the associated operations there.We now de�ne the analogous operations on realized posets, and again weretain the same notation. The objects 0?, 1? and N? are given as realized posetsby applying I : Cpo! !P to their cpos. For the other constructions we makethe following de�nitions (using self-explanatory notation).A �B is de�ned by(jA�Bj;�A�B) = (jAj;�A)� (jBj;�B) in Pposet?,(jjA� Bjj;vA�B) = (jjAjj;vA)� (jjBjj;vB) in Cpo?,qA�B(hx; yi) = hqA(x); qB(y)i:



A+ B is de�ned by(jA+Bj;�A+B) = (jAj;�A) + (jBj;�B) in Pposet?,(jjA+ Bjj;vA+B) = (jjAjj;vA) + (jjBjj;vB) in Cpo?,qA+B(z) = 8<:? if z = ?,inl(qA(x)) If z = inl(x), where x 6= ?,inr(qB(y)) If z = inr(x), where x 6= ?.A
 B is de�ned by:(jA
Bj;�A
B) = (jAj;�A) 
 (jBj;�B) in Pposet?,(jjA
Bjj;vA
B) = (jjAjj;vA)
 (jjBjj;vB) in Cpo?,qA
B(z) = �? if z = ?,hqA(x); qB(y)i if z = hx; yi, where x; y 6= ?.LA is de�ned by: (jLAj;�LA) = L(jAj;�A) in Pposet?,(jjLAjj;vLA) = L(jjAjj;vA) in Cpo?,qLA(z) = �? if z = ?,dqA(x)e if z = dxe.The above de�nitions are easily checked to be good, i.e. the de�ned q functionsare indeed all admissible quotients.All the above operations were de�ned on realized posets using the associatedconstructions in Pposet andCpo. This is not the case for the two function spaceconstructors. We shall write A ) B for the realized poset of realized functionsfrom A to B and A )? B for that of strict realized functions. These are givenby the de�nitions below, which use the Pposet-enriched structure of Q!P andQ!P?, and the Cpo-enriched structure of !P and !P?.A) B is de�ned by:(jA) Bj;�A)B) = Q!P(A;B);(jjA) Bjj;vA)B) = !P(A;B);qA)B(f) = the unique � realized by f .A)? B is de�ned by:(jA)? Bj;�A)?B) = Q!P?(A;B);(jjA)? Bjj;vA)?B) = !P?(A;B);qA)B(f) = the unique � realized by f .In order to check that these are good de�nitions it is convenient to work withthe induced preorders. For example, in the case of A ) B one shows �rst thatf -A)B g if and only if, for all x 2 jjAjj, it holds that f(x) -B g(x). It is thenstraightforward to show that -A)B is admissible, using the admissibility of -B .



Note that the objects in the image of I : Cpo ! !P are preserved underthe above operations. Thus none of the operations take one outside of the worldof cpos. However, the operations are well de�ned on the larger universe of real-ized posets and, as the theorem below shows, they have the desired universalproperties there.Theorem 2.61. Q!P (resp. !P) is a cartesian-closed category with �nite products given by0? and A� B and with exponentials given by A) B.2. Q!P? (resp. !P?) has: a natural number object N?; �nite products givenby 0? and A � B; �nite coproducts given by 0? and A + B; a symmetricmonoidal structure given by 1? and A 
 B; and a closed (relative to 
)structure given by A)? B.3. L is the functor part of a strong comonad on Q!P? (resp. !P?) whoseco-Kleisli category is isomorphic to Q!P (resp. !P).4. The above statements all hold in their Pposet-enriched (resp.Cpo-enriched)versions.5. Q : !P! Q!P and Q : !P? ! Q!P? preserve all the above structure.The proof, although lengthy, is just a matter of checking the details.To conclude this section we consider the canonical �xed-point operators inQ!P and !P. Consider the usual continuous function �x : jjA ) Ajj ! jjAjjde�ned by: �x(f) = Fi f i(?):It is easily seen that f -A)B g implies �x(f) -A �x(g), using the !-inductivityof -A. Thus (A) A) �x- A is a morphism in !P. We write Q�x for the Q!Pmorphism that it realizes.Theorem 2.7 For any � 2 jA) Aj, it holds that Q�x(�) is the least-�xed-pointof � (under �A). Further Q�x is \uniform" in the sense that, for any A �- A,B  - B and strict A �- B for which the diagram below commutes,A � - AB�?  - B?�it holds that Q�x( ) = �(Q�x(�)).The proof is entirely standard and hence omitted. Exactly the same propertieshold of �x in !P. We mention that Q�x (and �x) are characterized by theproperty of uniformity. However, we shall not need this fact (whose proof isagain standard).



3 Construction of the powerdomainIn this section we construct, for each realized poset A, a realized poset P(A), rep-resenting the domain of nondeterministic computations which, if they terminate,produce values in A.We begin the construction of by describing the cpo of realizers, jjP(A)jj. Theidea is to have jjP(A)jj as a cpo of intensional representations of nondeterministiccomputations. It is natural to represent such computations as possibly in�nitebinary trees. The branching of the trees represents the possible nondeterministicchoices encountered during the computation. The leaves of the trees representpoints beyond which no more nondeterministic choices are encountered. Fromsuch a point the computation proceeds deterministically, either eventually ter-minating with a value in jjAjjnf?g (we take ? as representing nontermination) orcontinuing for ever. The above account distinguishes between nondeterministicnontermination | exempli�ed by the in�nite leaess tree; and deterministicnontermination. Because of our requirement on admissible preorders that un-de�nedness have exactly one intensional representation, we must identify thedi�erent forms of nontermination. For technical convenience, we take the in�n-ite leaess tree as the canonical representation of nontermination. This gives usthe same class of trees considered in [2].So far we have discussed only the elements of jjP(A)jj. These elements doindeed have a natural partial order forming a cpo. Indeed we shall see that(jjP(A)jj;vA) is determined up to isomorphism as the initial solution in Cpo?of the recursive domain equation:jjP(A)jj �= jjAjj + (jjP(A)jj � jjP(A)jj):However, we shall require a concrete description of jjP(A)jj. This we now develop.We shall index the nodes of binary trees by elements of f0; 1g� (the set of �nitesequences of elements of f0; 1g). We use �; �; : : : to range over such sequences.We write: � for the empty sequence; �i (where i 2 f0; 1g) and �� for the evidentconcatenated sequences; � � � (resp. � < � ) to mean � is a pre�x (resp. properpre�x) of � ; and j�j for the length of �.We give a slightly cryptic de�nition of the trees we are interested in. Recallthat an antichain in a poset is a subset in which any two distinct elements areincomparable. An (jjAjj-labelled) computation tree, t, is a partial function fromf0; 1g� to jjAjjnf?g whose domain is an antichain in (f0; 1g�;�). The domain oft represents the set of leaves of the tree, and we write Leaves(t) for this set. Theset of nodes of t is recovered by:Nodes(t) = f� j there does not exist � 2 Leaves(t) with � < �g:One sees that the computation trees do indeed correspond to the trees describedinformally earlier.Henceforth, we use s; t; : : : to range over computation trees. We say that t is�nite if Nodes(t) is �nite. We say that t is �nitely generated if Leaves(t) is �nite.Clearly �nite implies �nitely generated, but not vice-versa.



De�ne:jjP(A)jj = the set of jjAjj-labelled computation trees,s vP(A) t if Leaves(s) � Leaves(t) and, for all � 2 Leaves(s), s(�) vA t(�).jjP(A)jj is indeed a cpo with this ordering. The least element is given by theunique tree with the emptyset of leaves. Given a chain t0 vP(A) t1 vP(A) : : :, itslub is de�ned by2t! = f(�; x) j for some i, � 2 Leaves(ti) and x = Fj�i tj(�)g:It is readily checked that t! is indeed both a computation tree and the lub ofthe ascending sequence.A useful fact is that every computation tree is the lub of an ascending se-quence of �nitely generated computation trees. Speci�cally, for any n � 0, de�ne:tdn = f(�; x) 2 t j j�j < ng;which is obviously �nitely generated. It is easily seen td0 vP(A) td1 vP(A) : : : isan ascending chain and that t = Fi tdi. Note that the map t 7! tdn is continuous.Indeed it is the projection from jjP(A)jj to its n-th iterate as a solution of therecursive domain equation given earlier. Thus the equation t = Fi tdi establishesthat indeed jjP(A)jj is the initial solution of this equation (see [18]).It remains to consider the additional structure on P(A), the partial order ofextensional elements and its associated quotient map. We shall de�ne these by�rst determining the desired extensional preorder -P(A) on jjP(A)jj.Fundamentally, we want to identify those computation trees that give thesame set of possible results (including nontermination). Thus we begin by de�n-ing the set of results of a computation tree. The set of (intensional) results of tis the subset of jjAjj de�ned by:Res(t) = �ft(�) j � 2 Leaves(t)g if t is �nite,ft(�) j � 2 Leaves(t)g [ f?g if t is in�nite.The second case includes bottom because, by K�onig's Lemma, an in�nite treemust have an in�nite branch corresponding to a possible in�nite execution se-quence. We write Res for the family fRes(t) j t 2 jjP(A)jjg of all possible resultsets. Note thatRes = fX � jjP(A)jj j X is �nite nonempty, or X is countable and contains ?g:As hP(A) is supposed to be an extensional equivalence we cannot be inter-ested in the particular intensional representations of values in Res(t). Thereforewe certainly want to require more of hP(A) than that it equate those s and t forwhich Res(s) = Res(t). Indeed it is natural to ask that s hP(A) t holds wheneverqA(Res(s)) = qA(Res(t)) (where we extend qA to act elementwise on sets).2 Here and henceforth we de�ne computation trees by giving their graphs.



One might hope to de�ne -P(A) so that also s hP(A) t only if qA(Res(s)) =qA(Res(t)). However, certain considerations will prevent us from achieving this.We shall want P(A) to have an associated nondeterministic choice operatorP(A) � P(A) [�- P(A), and this must preserve the preorder and have a con-tinuous realizer. The preservation of the preorder forces us to identify sets whichhave the same \convex closure". The continuity of the realizer (coupled withthe !-inductivity of the preorder) forces us also to identify result sets that havethe same set of \limit points". The necessity of making such identities is clearlyspelled out by Plotkin in [14], and, for lack of space, we do not repeat the argu-ments here. However, the naturality of the additional identi�cations will be madeclear by Theorem 4.1. We now turn to each of the two forms of identi�cation indetail.Given any preorder - on a set Z, we de�ne a preorder -EM (the Egli-Milnerpreorder over -) on its powerset, }(Z), by de�ning X -EM Y to hold if:1. for all x 2 X there exists y 2 Y such that x - y, and2. for all y 2 Y there exists x 2 X such that x - y.When h is the equivalence relation induced by - we write hEM for the equi-valence relation induced by -EM .3 A subset X � Z is called convex if, for allx; y 2 X and z 2 Z we have that x - z - y implies z 2 X. For any X � Zde�ne:Conv(X) = fz 2 Z j there exist x; y 2 X such that x - z - yg:It is easily checked that Conv(�) is a closure operator mapping any subset X � Zto the least convex set containing it. It is clear that X hEM Conv(X). AlsoX hEM Y if and only if Conv(X) = Conv(Y ). Thus -EM partially orders thefamily of convex sets.The preorder we are seeking on P(A) will contain -EMA . It di�ers from -EMAonly on account of the extra \limit point" identi�cations referred to above. Wesay that a subset X � jjAjj is !-convex if it is both convex under -A and!-inductive. It is easily seen that !-convexity determines a closure operator,!-Conv(�), assigning to each set X a least !-convex subset containing it.The extensional preorder on jjP(A)jj is de�ned bys -P(A) t if !-Conv(Res(s)) -EMA !-Conv(Res(t)):Proposition 3.1 -P(A) is admissible.The importance of the proposition (whose proof is given below) is that we havenow determined, up to isomorphism, an object P(A) of Q!P. For a standard3 Warning! There is an ambiguity in the notation here. Although any equivalencerelation is a preorder, we write hEM for the kernel of -EM , and not for the Egli-Milner preorder (indeed equivalence relation) generated by h.



de�nition we choose jP(A)j as a subset of }(jAj), thus obtaining canonical rep-resentations for nondeterministic computations as sets of values. De�ne:jP(A)j = fqA(!-Conv(X)) j X � Resg;D �P(A) E if D �EMA E;qP(A)(t) = qA(!-Conv(Res(t))):For P(A) to indeed be an object of Q!P, one must check that s -P(A) t ifand only if qP(A)(s) �P(A) qP(A)(t), and that �P(A) is indeed a partial order onjP(A)j. This is all routine.The above de�nition is perhaps not as good a de�nition as one might hopefor. In particular jP(A)j is de�ned crucially using the structure of jjAjj via thede�nition of !-convexity. It can be shown that this use of jjAjj is unavoidablein the sense that jP(A)j cannot be determined from the poset jAj alone, as onecan �nd objects whose underlying posets are isomorphic, but the posets of theirpowerdomains are not. On the other hand, the partial order on jP(A)j is de�nedentirely in terms of the partial order on jAj.One pleasant fact concerning the de�nition of the powerdomain is that, foran arbitrary object A of Q!P, we have achieved a good representation of P(A)as a family of sets. For the convex powerdomain in Cpo, such representationsare only known for certain kinds of !-algebraic cpo [13, 14]. The simpli�cation inour setting is due to every in�nite set in Res containing ?. In Section 5 we shalldiscuss the computational signi�cance of this fact. Its technical signi�cance isthat we avoid needing any of the limiting sequences that are usually dealt withusing the Lawson topology (see [13, 14]). Instead, it su�ces for us to considerlimits of ascending !-chains, as in the de�nition of !-convexity.We conclude this section with the proof of Proposition 3.1.Lemma 3.2 If X � jjAjj is �nite then the following hold.1. For any ascending chain z0 vA z1 vA : : : in jjAjj, if, for all i, there existsxi 2 X such that zi -A xi then there exists x 2 X such that Fizi -A x.2. Conv(X) = !-Conv(X).Proof.1. Let zi be an ascending chain satisfying the condition. As X is �nite, thereexists some x 2 X such that x = xi for in�nitely many i. For every i, wehave zi -A x, because -A contains vA. But -A is !-inductive, so indeedFizi -A x.2. We show that Conv(X) is !-inductive. Suppose that z0 vA z1 vA : : : is anascending chain in Conv(X). Then for each zi there exist yi; xi 2 X suchthat yi -A zi -A xi. By part 1, we have that there exists x 2 X such thatFizi -A x. Also it is clear that y0 -A Fi zi. So indeed Fi zi 2 Conv(X).Lemma 3.31. If Res(t) is �nite then s -P(A) t if and only if Res(s) -EMA Res(t).



2. If ? 2 Res(t) then s -P(A) t if and only if ? 2 Res(s) and Res(s) �!-Conv(Res(t)).3. s -P(A) t if and only if Res(s) -EMA !-Conv(Res(t)).Proof.1. Suppose Res(t) is �nite. Then Res(t) hEMA Conv(Res(t)) = !-Conv(Res(t)),the equality by Lemma3.2(2). So we need only show that !-Conv(Res(s)) -EMARes(t) if and only if Res(s) -EMA Res(t).When Res(s) is �nite this is trivial as Res(s) hEMA !-Conv(Res(s)), as above.Suppose Res(s) is in�nite. Then ? 2 Res(s). So Res(s) -EMA !-Conv(Res(s)).Thus we have that !-Conv(Res(s)) -EMA Res(t) impliesRes(s) -EMA Res(t). Itremains to prove the converse. Suppose Res(s) -EMA Res(t). As ? 2 Res(s), itsu�ces to show that !-Conv(Res(s)) � fx 2 jjAjj j 9y 2 Res(t) s.t. x -A yg.But this holds because the right-hand set is !-convex (!-inductivity followsfrom Lemma 3.2(1)) and contains Res(s) (as Res(s) -EMA Res(t)).2. Suppose ? 2 Res(t). Then !-Conv(Res(s)) -EMA !-Conv(Res(t)) if and onlyif ? 2 !-Conv(Res(s)) and !-Conv(Res(s)) � !-Conv(Res(t)). But, by ele-mentary properties of the closure operator !-Conv(�), this holds if and onlyif ? 2 Res(s) and Res(s) � !-Conv(Res(t)) as required.3. Follows easily from the above.Lemma 3.4 s vP(A) t implies Res(s) -EMA Res(t).Proof. Suppose that s vP(A) t.For any x 2 Res(s) we must �nd y 2 Res(t) such that x -A y. This is trivialif x = ?. Otherwise, x = s(�) for some �. But s(�) vA t(�) 2 Res(t). So t(�) isthe required y.Conversely, for any y 2 Res(t) we must �nd x 2 Res(s) such that x -A y. If? 2 Res(s) this is trivial. Otherwise y 6= ? (as ? 62 Res(t)) so y = t(�) for some�. But then � 2 Leaves(s) (as ? 62 Res(s)) and s(�) vA t(�). Thus s(�) is therequired x.Proof of Proposition 3.1. There are three conditions to verify.1. Suppose s vP(A) t. We must show that s -P(A) t.By Lemma 3.4, we have that Res(s) -EMA Res(t). So, when Res(t) is �nitewe have s -P(A) t by Lemma 3.3(1). When Res(t) is in�nite we have ? 2Res(t). So ? 2 Res(s) and Res(s) � Conv(Res(t)). But Conv(Res(t)) �!-Conv(Res(t)). So indeed s -P(A) t by Lemma 3.3(2).2. For the !-inductivity of -P(A), it su�ces to show that, for any ascendingchain s0 vP(A) s1 vP(A) : : :, and for any t such that, for all i, we havesi -P(A) t, it holds that Fisi -P(A) t. Suppose then that si and t are asabove. De�ne s! = Fisi. We use Lemma 3.3 to show that s! -P(A) t.Case 1: t is �nite. We show that Res(s!) -EMA Res(t).Suppose x 2 Res(s!). We must show that there exists y 2 Res(t) such thatx -A y. If x = ? then any y 2 Res(t) will do. Otherwise x = s!(�) for some� 2 Leaves(s!). But then x = Ffsi(�) j � 2 Leaves(si)g, and for each such



si(�) we have that there exists yi 2 Res(t) such that si(�) -A yi (becausesi -EMA t). So, by Lemma 3.2(1), there indeed exists y 2 Res(t) such thatx -A y.Now suppose y 2 Res(t). We must show that there exists x 2 Res(s!) suchthat x -A y. This is trivial if ? 2 Res(s!). Otherwise Leaves(s!) is �nite.Let n be such that, for all i � n, it holds that Leaves(si) = Leaves(s!).For all i � n, we have si -P(A) t, so there exists �i 2 Leaves(s!) suchthat si(�i) -A y. As Leaves(s!) is �nite, some � 2 Leaves(s!) equals �i forin�nitely many i. But then, for all i � n, we have si(�) -A y. So, as -A is!-inductive, Fi�n si(�) is the sought x.Case 2: t is in�nite. We show ? 2 Res(s!) and Res(s!) � !-Conv(Res(t)).By Lemma 3.3(2), we have ? 2 Res(si) and Res(si) � !-Conv(Res(t)). Itfollows easily that ? 2 Res(s!). Consider now any x 6= ? in Res(s!). Thenx = s!(�) for some � 2 Leaves(s!). Also x = Ffsi(�) j � 2 Leaves(si)g, andeach such si(�) is in !-Conv(Res(t)). So, as !-Conv(Res(t)) is !-inductive,we have that x 2 !-Conv(Res(t)) as required.3. It is easily checked that t -P(A) ? implies t = ?.4 Characterization of the powerdomainIn this section we consider some of the basic operations associated with P(A).Following [9], two operations are given as primitive and the others are derivedusing a characterization of P(A) as the free semilattice in Q!P?. This char-acterization underlines the naturality of the construction given in the previoussection.One basic operation associated with P(A) is the singleton function from Ato P(A), which maps a to a deterministic computation whose result is a. Thisis the Q!P morphism A f�g- P(A) given by the function mapping a 2 jAj tofag. It is realized by the continuous function l : jjAjj ! jjP(A)jj de�ned by:l (x) = f(�; x) j x 6= ?g:The other primitive operation is the nondeterministic choice operator. This isthe Q!P morphism P(A) �P(A) [�- P(A) de�ned by:D [� E = !-Conv(D [E);where, for D � jAj we write !-Conv(D) to mean qA(!-Conv(q�1A (D))). Actually,one can replace !-Conv with Conv in the above formula, as can be shown by acase analysis on the forms of D and E. This is interesting as Conv(D [E) canbe calculated using the poset (jAj;�A) alone. A realizer for [� is given by thecontinuous function h�; �i : jjP(A)jj � jjP(A)jj ! jjP(A)jj de�ned by:hs; ti = f(0�; x) j (�; x) 2 sg [ f(1�; x) j (�; x) 2 tg:Note that both f�g and [� are strict morphisms.



The other operations of interest will be obtained via a universal propertycharacterizing P(A) as a free algebra. We now consider the general form of suchalgebras. A realized semilattice (henceforth just semilattice) in Q!P is givenby an object B together with a morphism B � B _- B such that, for alla; b; c 2 jBj we have that:1. a _ a = a,2. a _ b = b _ a, and3. a _ (b _ c) = (a _ b) _ c.Note that equation 1 implies that _ is strict. A linear morphism from one semil-attice (B;_) to another (B0;_0) is a Q!P morphism � from B to B0 such that,for all b; b0 2 jBj, it holds that �(b _ b0) = �(b) _0 �(b0).Any object P(A) forms a semilattice with the required map given by [� (theequalities are easily checked). Indeed, the next theorem characterizes P(A) asthe free semilattice in the category Q!P? of strict maps.Theorem 4.1 Let (B;_) be any semilattice. For any strict morphism A �- B,there is a unique strict linear morphism (P(A);[� ) �y- (B;_) such that thediagram below commutes. P(A) �y - B�������Af�g6Moreover, there is a strict morphism (A )? B) (�)y- (P(A) )? B) mappingany � to its associated �y.It is interesting to note that the condition of strictness cannot be dropped fromthe theorem, as there are examples of non-strict � for which there exist no linear�y (strict or non-strict) making the diagram commute. Thus, unlike the convexpowerdomain in Cpo [9, 14], P(A) is not the free semilattice in Q!P. Thissituation arises because the de�nition of P(A) treats the least element of A asa distinguished value representing nontermination, whereas the non-strict mapsof Q!P treat it like any other value. It appears that no free semilattice existsin Q!P.The construction of �y from � is via an operation on realizers. Given (B;_),let t be a chosen realizer for _. Let f be any morphism in !P?(A;B). De�nefy to be the least solution in Cpo?(jjP(A)jj; jjBjj) of:fy(t) = �f(x) if t = l (x),fy(s1) t fy(s2) if t = hs1; s2i.It is easy to check that fy is well-de�ned, but note that the strictness of f isneeded for the equation to be consistent when Leaves(t) = ;.



Proposition 4.2 For any f; g 2 !P?(A;B) and s; t 2 jjP(A)jj, if f -A)?B gand s -P(A) t then fy(s) -B gy(t).We delay the proof until the end of the section. An immediate consequence ofthe proposition is that if f realizes � then fy realizes a Q!P? morphism fromP(A) to B. De�ne �y to be this morphism.Proof of Theorem 4.1. By its de�nition �y is strict. By the de�nition of fywe have that fy(hs; ti) = fy(s) t fy(t) and fy(l (x)) = f(x). Thus �y(D[� E) =�y(D) _ �y(E) and �y(fag) = �(a). So �y is linear and the diagram commutes.For uniqueness suppose we have a strict, linear  making the diagram com-mute. Let h be a realizer for  . The linearity of  gives us that:h(hs; ti) hB h(s) t h(t);and the commutativity of the diagram gives us:h(l (x)) hB f(x):We must show that h(t) hB fy(t) for all t.This is proved �rst for �nitely generated t. An important observation is thatall the �nitely generated computation trees are generated from trees of the forml (a) by a �nite number of applications of h�; �i. Using this fact, it is easy to showthat h(t) hB fy(t) for �nitely generated t, by induction on the structure of tusing the two equivalences above.For arbitrary t we have, as in Section 3, that t = Fi tdi where each tdi is�nitely generated. But thenh(t) = Fi h(tdi) hB Fi fy(tdi) = fy(t);because h and fy are continuous and hB is !-inductive.It remains to show that (A )? B) (�)y- (P(A) )? B) is a morphism inQ!P?. This follows from Proposition 4.2. �Theorem 4.1 implies that P(:) is the action on objects of the functor partof a strong monad on Q!P?. We now derive the associated operations, givingexplicit descriptions of the action of their underlying functions and associatedrealizers.The multiplication of the monad, S� : P(P(A)) - P(A), is obtained as(1P(A))y. Concretely, it is the expected function,S� (D) = !-Conv([D);which is realized by the function mapping s 2 jjP(P(A))jj to:f(��; x) j (�; t) 2 s and (�; x) 2 tg:Incidentally, as with [� above, one can replace !-Conv with Conv in the formulade�ning S� (D).



The operation of the P(�) functor on strict morphisms works by mappingA �- B to (f�g ��)y. Concretely, this is the strict morphism P(A) P(�)- P(B)de�ned by: P(�)(D) = !-Conv(�(D)):If f realizes � then P(�) is realized by the function mapping s 2 jjP(A)jj to:f(�; f(x)) j (�; x) 2 s and f(x) 6= ?g:In contrast to the previous operations, it is not in general possible to replace!-Conv with Conv in the de�nition of P(�)(D).The strength of the monad, A 
 P(B) st- P(A 
 B), is obtained from(A)? B) (�)y- (P(A))? B) in the usual way (see Kock [12]). Concretely it isthe unique strict map satisfying:st(ha;Di) = fha; bi j b 2 Dnf?gg [ f? j ? 2 Dg(note that this set is automatically !-convex). The strength is realized by theunique strict function mapping hx; ti 2 jjA
 P(B)jj tof(�; hx; yi) j (�; y) 2 tg:The remainder of the section is devoted to the promised proof of Proposition4.2. Throughout the proof we use f; g to range over elements of !P?(A;B) ands; t to range over elements of jjP(A)jj.Lemma 4.3 For �nitely generated s; t, if Res(s) = Res(t) then fy(s) hB fy(t).Proof. This follows easily from the semilattice axioms, using the fact that any�nitely generated tree is obtained from trees of the form l (a) by a �nite numberof applications of h�; �i.Lemma 4.4 If x 2 !-Conv(Res(t)) then fy(t) hB fy(ht; l (x)i).Proof. We show that X = fx 2 jjAjj j fy(t) hB fy(ht; l (x)i)g is !-convex andcontains Res(t).Suppose x 2 Res(t). Let n be such that x 2 Res(tdn). Then, for all i � n,Res(tdi) = Res(ht; l (x)idi+1). Sofy(t) = Fi�n fy(tdi) hB Fi�n fy(ht; l (x)idi+1) = fy(ht; l (x)i);because fy is continuous, hB is !-inductive and fy(tdi) hB fy(ht; l (x)idi+1) byLemma 4.3. Therefore Res(t) � X.For convexity, suppose we have y; z 2 X with y -A x -A z. Thenfy(t) hB fy(ht; l (y)i) = fy(t) t f(y) -B fy(t) t f(x) = fy(ht; l (x)i)because y 2 X, and f and t respect the - preorders. A similar argument usingz shows that fy(ht; l (x)i) -B fy(t). Thus indeed x 2 X.



For !-inductivity, suppose we have x0 vA x1 vA : : : in X. Then indeedfy(t) hB Fi fy(ht; l (xi)i) = fy(ht; l (Fixi)i)because hB is !-inductive and all the functions are continuous.Proof of Proposition 4.2. We must show that if f -A)?B g and s -P(A) tthen fy(s) -B fy(t).Case 1: s and t �nitely generated.Suppose s -P(A) t. Then Res(s) -EMA Res(t), by Lemma 3.3(1). So we canwrite Res(s) as fx1; : : : ; xkg and Res(t) as fy1; : : : ; ykg where xi -A yi for eachi (1 � i � k). So, by Lemma 4.3, we have:fy(s) hB fy(hl (x1); : : : ; l (xk)i) = f(x1) t : : :t f(xk), andgy(t) hB gy(hl (y1); : : : ; l (yk)i) = g(y1) t : : :t g(yk).But also: f(x1) t : : :t f(xk) -B g(y1) t : : :t g(yk)because t respects the preorder and f -A)?B g. Thus indeed fy(s) -B gy(t).Case 2: s �nitely generated and t in�nite.Suppose s -P(A) t. Then ? 2 Res(s) and Res(s) � !-Conv(Res(t)), byLemma 3.3(2). Suppose Res(s) = fx1; : : : ; xkg. De�ne t0 = ht; l (x1); : : : ; l (xk)i.Clearly Res(s) � Res(t0). So for some n we have that Res(s) � Res(t0di) for alli � n. As ? 2 Res(s) we have, by Lemma 3.3(2), that s -P(A) t0di for suchi. Hence, by Case 1 above, fy(s) -B gy(t0di). But t0 = Fi�n t0di. So, by the!-inductivity of -B and continuity of gy, we have fy(s) -B gy(t0). However, bythe de�nition of t0, it follows from k iterates of Lemma 4.4 that gy(t) hB gy(t0).Thus indeed fy(s) -B gy(t).Case 3: s and t arbitrary.Suppose s -P(A) t. Then, for any i, we have sdi-P(A) t. So, by the appropriatecase above, fy(sdi) -B gy(t). But s = Fi sdi. So by the !-inductivity of -B andcontinuity of fy, we have fy(s) -B gy(t) as required.5 Properties of the powerdomainIn this section we consider some additional properties of our powerdomain, whichexpose its di�erences from the convex powerdomain on Cpo.First we show that the powerdomain does not preserve the objects in theimage of I : Cpo ! !P. In other words, the powerdomain takes one outsidethe world of cpos. A simple example is given by P(N? )? N?). For k � 0 de�neIk � jN? )? N?j by:Ik = ff 2 jN? )? N?j j f(n) 2 f0; 1g if 0 � n < k and f(n) = ? otherwiseg:



Then, for all k, we have Ik 2 jP(N? )? N?)j, as is easily checked. Further, ask � l implies Ik �EMN?)?N? Il, we have that I0 �P(N?)?N?) I1 �P(N?)?N?) : : :is an ascending chain in jP(N? )? N?)j. We claim that this chain has no lub(indeed no upper bound). Thus the underlying poset of P(N? )? N?) is not acpo, and hence P(N? )? N?) is not isomorphic to any object in the image ofI : Cpo! !P. This shows that, as stated earlier, Q!P and Q!P? are indeednot Cpo-enriched under the pointwise order on hom-sets.To justify the claim, suppose that D 2 jP(N? )? N?)j is an upper boundof the chain. Thus, for each k, it holds that Ik �EMN?)?N? D. We show that theseinequalities imply that D is an in�nite subset ofI! = ff 2 jN?)? N?j j f(n) 2 f0; 1g for all ng:First we show that D � I!. Take any f 2 D. Then, for each n, there existsg 2 In+1 such that g �N?)?N? f . But then g(n) 2 f0; 1g and so f(n) 2 f0; 1g asrequired. Now suppose that D were �nite. Take any k such that jDj < 2k. Theremust be some g 2 Ik for which there is no f 2 D with g �N?)?N? f . But thiscontradicts D being an upper bound of the chain.It only remains to show that jP(N? )? N?)j contains no in�nite subsets ofI!. As I! does not contain ?N?)?N? we have that any subset E � I! for whichE 2 jP(N? )? N?)j must be of the form !-Conv(E0) for some �nite E0 � E.But it is easily checked that any �nite subset of I! is already !-convex. ThereforeE must be �nite. Thus indeed the Ii chain has no upper bound.It is interesting to note that the above example has direct computationalrelevance. The elements of P(N? )? N?) should be viewed as denotations ofnondeterministic programs which, if they terminate, output a deterministic pro-gram giving a (somewhere de�ned) partial function on the natural numbers. ByK�onig's lemma, any such program that necessarily terminates may only outputa �nite number of such partial functions. Each of the sets Ik corresponds to anintuitively computable, necessarily terminating nondeterministic program. Asargued above, any upper bound of the chain would be an in�nite subset of I!.This could not be the denotation of a program because it would correspond toa necessarily terminating computation (as ?N?)?N? is not in the set) with anin�nite number of possible outputs. Thus it is computationally reasonable thatno upper bound exists.Of course, one would expect P(N? )? N?) to contain many elements thatcannot be the denotation of any program, so one may question the relevance ofwhether or not an upper bound to the Ii exists. The relevance is that, ideally,one would like a notion of \computable element", singling out those elementsthat a program could possibly denote. In Cpo such questions of computabilityare handled using e�ective !-algebraic cpos, and the standard convex powerdo-main operates upon such cpos. One de�nes a \computable element" of a cpoto be the lub of a recursive chain of compact elements. However, Ii de�nes arecursive ascending chain of compact elements in the appropriate cpo. So in theconventional setting this chain has a lub which is deemed to be \computable".Our avoidance of such elements suggests that our powerdomain might provide a



more appropriate setting for de�ning a notion of \computability" for denotationsof nondeterministic computation.The K�onig's lemma argument that a nondeterministic program should berepresented by a set of results that if in�nite necessarily contains ?, apparentlyrelies upon the assumption that a nonterminating program has no observablebehaviour. This assumption is not always valid. For example, suppose we havea class of nonterminating nondeterministic programs that can output naturalnumbers during execution. One might be tempted to model such programs aselements of P(Streams) where Streams is (inherited from) the initial solution (inCpo?) of the recursive domain equation:Streams �= N? 
 L(Streams):Observe that P(Streams) contains an evident analogue of the Ii chain, but thistime one would like a lub to exist, for this should represent the computationthat repeatedly chooses between outputting a 0 and outputting a 1. As before,this lub is available if one uses the standard convex powerdomain on cpos, butnot with our powerdomain. Thus it might seem that our powerdomain cannotbe used to model standard features such as mid-execution output. However, thisis not the case. Rather than taking P(Streams) as the domain of denotations,one should instead take the initial solution in Q!P? of the recursive domainequation: A �= P(N? 
 LA)(we will show how to solve such domain equations in Section 6). This equationamounts to modelling bisimilarity between programs, whereas P(Streams) at-tempted to model trace equivalence. It should also be possible to model traceequivalence by moving to the category of (realized) semilattices and linear mapsand solving a recursive domain equation involving the tensor product that clas-si�es bilinear maps, as in [9].The above di�erences between our powerdomain and the classical one, in-volved the existence and nonexistence of in�nite behaviours. Next we point outan entirely �nitary di�erence, adapting an example due to Sieber [16]. We showthat there is noQ!Pmorphism (1?�1?) �- P(1?�1?�1?�1?) representingthe function: �(?;?) = fh�;?;?;?i; h?;?;?;�ig;�(?; �) = fh�;?; �;?i; h?; �;?; �ig;�(�;?) = fh�; �;?;?i; h?;?; �; �ig;�(�; �) = fh�; �;?; �i; h�;?; �; �ig:Suppose, for contradiction, that f realizes �. Then there must be some � 2Leaves(f(?;?)) such that f(?;?)(�) = h�;?;?;?i. So, by the monotonicity off , it must hold that f(?; �)(�) = h�;?; �;?i and hence f(�; �)(�) = h�;?; �; �i.Similarly, f(�;?)(�) = h�; �;?;?i and hence f(�; �)(�) = h�; �;?; �i. We nowhave two contradictory values for f(�; �), so indeed � has no realizer. On the otherhand, as � is monotonic, it does give a morphism if the convex powerdomain inCpo is used.



Above, we have considered examples using domains such as P(N? )? N?)and P(1? � 1? � 1? � 1?), which do not correspond to natural domains forinterpreting nondeterministic computation. We chose these domains in order toillustrate the various phenomena in simple settings. Similar phenomena do alsoarise in more natural domains for nondeterministic programs, for example, inthe domains used to interpret Sieber's nondeterministic, call-by-value version ofPCF [16]. To interpret this language in Q!P?, one would interpret types by:[[�]] = N?;[[�! � ]] = L ([[�]])? [[P(� )]]);and the denotation of a program of type � would be an element of P([[�]]). It isstraightforward to interpret all of Sieber's language including his exists oper-ator. Sieber interpreted his language using the standard convex powerdomain oncpos. He showed that full abstraction fails because there is a non-de�nable �niteelement in [[(� ! �) ! (� ! �)]]. This non-de�nable element is a variant of thefunction � de�ned above, and, as with � above, it does not exist if our power-domain is used. Thus Sieber's counterexample to full abstraction fails when thelanguage is interpreted in Q!P?. We do not know if the interpretation in Q!P?gives rise to a fully abstract model. It would be interesting to investigate thisquestion, but the analysis might well involve developing a theory of \algebraic"or even \bi�nite" realized posets. It would also be interesting to investigate thepossibility of obtaining a universality theorem. As with the earlier discussion forP(N? )? N?), it seems that our powerdomain o�ers the possibility of a bet-ter account of nondeterministic computability in the interpretations of the PCFtypes. But such an investigation would probably require a theory of \e�ectivealgebraic" realized posets. We leave such developments for future work.6 Recursive domain equationsIn this section we show that Q!P? is algebraically compact for a good class ofendofunctors, allowing us to �nd canonical solutions to recursive domain equa-tions.First we make an observation concerning the construction of solutions torecursive domain equations in Q!P?. Consider the !-chain of morphisms:0? ? - L0? L?- L20? L2?- : : :The colimit of this diagram inQ!P? is the object A de�ned (up to isomorphism)by: jjAjj = fhm;ni j m;n � 1; m � ng [ f?g;p vA q if either p = ? or: p = hm;ni, q = hm;n0i and n � n0,p -A q if either p = ? or: p = hm;ni, q = hm0; n0i and n � n0.



It is easily checked that A is not isomorphic to LA. Thus one cannot solve arecursive domain equation in Q!P? by taking the colimit of the usual !-chain.Note also that the underlying poset of A is not a cpo. This gives another exampleof how Q!P and Q!P? are not Cpo-enriched under the pointwise ordering.Now, consider the !op-chain:0? � ! L0? �L! L20? �L2! : : :The limit of this diagram in Q!P? is the object B de�ned by:jjBjj = ! + 1;� vB � if � � �;� -B � if � � �;which is indeed the expected solution to B �= LB. Thus the colimit of the chainobtained by iterating the functor L is not isomorphic to the limit of its associatedco-chain.Recall that in any Pposet-category an embedding is a morphism A f- Bfor which there exists a morphismB g- A such that g�f = 1A and f �g � 1B .Any g that arises from an embedding in this way is called a projection. Anembedding determines its associated projection and vice-versa. In the aboveexample, one sees that the original !-chain is a chain of embeddings, and the!op-chain consists of the associated projections. Thus in Q!P? we do not havethe limit-colimit coincidence of classical domain theory [18].The above observations show that one cannot expect to construct solutionsto recursive domain equations as !-colimits in Q!P?, but leave open the pos-sibility that solutions to recursive domain equations could be constructed as!op-limits. However, although we lack a counterexample, this does not seem tobe the correct way to proceed. Instead we make use of the fact that all thefunctors of interest on Q!P? are induced by Cpo-functors on !P?. As !P?is a Cpo-category, recursive domain equations can be solved there in the usualway. These solutions are transported by the functor Q to Q!P?. Although thelimiting and colimiting properties of the solution are not preserved by Q, otherrelevant universal properties are.The relevant universal properties concern initial algebras and terminal coal-gebras. We review the basic facts about these. Given any endofunctor F on acategory, an F -algebra is any morphism FA a- A. An F -algebra homomorph-ism from FA a- A to FB b- B is any morphism A x- B such thatx � a = b � F (x). An initial F -algebra is an initial object in the category ofF -algebras and homomorphisms. A famous lemma of Lambek shows that whenFA a- A is an initial F -algebra then a is an isomorphism (see e.g. [18]).An important fact about initial algebras is that they can be found functoriallyin the following sense. Suppose that G : D�C ! C is a functor such that, for anyobject A of D, the endofunctor G(A;�) has an initial algebra G(A;CA) aA- CAin C. Then there exists a canonical initial-algebra-�nding functor Gy : D ! C



that maps each A to CA. On morphismsA f- B in D, one de�nes Gy(f) to bethe unique morphism in C (given by the initiality of aA) that makes the diagrambelow commute. G(A;CA) aA - CAG(A;CB)G(A;Gy(f))? G(f; CB)- G(B;CB) aB - CB?Gy(f) (1)The functoriality of Gy follows from the uniqueness of the morphism.An F -coalgebra is just an F op-algebra in Cop. The above facts about initialF -algebras are easily dualized to terminal F -coalgebras. Following Freyd [7, 8],we shall be interested in structures that are simultaneously initial algebras andterminal coalgenras. A free F -algebra is an isomorphism FA a- A such thata is an initial F -algebra and a�1 is a terminal F -coalgebra. C is said to bealgebraically compact if every endofunctor has a free algebra, where \every"usually ranges over an understood class of functors, for example over suitablyenriched functors [5]. Algebraically compact categories allow the constructionof canonical solutions to recursive domain equations involving bifunctorial typeconstructors [7, 5].Our goal in this section is to show that Q!P? is algebraically compact rel-ative to a good class of endofunctors including the powerdomain as well as allfunctors derived from the type constructors considered in Section 2. More gener-ally one wants to solve recursive domain equations for multi-aritymixed-variancefunctors, which means having to work with functors from (Q!P?�Q!Pop? )k toQ!P?. In order to obtain a setting in which one can treat such generalizationsof simple endofunctors uniformly, we consider a class of \realized" categories,which includes all categories (Q!P? � Q!Pop? )k as well as Q!P? itself, andan associated class of \realized" functors between them, which includes the bi-functors of interest. It will turn out that all realized categories are algebraicallycompact relative to the class of realized endofunctors.De�nition 6.1 (Realized category) A realized category is a Pposet-category,RC, together with a Cpo-category C and a functor R : C ! RC satisfying:1. C and RC have the same objects and R is the identity on objects.2. For all objects A;B the functions RAB : C(A;B) ! RC(A;B) are admissiblequotients.3. Composition in C is a bistrict morphism in Cpo.4. C has a terminal object and limits of all !op-chains of projections.If RC and SD are realized categories then so is RC � SD in the evident way. Itis more interesting that (RC)op is also a realized category. Here the non-obviouspoint is that Cop satis�es condition 4. Cop has a terminal object because thebistrictness of composition means that the terminal object in C is in fact a zero



object. Also, the limit of an !op-chain of projections in Cop corresponds to thecolimit of an !-chain of embeddings in C. This colimit is given as the limit ofthe induced !op-chain of projections in C, by the limit-colimit coincidence forCpo-categories [18]. Lastly, Q!P? is a realized category, its associated Cpo-category is !P? and its associated functor is Q : !P? ! Q!P?. Condition 4holds because the forgetful from !P? to Cpo creates limits.De�nition 6.2 (Realized functor) A realized functor from RC to SD is aPposet-functor � : RC ! SD for which there exists a Cpo-functor F : C ! Dmaking the diagram below commute.C F - DRCR? � - RD?SAll the type constructors we have on Q!P? are indeed realized functors betweenappropriate realized categories. Speci�cally: �, + and 
 are realized functorsfrom Q!P? �Q!P? to Q!P?; L and P(�) are realized functors from Q!P? toQ!P?; and) and)? are realized functors fromQ!Pop? �Q!P? to Q!P?. Forall constructions except P(�) this follows fromTheorem 2.6. For the powerdomainit is clear from the action of P(�) on realizers described in Section 4.We can now state the main theorem of this section. This shows that anyrealized category is algebraically compact relative to the class of realized endo-functors. Further, it shows that for a class of realized endofunctors given para-metrically in another realized category, the initial-algebra-�nding functor de�nedearlier is also a realized functor. This gives parameterized algebraic compactnessin the sense of Fiore [5].Theorem 6.3 (Parameterized algebraic compactness)1. Every realized endofunctor � : RC ! RC has a free algebra in RC.2. For any realized functor 	 : SD�RC ! RC the initial-algebra-�nding functor	 y : SD ! RC is realized.Theorem 6.3 is all that is needed to solve recursive domain equations. Morespeci�cally, one uses the parameterized algebraic compactness ofQ!P?�Q!Pop? ,as all type constructors give rise to multi-arity functors on this category. Moreoverthe \symmetry" of such functors allows the solutions to be found \on the diag-onal". The reader is referred to Fiore's thesis [5, Ch. 6] for full details.The remainder of this section is devoted to the proof of Theorem 6.3. Let �be any realized endofunctor on RC, and let F be any functor realizing �. Theconditions on C in the de�nition of realized category are enough to guaranteethat C is algebraically compact relative to all Cpo-enriched endofunctors [5,Ch. 7]. Thus C has a free F -algebra FA a- A. To prove Theorem 6.3(1), we



would like to show that �A R(a)- A is a free �-algebra in RC. This does notfollow by elementary diagram chasing, but it does follow using an alternativeequational characterization of free algebras as special invariant objects. Thesewere introduced in the Cpo-enriched case by Freyd [6]. Our treatment, which�ts into the general setting of [17], involves regarding C as an !P-enrichedcategory and RC as a Q!P-enriched one.To emphasize the enrichment under consideration, we shall write !P-C forthe !P-enriched version of C and Q!P-RC for the Q!P-enriched version ofRC. The hom-objects !P-C(A;B) and Q!P-RC(A;B) are the same realizedposet (RC(A;B); C(A;B); RAB). The identity and composition maps are obvi-ous. Note that composition in !P-C is a bistrict morphism in !P, and compos-ition in Q!P-C is a bistrict morphism in Q!P. Note also that Q : !P! Q!Pmaps the objects, identities and composition of !P-C to those of Q!P-RC.Thus Q!P-RC is the Q!P-category Q�!P-C in the notation of Eilenberg andKelly [4]. It follows that Q induces an evident (ordinary) functor (called Q0C in[4]) from the underlying category C of !P-C to the underlying category RC ofQ!P-RC. This functor is none other than R : C ! RC.Next we consider how the enrichment extends to realized functors. Let � :RC ! SD be realized by F : C ! D. One sees that the continuous functionFAB : C(A;B) !D(FA;FB) realizes the monotone function �AB : RC(A;B)!SD(�A;�B) from the realized poset (RC(A;B); C(A;B); RAB) to the realizedposet (SD(A;B); D(A;B); SAB). It follows that F enriches to an !P-functorfrom !P-C to !P-D. Similarly, � enriches to a Q!P-functor from Q!P-RC toQ!P-SD. Further, Q : !P ! Q!P maps the action of F to the action of �.Thus � is the Q!P-functor Q�F in the notation of [4].We can now de�ne the alternative characterization of free algebras. Supposethat � : RC ! RC is realized by F : C ! C. Given an isomorphism FA a- Ain C, the !P-enriched structure of C and F gives us an evident !P morphism:!P-C(A;A) a � F (�) � a�1- !P-C(A;A):We say that FA a- A is special F -invariant if �x(a � F (�) � a�1) = 1A.Similarly, given an isomorphism �A �- A in RC, the Q!P-enriched structureof RC and � gives us an evident Q!P morphism:Q!P-RC(A;A) � � �(�) � ��1- Q!P-RC(A;A):We say that �A �- A is special �-invariant if Q�x(� � �(�) � ��1) = 1A.Proposition 6.4 Suppose that � : RC ! RC is realized by F : C ! C and thatFA a- A is an isomorphism. Consider the following statements.1. FA a- A is an initial F -algebra in C.2. A a�1- FA is a terminal F -coalgebra in C.3. FA a- A is special F -invariant.



4. �A R(a)- A is an initial �-algebra in RC.5. A R(a)�1- �A is a terminal �-coalgebra in RC.6. �A R(a)- A is special �-invariant.Then 1 � 2 � 3) 4 � 5 � 6.Proof.3) 6. A straightforward consequence of Q preserving the �xed-point operatorand all the enriched structure.4) 6. Suppose that �A �- A is an initial �-algebra in RC. Then it is easilychecked that Q�x(� � �(�) � ��1) is a �-algebra homomorphism from � toitself. But 1A is the unique such homomorphism.6) 4. Suppose that �A �- A is special �-invariant. We show that it is aninitial �-algebra. Given any �B �- B we have a Q!P-morphism:Q!P-RC(A;B) � � �(�) � ��1- Q!P-RC(A;B):It is easily checked that Q�x(� � �(�) ���1) is a �-algebra homomorphismfrom � to �. For uniqueness, let A x- B be any such homomorphism.There is an evident Q!P-morphism:Q!P-RC(A;A) x � �- Q!P-RC(A;B);which, by the bistrictness of composition in Q!P-RC, is strict. As x is a�-algebra homomorphism, the diagram below commutes:Q!P-RC(A;A) � � �(�) � ��1- Q!P-RC(A;A)Q!P-RC(A;B)x � �? � � �(�) � ��1- Q!P-RC(A;B):?x � �So, by the uniformity of Q�x, it holds that (x � �) �Q�x(� ��(�) ���1) =Q�x(� � �(�) � ��1). Whence, as � is special �-invariant, it follows thatx = Q�x(� � �(�) � ��1) as required. (This argument is from [17].)5 � 6. Dual to 4 � 6.1 � 2 � 3. By a similar proof to 4 � 5 � 6. �Part 1 of Theorem 6.3 follows easily. By earlier remarks, C has a free F -algebraFA a- A. So, by the proposition, �A R(a)- A is a free �-algebra in RC.It remains to prove part 2. Suppose that 	 : SD � RC ! RC is realized byG : D � C ! C. For any object A of D, let G(A;CA) aA- CA be a chosen freeG(A;�)-algebra in C. This choice determines the initial-alegra-�nding functor



Gy : D ! C. Now, for any D morphism A f- B, the !P-enriched structure ofC, D and G gives us an !P morphism:!P-C(CA; CB) aB �G(f;�) � a�1A- !P-C(CA; CB):It is easy to check that diagram (1) for Gy still commutes if one replaces Gy(f)with �x(aB �G(f;�)�a�1A ). Therefore Gy(f) = �x(aB �G(f;�)�a�1A ). Thus thefollowing !P-morphism shows that Gy is !P-enriched, hence Cpo-enriched.!P-D(A;B) f 7! �x(aB �G(f;�) � a�1A )- !P-C(CA; CB):By Proposition 6.4, 	 (A;CA) R(aA)- CA is a free 	 (A;�)-algebra in RC.This choice determines 	 y : SD ! RC. As above, one shows that, for any SDmorphismA �- B, it holds that 	 y(�) = Q�x(�B �	 (�;�)���1A ) and that 	 yis Q!P-enriched, hence Pposet-enriched. Moreover, as Q preserves the �xed-point-operator and enriched structure, it is clear that Gy realizes 	 y as required.7 Further workIn this paper we have constructed and analysed a powerdomain in a new categoryof domains based on realized posets. Our original motivation for this investiga-tion was to obtain a powerdomain avoiding Sieber's problemwith full abstractionfor his nondeterministic call-by-value PCF [16]. As discussed in Section 5, wedo indeed avoid this particular problem. However, the question of whether weachieve full abstraction remains to be investigated.Also in [16], Sieber points out the impossibility of achieving full abstractionfor a treatment of total correctness based on the upper powerdomain in cpos. Itis possible that a variation on our powerdomain, using a cpo of intensional rep-resentations of necessarily terminating nondeterministic programs, might helpwith this problem too. It would be interesting to see if such a treatment arisesfrom the standard algebraic characterization of the upper powerdomain [14].Partial correctness and the lower powerdomain are perhaps less interesting, asthese can already be adequately treated using the existing lower powerdomainin Cpo (again see [16]). Nevertheless, for the sake of completeness, it wouldbe worth having an analogous construction on realized posets. It would also beinteresting to investigate whether the logical characterizations of the powerdo-mains using modalities on observable properties (as in [15]) hold in our setting.Indeed, the informal motivation for considering extensional preorders on inten-sional cpos, given in the introduction, could be best underpinned by a propertheory of intensional and extensional observable properties.It would also be worthwhile to investigate interpretations of more complic-ated nondeterministic (and concurrent) behaviours. For this it might be naturalto move from Q!P? to the category of realized semilattices and strict linearmorphisms. As mentioned in Section 5, this category should allow one to model



trace equivalence. It should also support important variant powerdomains. Forexample, every realized semilattice has a second associated partial order, theinclusion order, determined by the semilattice structure. This order is preservedby every linear morphism. Thus there should be a forgetful functor from thecategory of realized semilattices to an appropriate category of realized doubleposets (sets with two partial orders). The left adjoint to this forgetful shouldproduce a powerdomain generating the free inclusion-order-preserving semilat-tice. It appears that such a powerdomain might provide a good (fully abstract?)interpretation of Sieber's nondeterministic PCF without its computationally un-natural exists operator.Another direction for research is to consider variations on the construction ofQ!P. Rather than working with cpos equipped with !-inductive preorders, onecould use !-inductive equivalence relations, partial equivalence relations or par-tial preorders instead. The third of these would give rise to a di�erent categoryof realized posets, the other two to categories of realized sets. It would be inter-esting to see all the variations as instances of some general construction. Quitepossibly the associated categories of realized categories and realized functorswould also be instances, perhaps at the 2-categorical level. It would be remark-able if it were also possible to incorporate the standard realizability examples(such as the category of modest sets [10]) into the same theory. It would also beinteresting to relate these constructions to the categories of games de�ned byAbramsky et al, in there is a similar passage from intensional representations toextensional equivalence [1].It appears that the above variations on Q!P may well have interesting ap-plications. For example, sometimes the identi�cation of any two nondeterministiccomputations whose sets of results have the same convex closure is not desirable.For us such identi�cations were forced by working with a category of realizedposets. It seems that one approach to avoiding them would be to work insteadwith one of the categories of realized sets mentioned above.In general, the main bene�t of these realizability categories seems to be thatquotients are more easily de�ned than inCpo. For example, inQ!P coequalisersleave the underlying cpo unchanged, modifying only the extensional preorder.There are many situations in denotational semantics in which one easily con-structs domains of intensional representations, but has di�culty in quotientingthem. It is plausible that realizability categories might help with such problems.Indeed, independently of us, Andy Pitts has been led to consider similar real-izability categories in order to resolve similar quotienting problems associatedwith the interpretation of programs involving local variables (private commu-nication). Another speculative application is to concurrency where one might beable to model weak bisimulation as a quotient of strong bisimulation.AcknowledgementsI would like to thank Pietro Di Gianantonio, Andy Pitts and Gordon Plotkinfor their encouragement and for a number of helpful suggestions. The author is
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