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Lazy Functional Algorithms forExact Real FunctionalsAlex K. SimpsonLFCS, Department of Computer Science, University of Edinburgh,JCMB, King's Buildings, Edinburgh, EH9 3JZ, Scotland<Alex.Simpson@dcs.ed.ac.uk>Abstract. We show how functional languages can be used to write pro-grams for real-valued functionals in exact real arithmetic. We concen-trate on two useful functionals: de�nite integration, and the functionalreturning the maximum value of a continuous function over a closed in-terval. The algorithms are a practical application of a method, due toBerger, for computing quanti�ers over streams. Correctness proofs forthe algorithms make essential use of domain theory.1 IntroductionIn exact real number computation, in�nite representations of reals are employedto avoid the usual rounding errors that are inherent in 
oating point compu-tation [4{6, 17]. For certain real number computations that are highly sensitiveto small variations in the input, such rounding errors become inordinately largeand the use of 
oating-point algorithms can lead to completely erroneous results[1,14]. In such situations, exact real number computation provides guaranteedcorrectness, although at the (probably inevitable) price of a loss of e�ciency.How to improve e�ciency is a �eld of active research [9].Lazy functional programming provides a natural implementational style forexact real algorithms. One reason is that lazy functional languages support lazyin�nite data structures, such as streams, which can be coveniently used to repre-sent real numbers. The e�cient management of such in�nite data structures (forexample, using call-by-need to avoid repeated computations) can be entrustedto the language implementer, leaving the programmer free to concentrate onthe essentials of the algorithms being developed. Also, functional programmingnaturally supports the recursive de�nition of functions, which is the most usefulmethod of de�ning exact functions on real numbers. Such considerations wereimportant motivating factors in [4, 5, 17, 6, 7, 10].One principal distinguishing feature of functional languages is their accep-tance of functions as �rst-class values, and the associated possibility of passingfunctions as arguments to other function(al)s. In the context of exact real numbercomputation, this raises the question of whether it is possible to write functionalalgorithms to implement useful functionals on real numbers. In [8], Edalat andEscard�o show how to extend Real PCF [10] with primitive functionals for de�-nite integration, and for the maximum value attained by a continuous function
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over a closed interval. However, their operational semantics is nondeterminis-tic, and requires a parallel evaluation strategy which is not readily supportedwithin the context of the standard sequential functional languages. The problemof whether such algorithms are possible sequentially was originally posed in DiGianantonio's PhD thesis [6], where it was conjectured that they are not.In this paper we show that Di Gianantonio's conjecture is false. We providesequential functional algorithms for the speci�c and useful functionals of inte-gration and maximum. The algorithms rely on a clever, but little known, ideaof Berger, who showed how to compute quanti�ers over predicates on streamssequentially [2]. Berger's algorithms deserve to be better known, especially inthe light of their possible applications.The work of Berger, Di Gianantonio, Escard�o and Edalat, referred to above,was carried out in the context of the minimal functional language PCF [15](and extensions of it). It would be fully possible to write this paper in the samesetting, but we prefer instead to adopt a less spartan approach. The goal of thispaper is to describe and verify particular functional algorithms. We thereforeuse an easily readable, although not formally de�ned, functional pseudocodefor expressing algorithms (just as an informal imperative pseudocode is used tospecify algorithms throughout computer science). We also make use of a simpletype discipline to specify the domains and codomains of functions.Not only does the type discipline improve the readability of the code, italso serves a more signi�cant purpose. The statements of correctness of thealgorithms and their veri�cation make essential use of a denotational semanticsde�ned in terms of the type structure. Indeed it is a further bene�t of usinga functional language that a denotational semantics is easily obtained usingstandard constructions on complete partial orders. Because we have not formallyde�ned the language, we cannot formally de�ne its semantics either. Nonetheless,the denotational semantics of functional programming languages is now wellenough understood that it is possible to use such semantics in an informal waywith full mathematical rigour. Our approach is to use denotational semanticsas one more mathematical tool for verifying informally speci�ed algorithms,alongside all the other tools available from the body of mathematics as a whole.Perhaps what is most interesting about the use of denotational semantics inthis paper is that it goes beyond the mere existence of �xed-points and their ba-sic properties. Instead, the correctness proofs make use of topological properties(moduli of continuity) of the denotations of higher-order functions. Understand-ing the denotational semantics is helpful even to appreciate the correctness ofthe algorithms informally. In order to verify the algorithms rigorously, some useof domain theory appears to be essential.2 Types and their DenotationsIn our functional pseudocode, we assume basic datatypes like int, the type ofintegers, bool, the type of booleans, as well as some convenient �nite types:type two = {0,1}



type three = {-1,0,1}We assume that two is a subtype of three in the obvious way (so we shallnot bother to include explicit coercions between them). The type constructorswe use are A ! B, function space, A � B, cartesian product, and A stream.Function application is assumed to be lazy. Mainly for denotational simplicity,we interpret � as a lazy product (thus a pair may converge in one component butnot the other). The behaviour of streams is best explained via the denotationalsemantics.For the denotational semantics, we use directed-complete partial orders withleast element (henceforth cpos) for interpreting datatypes, and continuous func-tions between them for interpreting programs (see e.g. [12]). In Sec. 3 we refer tocpos as topological spaces, understanding them as carrying the Scott topology.Given a set X, we write X? for the 
at cpo with least element ? and with allother elements taken from the set X. Basic types are interpreted as 
at cpos by:[[int]] =Z?; [[bool]] = B? where B = ftrue; falseg; [[two]] = 2? where 2 = f0; 1g;and [[three]] = 3? where 3 = f�1; 0; 1g. The function space is interpreted as thecpo, [[A ! B]], of all continuous functions from [[A]] to [[B]] ordered pointwise.Theinterpretation of the product type, [[A � B]], is the straightforward cartesianproduct of [[A]] and [[B]] (as partially ordered sets).Streams will be denoted by possibly in�nite sequences, so we develop somenotation for these. For a set X we write: X� for the set of �nite sequencesof its elements; X! for the set of in�nite sequences; and X1 for the set of allsequences, i.e.X1 = X�[X! . For any sequence �, we write j�j for the (possiblyin�nite) length of � and �(i) (where 0 � i < j�j) for the (i+1)-th element of �.We use textual juxtaposition, ��, for the concatenation of a �nite sequence �with an arbitrary sequence �. We write �dn for the largest �nite pre�x, �, of �such that j�j � n. For x 2 X we write �!x for the in�nite constant sequence. Inthe paper, we shall only ever use streams formed from base types. These have astraightforward interpretation. If [[A]] = X? then [[A stream]] = X1 with � � �if and only if � is a pre�x of �. We write hd : X1 ! X? and tl : X1 ! X1 forthe evident head and tail functions. The \cons" operation on streams (written:: in our pseudocode) is the evident left-strict function from X? �X1 to X1.3 Real Numbers: Representation and SemanticsIn order to write algorithms for functions and functionals on the reals, we �rstneed to choose a representation for real numbers. It is well known that thestandard base n notation for reals does not provide an adequate representation,as many simple functions (e.g. addition) are not computable exactly. However,many alternative choices of adequate representation are available. There arediscussions of these issues in e.g. [6, 9].We shall use one of the simplest possible representations: a modi�cation ofthe standard binary representation using negative digits. We consider an in�nitesequence � 2 3! (recall that 3 = f�1; 0; 1g) as representing the real numberq(�) =P1i=0�(i) � 2�(i+1)



This de�nes a surjective function q from 3! to I, where we write Ifor the closedinterval [�1; 1]. The whole real line can be represented using a mantissa from3! and an exponent from Z, thus (z; �) 2 Z� 3! represents the real number2z � q(�). This representation will be used in the full version of the paper, but,for lack of space, is not considered further in this conference version.We use the natural type de�nition to implement the representation.type interval = three streamThere is, however, a mismatch between the datatype and the representation ofreals. We have that [[interval]] = 31, whereas only elements in the subset 3!have been given interpretations as real numbers.Just as not all values of type interval represent real numbers, neither do allfunctions of type interval ! interval represent functions on real numbers.We use the denotational semantics to distinguish those that do. For greatergenerality we work with n-ary functions.An arbitrary function � : (31)n ! 31 is said to be total if it restricts to afunction �� : (3!)n ! 3!. Clearly ��, when it exists, is unique. Similarly,a function� : (3!)n ! 3! is said to be real if there exists a function ~� : In! Isuch that, forall �1; : : : ; �n 2 3!, it holds that q(�(�1; : : : ; �n)) = ~�(q(�1); : : : ; q(�n)). Again~� is uniquely determined (because q is surjective). Putting the two together, wesay that � : (31)n ! 31 is real-total if it is total and �� is real, in which casewe write ~� : In! Ifor the unique induced function.A functional program of type interval ! interval will always be denotedby a continuous � : 31 ! 31. By topological trivialities, if we endow 3! withthe subspace topology of the Scott topology on 31, and we endow Iwith thequotient topology of 3! under q, then, for any continuous real-total �, we havethat �� and ~� are continuous. The proposition below makes this observation moreinteresting.Proposition 1.1. The induced topologies on 3! and Iare the product and Euclidean topologiesrespectively.2. For any continuous f : In! I, there exists a real � : (3!)n ! 3! such thatf = ~�.3. For any continuous � : (3!)n ! 3! there exists a total � : (31)n ! 31such that � = ��.In the full version of the paper the de�nitions and results in this sectionwill be related to work on totality in domain theory [2,3, 16], and to topologicalinjectivity (and projectivity) results [11].4 Moduli of Continuity and Stream Quanti�ersConsider any continuous function � : 21 ! X? where X is any set. We say thatf is total if, for all � 2 2!, it holds that �(�) 2 X.



Proposition 2. For any total � : 21 ! X? there exists n 2 N such that, forall � 2 21, it holds that �(�) = �(�dn).We call the least n satisfying the property stated in the proposition the inten-sional modulus of continuity of �, and we write imc(�) for it.Corollary 1. For any total � : 21 ! X? there exists n 2 N such that, for all�; � 2 2!, it holds that �dn= �dn implies �(�) = �(�).We call the smallest such n the extensional modulus of continuity of �, and wewrite emc(�) for it. Obviously emc(�) � imc(�). In the full version of the paperthere will be a discussion of the relative bene�ts of the two notions of modulus.Our �rst application, due to Berger [2], is to provide a universal quanti�erfor total predicates on two stream. The algorithm is presented in Fig. 1 below.witness-not: (two stream ! bool) ! two streamwitness-not (P) =lazylet w = witness-not (�v: P (0 :: v))in if P (0 :: w) then 1 :: witness-not (�v: P (1 :: v))else 0 :: wforall : (two stream ! bool) ! boolforall (P) = P (witness-not P)Fig. 1. Algorithms for the stream quanti�erProposition 3. For any total � : 21 ! B? :[[forall]](�) = � true if, for all � 2 2!, �(�) = truefalse otherwiseProof. One proves, by induction on imc(�), that, for all total � : 21 ! B? : ifthere exists � 2 2! such that �(�) = false then [[witness-not]](�) is one such�; otherwise [[witness-not]](�) = �!1 . The proposition follows easily. ut5 Functional Algorithms for Maximum and IntegrationThe denotation of every program of type interval ! interval will be a con-tinous function � from 31 to 31. If � is real-total then there is a correspondingcontinuous ~� : I! I. Our goal in this paper is to show how Berger's algorithmscan be applied to the practical problem of computing the values of functionalsacting on continuous functions on I.We shall concentrate on two basic and useful functionals: the functional that�nds the maximum value attained by a continuous function over the closedinterval [0; 1], and the function that computes the de�nite integral of a continuousfunction over [0; 1]. That such maximum values and de�nite integrals exist forall continuous functions are very basic results in analysis. Observe that bothoperations return values in I.



5.1 MaximumThe algorithm for the functional max-fun is presented in Fig. 2. A �rst lemmastates the important properties of the main auxiliary function de�ned there.sub-one: interval ! intervalsub-one (1 :: r) = �1 :: rsub-one (0 :: r) = �1 :: sub-one(r)sub-one (�1 :: r) = �!�1max-real: interval � interval ! intervalmax-real (d1 :: r1; d2 :: r2) =let d = d1 � d2 in case d of 2 then d1 :: r11 then d1 :: max-real(r1; sub-one(r2))0 then d1 :: max-real(r1; r2)�1 then d2 :: max-real(sub-one(r1); r2)�2 then d2 :: r2max-fun: (interval ! interval) ! intervalmax-fun (f) =let d = head (f(�!1 )) in if forall (�v: head(f(v)) = d)then d :: (max-fun(�v: tail(f(v))))else max-real (max-fun (�v: f(0 :: v));max-fun (�v: f(1 :: v)))Fig. 2. Maximum-value algorithmLemma 1. [[max-real]] is real-total with: ^[[max-real]](x; y) = max(x; y) More-over, for all �; � 2 31, j[[max-real]](�; �)j � min(j�j; j�j).Observe that the lemma includes the intensional information that max-real onlyexamines n digits of the input streams in order to produce n digits of output.This is crucial in the proof of the proposition below, which states the correctnessof max-fun.Proposition 4. For any real-total �, it holds that [[max-fun]](�) 2 3! andq([[max-fun]](�)) = maxf~�(x) j 0 � x � 1g:To prove Proposition 4, we prove, by induction on n 2 N, that, for all real-total � : 31 ! 31, it holds that [[max-fun]](�)dn= d1 : : :dn 2 3n such that:j maxf~�(x) j 0 � x � 1g � nXi=1 di:2�i j � 2�n (1)The base case, n = 0, is trivial.When n > 0, consider h(�) : 21 ! 3? de�nedby h(�)(�) = hd(�(�)). Because � is real-total, we have that h(�) is total. Therequired inequality (1) is now proved by an inner induction on emc(h(�)).



Brie
y, if emc(h(�)) = 0 then (1) is proved using the outer induction hy-pothesis on n and the general equality, valid for any continuous f : I! I:maxff(x) + c j 0 � x � 1g = maxff(x) j 0 � x � 1g+ c: (2)When emc(h(�)) > 0 then (1) is proved using the induction hypothesis on theextensional modulus of continuity (the intensional information of Lemma 1 isneeded) together with the general equality, valid for any continuous f : I! I:maxff(x) j 0 � x � 1g = max(maxff(x=2) j 0 � x � 1g;maxff((x + 1)=2) j 0 � x � 1g ): (3)5.2 IntegrationIntegration can be performed by much the same method. Observe that integra-tion enjoys the following equalities, for any continuous f : I! I:Z 10 f(x) + c dx = Z 10 f(x) dx+ cZ 10 f(x) dx = Z 10 f(x=2) dx � Z 10 f((x + 1)=2) dx;where � : I� I! I computes the average of two reals. The above equationsare wholly analogous to (2) and (3) for maximum. Indeed we shall obtain anintegration algorithm by replacing the binary max-real used in max-fun witha function computing the average of two reals. However, the translation is notcompletely straightforward. Recall that the intensional information of Lemma 1was crucial to the proof of Proposition 4. This contrasts with the easy:Proposition 5. There is no real-total � : 31 ! 31 such that, for all x; y 2 I,~�(x; y) = x � y and, for all �; � 2 21, j�(�; �)j � min(j�j; j�j).The observed problem is a quirk of the particular representation of real num-bers we are using. A neat way of solving it is to use a second representation.Recall that the set of dyadic rationals isQd = fm=2n j m;n 2Zg.We write D forthe set Qd\ [�1; 1], which we call the set of dyadic digits. We consider an in�nitesequence 
 2 D! as representing the real number q0(
) = P1i=0 
(i) � 2�(i+1).This de�nes a surjective function q0 : D! ! [�1; 1] extending q : 3! ! [�1; 1].In order to write algorithms working with dyadic digits we assume an im-plemented datatype dyadic of dyadic digits, complete with the associated oper-ations for the basic arithmetic operations on dyadic rationals. Then we simplyde�ne a new datatype for the interval [�1; 1] in terms of dyadic streams:type q-interval = dyadic streamSemantically we assume that [[dyadic]] = D? , so [[q-interval]] = D1 . Thenotions of a function � : D1 ! D1 being total and real-total are de�ned entirelyanalogously to the cases for 31.The full algorithm for integration is presented in Fig. 3. For convenience weassume that three is a subtype of dyadic and (hence) interval is a subtypeof q-interval.



coerce: q-interval ! intervalcoerce (qd1 :: qd2 :: qr) =let qc = (2�qd1) + qd2 in case qc < �1 then �1::coerce((qc+ 2) :: qr)qc > 1 then 1::coerce((qc� 2) :: qr)otherwise then 0::coerce(qc :: qr)q-avg: q-interval � q-interval ! q-intervalq-avg (qd1 :: qr1; qd2 :: qr2) = (qd1+qd2)=2 :: q-avg (qr1; qr2)q-int: (interval ! interval) ! q-intervalq-int (f) = let d = head (f(�!1 )) in if forall (�v: head(f(v)) = d)then d :: (q-int(�v: tail(f(v))))else q-avg (q-int (�v: f(0 :: v)),q-int (�v: f(1 :: v)) )integrate: (interval ! interval) ! intervalintegrate (f) = coerce (q-int(f))Fig. 3. Integration algorithmLemma 2.1. For any 
 2 D! , it holds that [[coerce]](
) 2 3! and q([[coerce]](
)) = q0(
).2. The function [[q-avg]] : D1 ! D1 is real-total with ^[[q-avg]](x; y) = x � y.Moreover, for all 
; 
0 2 D1 , j[[q-avg]](
; 
0)j � min(j
j; j
0j).Proposition 6. For any real-total �, it holds that [[integrate]](�) 2 3! andq([[integrate]](�)) = Z 10 ~�(x) dx:The proof structure closely follows that of Proposition 4.6 Further DevelopmentsIn the full version of the paper an extension of the integration algorithm willbe presented that integrates, over any closed interval, functions de�ned fromthe interval to the whole real line. This makes use of the mantissa-exponentrepresentation of the real line mentioned brie
y in Sec. 3.The algorithms in this extended abstract were implemented by ReinholdHeckmann in Gofer in summer 1997. The extensions to functions from an ar-bitrary closed interval to the full real line have recently been implemented inHaskell by David Plume. The integration algorithm performs abysmally on anyinteresting functions. The maximumalgorithm performs a little better. A partialquantitative analysis of this situation will appear in the full version of the paper.The intrinsic intractibility of the operations of integration and �nding maximumvalues is to be expected from the work of Ko [13].
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