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Abstract. We show how functional languages can be used to write pro-
grams for real-valued functionals in exact real arithmetic. We concen-
trate on two useful functionals: definite integration, and the functional
returning the maximum value of a continuous function over a closed in-
terval. The algorithms are a practical application of a method, due to
Berger, for computing quantifiers over streams. Correctness proofs for
the algorithms make essential use of domain theory.

1 Introduction

In exact real number computation, infinite representations of reals are employed
to avoid the usual rounding errors that are inherent in floating point compu-
tation [4 6,17]. For certain real number computations that are highly sensitive
to small variations in the input, such rounding errors become inordinately large
and the use of floating-point algorithms can lead to completely erroneous results
[1,14]. Tn such situations, exact real number computation provides guaranteed
correctness; although at the (probably inevitable) price of a loss of efficiency.
How to improve efficiency is a field of active research [9].

Lazy functional programming provides a natural implementational style for
exact real algorithms. One reason is that lazy functional languages support lazy
infinite data structures, such as streams, which can be coveniently used to repre-
sent real numbers. The efficient management of such infinite data structures (for
example, using call-by-need to avoid repeated computations) can be entrusted
to the language implementer, leaving the programmer free to concentrate on
the essentials of the algorithms being developed. Also, functional programming
naturally supports the recursive definition of functions, which is the most useful
method of defining exact functions on real numbers. Such considerations were
important motivating factors in [4,5,17,6,7,10].

One principal distinguishing feature of functional languages is their accep-
tance of functions as first-class values, and the associated possibility of passing
functions as arguments to other function(al)s. Tn the context of exact real number
computation, this raises the question of whether it is possible to write functional
algorithms to implement useful functionals on real numbers. Tn [8], Edalat and
Escardé show how to extend Real PCF [10] with primitive functionals for defi-
nite integration, and for the maximum value attained by a continuous function
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over a closed interval. However, their operational semantics 1s nondeterminis-
tic, and requires a parallel evaluation strategy which is not readily supported
within the context of the standard sequential functional languages. The problem
of whether such algorithms are possible sequentially was originally posed in Di
Gianantonio’s PhD thesis [6], where it was conjectured that they are not.

In this paper we show that D1 Gianantonio’s conjecture 1s false. We provide
sequential functional algorithms for the specific and useful functionals of inte-
gration and maximum. The algorithms rely on a clever, but little known, idea
of Berger, who showed how to compute quantifiers over predicates on streams
sequentially [2]. Berger’s algorithms deserve to be better known, especially in
the light of their possible applications.

The work of Berger, D1 Gianantonio, FEscardé and Edalat, referred to above,
was carried out in the context of the minimal functional language PCF [15]
(and extensions of it). Tt would be fully possible to write this paper in the same
setting, but we prefer instead to adopt a less spartan approach. The goal of this
paper is to describe and verify particular functional algorithms. We therefore
use an easily readable, although not formally defined, functional pseudocode
for expressing algorithms (just as an informal imperative psendocode is used to
specify algorithms throughout computer science). We also make use of a simple
type discipline to specify the domains and codomains of functions.

Not only does the type discipline improve the readability of the code, it
also serves a more significant purpose. The statements of correctness of the
algorithms and their verification make essential use of a denotational semantics
defined in terms of the type structure. Indeed it is a further benefit of using
a functional language that a denotational semantics is easily obtained using
standard constructions on complete partial orders. Because we have not formally
defined the language, we cannot formally define its semantics either. Nonetheless,
the denotational semantics of functional programming languages is now well
enough understood that it is possible to use such semantics in an informal way
with full mathematical rigour. Our approach is to use denotational semantics
as one more mathematical tool for verifying informally specified algorithms,
alongside all the other tools available from the body of mathematics as a whole.

Perhaps what 1s most interesting about the use of denotational semantics in
this paper is that it goes beyond the mere existence of fixed-points and their ba-
sic properties. Instead, the correctness proofs make use of topological properties
(moduli of continuity) of the denotations of higher-order functions. Understand-
ing the denotational semantics is helpful even to appreciate the correctness of
the algorithms informally. In order to verify the algorithms rigorously, some use
of domain theory appears to be essential.

2 Types and their Denotations

In our functional pseudocode, we assume basic datatypes like int, the type of
integers, bool, the type of booleans, as well as some convenient finite types:

type two = {0,1}



type three = {-1,0,1}

We assume that two is a subtype of three in the obvious way (so we shall
not bother to include explicit coercions hetween them). The type constructors
we use are A — B, function space, A x B, cartesian product, and A stream.
Function application is assumed to be lazy. Mainly for denotational simplicity,
we interpret X as a lazy product (thus a pair may converge in one component, but
not the other). The behaviour of streams is best explained via the denotational
semantics.

For the denotational semantics, we use directed-complete partial orders with
least, element (henceforth cpos) for interpreting datatypes, and continuous func-
tions between them for interpreting programs (see e.g. [12]). Tn Sec. 3 we refer to
cpos as topological spaces, understanding them as carrying the Scott topology.

Given a set X, we write X | for the flat cpo with least element | and with all
other elements taken from the set X. Basic types are interpreted as flat cpos by:
[int] = 7 ; [bool] = B, where B = {irue, false}; [two] = 2, where 2 = {0,1};
and [three] = 3, where 3 = {L1,0,1}. The function space is interpreted as the
cpo, [A — B], of all continuous functions from [A] to [B] ordered pointwise. The
interpretation of the product type, [A x B], is the straightforward cartesian
product of [A] and [B] (as partially ordered sets).

Streams will be denoted by possibly infinite sequences, so we develop some
notation for these. For a sett X we write: X* for the set of finite sequences
of its elements; X for the set of infinite sequences; and X for the set of all
sequences, i.e. X°° = X*UXY. For any sequence «, we write || for the (possibly
infinite) length of @ and (i) (where 0 < i < |a|) for the (i 4 1)-th element of .
We use textual juxtaposition, o3, for the concatenation of a finite sequence o
with an arbitrary sequence 8. We write af,, for the largest finite prefix, 3, of «
such that |3| < n. For z € X we write % for the infinite constant sequence. In
the paper, we shall only ever use streams formed from base types. These have a
straightforward interpretation. If [A] = X, then [A stream] = X with a < 3
if and only if a 15 a prefix of 8. We write hd : X — X and t: X*® — X for
the evident head and tail functions. The “cons” operation on streams (written
:: in our pseudocode) is the evident left-strict function from X | x X to X

3 Real Numbers: Representation and Semantics

In order to write algorithms for functions and functionals on the reals, we first
need to choose a representation for real numbers. Tt is well known that the
standard base n notation for reals does not provide an adequate representation,
as many simple functions (e.g. addition) are not computable exactly. However,
many alternative choices of adequate representation are available. There are
discussions of these issues in e.g. [6,9].

We shall use one of the simplest possible representations: a modification of
the standard binary representation using negative digits. We consider an infinite
sequence «a € 3* (recall that 3 = {L1,0,1}) as representing the real number

9(0) = Y72, i) x 20+



This defines a surjective function ¢ from 3% to T, where we write T for the closed
interval [11,1]. The whole real line can be represented using a mantissa from
3% and an exponent from 7, thus (z,a) € 7 x 3“ represents the real number
2% x g(«). This representation will be used in the full version of the paper, but,
for lack of space, is not considered further in this conference version.

We use the natural type definition to implement the representation.

type interval = three stream

There is, however, a mismatch between the datatype and the representation of
reals. We have that [interval] = 3%, whereas only elements in the subset 3“
have been given interpretations as real numbers.

Just as not all values of type interval represent real numbers, neither do all
functions of type interval — interval represent functions on real numbers.
We use the denotational semantics to distinguish those that do. For greater
generality we work with n-ary functions.

An arbitrary function ¢ : (3°)” — 3% is said to be fotal if it restricts to a
function ¢ : (3¥)” — 3. Clearly ¢, when it exists, is unique. Similarly, a function
6 : (3¥)" — 3% is said to be real if there exists a function g : ™ — T such that, for
all aq, ..., € 37,1t holds that ¢(f(aq, ..., a,)) = é(q(m), ., q(a)). Again
0 is uniquely determined (because g is surjective). Putting the two together, we
say that ¢ : (83°)" — 3% is real-total if it is total and ¢ is real, in which case
we write (/; 27 — T for the unique induced function.

A functional program of type interval — interval will always be denoted
by a continuous ¢ : 3°° — 3. By topological trivialities, if we endow 3% with
the subspace topology of the Scott topology on 3, and we endow T with the
quotient topology of 3 under ¢, then, for any continuous real-total ¢, we have
that ¢ and q[; are continuous. The proposition below makes this observation more
interesting.

Proposition 1.

1. The induced topologies on 3“ and T are the product and Fuclidean topologies
respectively.

2. For any continuous f : 1" — T, there exists a real § : (3*)" — 3% such that
f=4.

3. For any continuous 6 : (3¥)" — 3% there exists a total ¢ : (3°°)" — 3™
such that 0 = ¢.

In the full version of the paper the definitions and results in this section
will be related to work on totality in domain theory [2,3,16], and to topological
injectivity (and projectivity) results [11].

4 Moduli of Continuity and Stream Quantifiers

Consider any continuous function ¢ : 2°° — X | where X is any set. We say that
[ is total if, for all & € 2% it holds that ¢(a) € X.



Proposition 2. For any total ¢ : 2°° — X | there exists n € N such that, for
all « € 2%, 4t holds that ¢(a) = d(af,)-

We call the least n satisfying the property stated in the proposition the inten-
sional modulus of continuity of ¢, and we write ime(¢) for it.

Corollary 1. For any total ¢ : 2°° — X there exists n € N such that, for all
a, 3 € 2¥, it holds that of,= B[, implies ¢(a) = ¢(3).

We call the smallest such n the extensional modulus of continuity of ¢, and we
write emc(g) for it. Obviously eme(¢) < ime(g). Tn the full version of the paper
there will be a discussion of the relative benefits of the two notions of modulus.

Our first, application, due to Berger [2], is to provide a universal quantifier
for total predicates on two stream. The algorithm is presented in Fig. 1 below.

witness-not: (two stream — bool) — two stream
witness-not (P) =
lazylet w = witness-not (Av. P(0::v))
in if P(0: w) then 1 :: witness-not (Av. P(1: v))
else 0w

forall : (two stream — bool) — bool
forall (P) = P (witness-not P)

Fig. 1. Algorithms for the stream quantifier

Proposition 3. For any total ¢ : 2° — B, :

[forall](s) = {

true if, for all @ € 2, ¢(a) = true
false otherwise

Proof. One proves, by induction on ime(), that, for all total ¢ : 2°° — B : if
there exists o € 2% such that ¢(a) = false then [witness-not](¢) is one such

a; otherwise [witness—not](¢) . The proposition follows easily. O

5 Functional Algorithms for Maximum and Integration

The denotation of every program of type interval — interval will be a con-
tinous function ¢ from 3™ to 3. If ¢ is real-total then there is a corresponding
continuous ¢ : T — T. Our goal in this paper is to show how Berger’s algorithms
can be applied to the practical problem of computing the values of functionals
acting on continuous functions on T.

We shall concentrate on two basic and useful functionals: the functional that
finds the maximum value attained by a continuous function over the closed
interval [0, 1], and the function that computes the definite integral of a continuous
function over [0, 1]. That such maximum values and definite integrals exist for
all continuous functions are very basic results in analysis. Observe that both
operations return values in T.



5.1 Maximum

The algorithm for the functional max—fun is presented in Fig. 2. A first lemma
states the important properties of the main auxiliary function defined there.

sub-one: interval — interval

sub-one (1:r) = —1:r

sub-one (0::r) = —1:: sub-one(r)
—

sub-one (—1:r) = —1

max-real: interval X interval — interval
max-real (dy ::r1, dy:irp) =
let d=dy —ds in case d of 2thend; 11y
1 then d; :: max-real(r;, sub-one(rz))
0 then d; :: max-real(ri, r2)
—1 then d> :: max-real(sub-one(r1), rz)
—2 thendsy :: 1o

max-fun: (interval — interval) — interval
max-fun (f) =
let d = head (f(?)) in if forall (Av.head(f(v))=d)
then d :: (max-fun(Av. tail(f(v))))
else max-real (max-fun (Av. f(0:: v))

max—fun (Awv. f(1 :: 7}))7)

Fig. 2. Maximum-value algorithm

Lemma 1. [max-real] is real-total with: [max-reall(x,y) = max(z,y) More-
over, for all o, 3 € 3, |[max-real] (e, 8)| > min(|x|,|8]).

Observe that the lemma includes the intensional information that max-real only
examines n digits of the input streams in order to produce n digits of output.
This is crucial in the proof of the proposition below, which states the correctness
of max—fun.

Proposition 4. For any real-total ¢, it holds that [max-fun](¢) € 3“ and

g(Imax-tun] (6)) = mar{d(x) | 0 <z < 1.

To prove Proposition 4, we prove, by induction on n € N, that, for all real-
total ¢ : 3°° — 3% it holds that [max-fun](¢)[,= di...d, € 3" such that:

| mar{é(z) |0 <z <1} LY d2" | < 2 (1)
i=1
The base case, n = 0, is trivial. When n > 0, consider h(¢) : 2% — 3, defined
by h(¢)(a) = hd(¢(w)). Because ¢ is real-total, we have that h(¢) is total. The

required inequality (1) is now proved by an inner induction on eme(h(¢)).



Briefly, if eme(h($)) = 0 then (1) is proved using the outer induction hy-
pothesis on n and the general equality, valid for any continuous f: 1T —1:

man{f(z) + ¢ |0 <z <1} = mar{f(x) |0 <2 < 1} +e. (2)

When emc(h(¢)) > 0 then (1) is proved using the induction hypothesis on the
extensional modulus of continuity (the intensional information of Lemma 1 is
needed) together with the general equality, valid for any continuous f: T — T:

man{f(x) | 0 < 2 < 1} = mas( mar{ f(x/2) |0 < » <1, (3)
man{f((x +1)/2) | 0 <2 < 1}).

5.2 Integration

Integration can be performed by much the same method. Observe that integra-
tion enjoys the following equalities, for any continuous f : T— T:

./01 f(”f)+(:dm—./01 () da+ e
[ serar=[semars [ s nman

where @ : T x T — T computes the average of two reals. The above equations
are wholly analogous to (2) and (3) for maximum. Tndeed we shall obtain an
integration algorithm by replacing the binary max-real used in max—fun with
a function computing the average of two reals. However, the translation is not
completely straightforward. Recall that the intensional information of Lemma, 1
was crucial to the proof of Proposition 4. This contrasts with the easy:

Proposition 5. There is no real-total ¢ : 3°° — 3 such that, for all z, y €T,

d(r,y) =2 ® y and, for all o, B € 2°°, |p(a, B)| > min(|], |B])-

The observed problem is a quirk of the particular representation of real num-
bers we are using. A neat way of solving it is to use a second representation.
Recall that the set of dyadic rationalsis Q4 = {m/2” | m,n € 7.}. We write I for
the set QN[ L1, 1], which we call the set of dyadic digits. We consider an infinite
sequence v € ¥ as representing the real number ¢’'(y) = > o (i) x 2L0+1)
This defines a surjective function ¢’ : ¥ — [L1,1] extending ¢ : 3“ — [1L1,1].

In order to write algorithms working with dyadic digits we assume an im-
plemented datatype dyadic of dyadic digits, complete with the associated oper-
ations for the basic arithmetic operations on dyadic rationals. Then we simply
define a new datatype for the interval [ L1,1] in terms of dyadic streams:

type q-interval = dyadic stream

Semantically we assume that [dyadic] = My, so [gq-interval] = ™. The
notions of a function ¢ : 1 — ™ being total and real-total are defined entirely
analogously to the cases for 3°°.

The full algorithm for integration is presented in Fig. 3. For convenience we
assume that three is a subtype of dyadic and (hence) interval is a subtype
of q—interval.



coerce: g-interval — interval
coerce (gdy ::qdy ::qr) =
let qc = (2xqdi) 4+ qd2 in case qc < —1  then —1::coerce((gc+ 2) :: gr)
qgc > 1 then T1::icoerce((gc— 2): gr)
otherwise then O::coerce(qc:: gr)

q-avg: g-interval X g-interval — g-interval
q-avg (qdi 1 qri, qdo 2 qr2) = (qd1+qd2)/2 :: q-avg (gri, qrz)

g-int: (interval — interval) — g-interval
g-int (f) = let d = head (f(?)) in if forall (Av.head(f(v))=d)
then d :: (q-int(Av. tail(f(v))))
else g-avg (g-int (Av. f(0::v)),
g-int (Av. f(1::v)))

integrate: (interval — interval) — interval
integrate (f) = coerce (gq-int(f))

Fig. 8. Integration algorithm

Lemma 2.

1. For any~y € W, it holds that [coerce](y) € 8“ and ¢([coerce](v)) = ¢' (7).

e

2. The function [q-avg] : ™ — ™ is real-total with [q-avg](z,y) = = & y.
Moreover, for all v, € 7, |[q-avg] (v, y')| > min(|7], |¥']).

Proposition 6. For any real-total ¢, it holds that [integrate](¢) € 3¥ and

q([integrate](¢)) = /0 (/;(T) dx.

The proof structure closely follows that of Proposition 4.

6 Further Developments

In the full version of the paper an extension of the integration algorithm will
be presented that integrates, over any closed interval, functions defined from
the interval to the whole real line. This makes use of the mantissa-exponent,
representation of the real line mentioned briefly in Sec. 3.

The algorithms in this extended abstract were implemented by Reinhold
Heckmann in Gofer in summer 1997. The extensions to functions from an ar-
bitrary closed interval to the full real line have recently been implemented in
Haskell by David Plume. The integration algorithm performs abysmally on any
interesting functions. The maximum algorithm performs a little better. A partial
quantitative analysis of this situation will appear in the full version of the paper.
The intrinsic intractibility of the operations of integration and finding maximum
values is to be expected from the work of Ko [13].
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