

Edinburgh Research Explorer

Computational Adequacy in an Elementary Topos

Citation for published version:
Simpson, A 1999, Computational Adequacy in an Elementary Topos. in G Gottlob, E Grandjean & K Seyr
(eds), Computer Science Logic: 12th International Workshop, CSL’98, Annual Conference of the EACSL,
Brno, Czech Republic, August 24-28, 1998. Proceedings. vol. 1584, Lecture Notes in Computer Science,
vol. 1584, Springer-Verlag GmbH, pp. 323-342. DOI: 10.1007/10703163_22

Digital Object Identifier (DOI):
10.1007/10703163_22

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Computer Science Logic

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28975645?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/10703163_22
https://www.research.ed.ac.uk/portal/en/publications/computational-adequacy-in-an-elementary-topos(b4ff520b-e6bc-4138-b0d9-9065e6708efa).html

Computational Adequacy in anElementary ToposAlex K. SimpsonLFCS, Division of Informatics, University of EdinburghJCMB, King's Buildings, Edinburgh, EH9 3JZ<Alex.Simpson@dcs.ed.ac.uk>Abstract. We place simple axioms on an elementary topos which suf-�ce for it to provide a denotational model of call-by-value PCF withsum and product types. The model is synthetic in the sense that typesare interpreted by their set-theoretic counterparts within the topos. Themain result characterises when the model is computationally adequatewith respect to the operational semantics of the programming language.We prove that computational adequacy holds if and only if the topos is1-consistent (i.e. its internal logic validates only true �01 -sentences).1 IntroductionOne axiomatic approach to domain theory is based on axiomatizing properties ofthe category of predomains (in which objects need not have a \least" element).Typically, such a category is assumed to be bicartesian closed (although it is notreally necessary to require all exponentials) with natural numbers object, allow-ing the denotations of simple datatypes to be determined by universal properties.It is well known that such a category cannot have a �xed-point operator [9], butcrucially predomains have a lift monad acting on them which plays a criticalrole in recovering the more familiar category of domains in which the expected�xed-point operator resides. The lift monad also determines the subcategoryof strict functions between domains, with respect to which the �xed-point ischaracterised by the property of uniformity. Further, the monad determines acategory of partial functions, which is arguably the most suitable category forprogram semantics. The development of this viewpoint can be found in [23, 2,18, 29, 3].In recent years it has become apparent that many natural categories of pre-domains arise as full subcategories of elementary toposes. For example, the cat-egory of !-complete partial orders and !-continuous functions is a full reectivesubcategory of the Grothendieck topos, H, considered in [6, 5]. More generally,models of Fiore and Plotkin's axioms for domain theory also have such em-beddings [4]. Other categories of predomains are found as full subcategories ofrealizability toposes, see [15] for examples and references. Certain such exam-ples have been shown to account for phenomena such as e�ectivity [21, 7] andstrong stability [19]. Work in progress by a number of researchers looks likely toestablish similar embeddings for categories of games.

v1lfass
Typewritten Text
Simpson, A. (1999). Computational Adequacy in an Elementary Topos. In Gottlob, G., Grandjean, E., & Seyr, K. (Eds.), Computer Science Logic. (pp. 323-342). (Lecture Notes in Computer Science). Springer Berlin / Heidelberg. doi: 10.1007/10703163_22

The wealth of examples suggests that elementary toposes provide a plausibleenvironment for developing a uni�ed account of the many models of domaintheory. However, early axiomatizations of domain theory inside toposes, [10,31, 27, 24], included axioms that are valid only in restricted classes of models. Ageneral axiomatization, encompassing both parallel and sequential computation,was proposed in [15], where its consequences were worked out in detail in thespeci�c case of realizability toposes. This axiomatization has since proved to beapplicable also to: Grothendieck toposes [5, 4], models of intuitionistic Zermelo-Fr�nkel set theory [30], and models of intuitionistic type theory [25].In this paper we consider the same general axiomatic approach in the settingof an elementary topos. Given an elementary topos with a natural numbersobject and a distinguished dominance (determining a lift monad), we isolatea full subcategory of predomains, the well-complete objects, as in [15]. Undera �rst (now ubiquitous) axiom, this category is closed under function spaces,products and the lift functor and supports recursion on appropriate objects. Toobtain closure under �nite coproducts (in the topos), it is necessary to strengthenthe axiom in a simple way. For the natural numbers to be a predomain, yetanother simple strengthening is necessary in general, although not in the casethat Markov's Principle is valid in the topos (Theorem 1).The axioms are su�cient to enable any of the many variants of PCF [22] to bemodelled in the topos. Moreover, the closure properties of predomains have theimportant consequence that datatypes are modelled by their set-theoretic coun-terparts within the internal logic of the topos. Obtaining such a set-theoretic in-terpretation of type constructors was one of Dana Scott's motivations for propos-ing synthetic domain theory. He hoped that the set-theoretic viewpoint wouldlead to simple and intuitive logics for reasoning about programs. Whether or notthis proves to be the case, we would like to stress another motivation for the workin this paper, and for the programme of synthetic domain theory as a whole.The axioms of synthetic domain theory allow technically distinct constructionsacross a wide range of models to be uniformly accounted for as examples of thesame set-theoretic construction (when regarded from the viewpoint of the inter-nal logic). Thus synthetic domain theory o�ers a general and unifying axiomaticaccount of the constructions of domain theory, and one which applies across avery wide class of models.The main goal of this paper is to exploit this axiomatic account to understandthe induced interpretation of PCF-like languages in the topos. For maximumgenerality, we consider a call-by-value version with sum and product types. Thequestion we consider is: When is the interpretation of the language in the toposcomputationally adequate with respect to its operational semantics [8, 32]? Weobtain a complete characterisation in terms of the internal logic of the topos. Weprove that computational adequacy holds if and only if the topos is 1-consistent(Theorem 2). (A topos is said to be 1-consistent if it validates only true �01 -sentences.) Thus computational adequacy is equivalent to a simple logical prop-erty whose statement makes no reference to PCF. It is to be expected that anidentical result will hold for other programming languages too.

2 Partiality and LiftingThroughout this paper we assume that E is an elementary topos with a naturalnumbers object N, see e.g. [13, 17]. We write 0 and 1 for chosen initial andterminal objects respectively, [0; s] : 1 + N - N for the structure map ofN as the initial algebra of the endofunctor 1 + (�) on the topos, and pred :N - 1+N for its inverse. We write 2 for the object 1+ 1, denoting the leftand right injections by ?;> : 1 - 2. We consider 2 as a subobject of thesubobject classi�er,
, via a distinguished mono taking ?;> : 1 - 2. to thestandard ?;> : 1 -
.We shall require one other piece of primitive data, an object � arising as asubobject �- -
 (thus � classi�es a family of subobjects, the �-subobjects,in E). Moreover, we require that � is a dominance in the sense of Rosolini [26, 3].Speci�cally this means that > : 1 -
 factors through the mono �- -
(i.e. all isomorphisms are �-subobjects) and that �-subobjects are closed undercomposition.Because 2 and � are subobjects of
, we shall often consider them, in theinternal logic, as subsets of the set of all propositions. In particular, we sometimesrefer to 2 as the subset of logically decidable propositions, because 2 can bede�ned internally as fp 2
 j p _ :pg.The conditions above imply that the collection of partial maps in E with �-subobjects for domains forms a category under the usual composition of partialmaps. We write X * Y for the object of such �-partial maps from X to Y(easily de�ned using the internal logic). For f 2 X * Y and x 2 X , we shallloosely write f(x) to mean a possibly unde�ned element of Y . We use equalitybetween such possibly unde�ned expressions in the strict sense, thus e = e0means that both e and e0 are de�ned and equal. We write e# to mean that e isde�ned, i.e. the �-property 9y 2 Y: e = y holds (such a y is necessarily unique).We use Kleene equality, e ' e0 to mean that e is de�ned i� e0 is, in which caseboth are equal. The above notation is adopted for its readability. The formallyinclined reader will have no problem in translating the expressions we use into anappropriate rigorous logic for partial terms (see e.g. [28]), although our partialterms will always be special ones whose de�nedness property is a �-proposition.The operation 1* (�) determines, in the obvious way, an endofunctor on E ,the lift functor L. Given e 2 LX , we write e# in place of the more cumbersomee(�) # (where we write � for the unique element of 1), and similarly, when e #we write e for the determined value e(�) 2 X . We write � : LX - � for themorphism mapping any e 2 LX to its de�nedness property e#, which is indeeda � proposition.The lift functor carries the structure of a monad (L; �; �) on E . Its unit� : X - LX maps any x to the unique e 2 LX such that e = x (thuse#). The lift monad is a strong commutative monad satisfying some additionalwell-documented properties, see e.g. [26, 3, 1]. The Kleisli category, EL, of thelift monad is isomorphic to the category of �-partial maps on E . The object �is isomorphic to L1 and X * Y is isomorphic to the exponential (LY)X . Analternative, but equivalent, development is to take the lift monad as primitive

(as in [5]) and to derive the dominance and partial function space using theabove isomorphismsOne consequence of E having a natural numbers object, is that the functor,L, has both an initial algebra � : LI - I and a �nal coalgebra � : F - LF.Moreover, the object F is a retract of�N, and the unique algebra homomorphismfrom � to ��1 is a mono � : I- - F. These results were proved in 1995 by theauthor and Mamuka Jibladze independently. For a published account see [11].The initial algebra of L as a functor, interacts nicely with the monad structureon L. We call a morphism � : LX - X a monad algebra if it is an Eilenberg-Moore algebra for the monad (L; �; �) [16]. The morphism �0 = � � � � L��1 isa monad algebra LI - I. We write up : I - I for the composite � � �. Theresult below appears as Theorem A.5 of [12], where it is attributed to B�enabouand Jibladze.Proposition 1. For any monad algebra � : LX - X and any morphismf : X - X, there exists a unique algebra homomorphism h : �0 - � suchthat f � h = h � up (in E).An important example of a monad algebra is � : L(X * Y) - (X * Y)de�ned by �(e)(x) ' e(x). When referring to such monad algebras, we shall justrefer to the underlying object X * Y , always understanding the structure mapto be that given above.3 Completeness and Fixed-pointsThe mono � : I- - F plays a fundamental role in developing a basic notion of\chain completeness" su�cient for establishing �xed-points for endomorphismson suitable objects. For further motivation see [15]. The results in this sectionare, by now, standard [15, 27, 25].De�nition 1. An object X is said to be complete if the induced morphismX� : XF - XI is an isomorphism.If X is complete and � : LX - X is a monad algebra, then, for anymorphism f : X - X let h : I - X be the unique algebra homomorphismgiven by Proposition 1. Because X is complete, h : I - X extends along � toa unique morphism h : F - X . Let 1 : 1 - F be the unique coalgebrahomomorphism from � : 1 - L1 to � : F - LF. We write �x�(f) for thepoint h �1.Proposition 2. For any monad algebra � : LX - X with X complete, andany morphism f : X - X, it holds that f � �x�(f) = �x�(f). (i.e. �x is a�xed-point operator.)Moreover, for any monad algebras � : LX - X and � : LY - Y (whereX and Y are complete), morphisms f : X - X and g : Y - Y , and algebrahomomorphism h : X - Y , if h � f = g �h then �x�(g) = h ��x�(f). (i.e. �xis uniform.)

Because the property of � being a dominance can be expressed in the internallogic [26], the dominance transfers to any slice topos E=Z. Thus the above propo-sition holds in any slice. Essentially, this means that the obvious internalizationof the above proposition holds in the internal logic of E .Our main application of uniformity will be in the proof of Lemma 5 in Section7, where it will be used in the following form. Suppose that X is complete andcarries a monad algebra � : LX - X . We say that a mono m : X 0- - Xcarries a subalgebra of � if there exists �0 : LX 0- - X 0 such thatm�� = ��Lm.One easily shows that such an �0 is unique, and further that it is itself a monadalgebra. (Indeed, it holds for an arbitrary monad that any subalgebra of a monadalgebra is also a monad algebra.) Now suppose that X 0 is complete and that anendomorphism f : X - X restricts to an endomorphism f 0 : X 0 - X 0(i.e. that m � f 0 = f �m). Then it follows from the uniformity of �xed-pointsthat m � �xa0(f 0) = �x�(f), i.e. that �x�(f) factors through the subobject m :X 0- - X .4 Axioms for Synthetic Domain TheoryThe complete objects are not, in general, closed under the lifting functor, L, [20].As our category of predomains we take the largest full subcategory of completeobjects that is closed under lifting, following [15].De�nition 2. An object X is said to be well-complete if LX is complete.We write C for the full subcategory of well-complete objects of E . We shall adoptC as our category of predomains.Our axioms will all be assertions that useful objects are well-complete. Webegin with the basic completeness axiom of [15].Axiom 1. 1 is well-complete.Henceforth we assume that Axiom 1 holds. As a �rst consequence, we obtain ahelpful reformulation of the notion of well-completeness [5].Proposition 3. The following are equivalent.1. X is well-complete.2. E j= 8F 0 �� F: 8f 2 X(I\F 0): 9!f 2 XF 0 : f = f � �.Here, as is standard, we write 9! for the unique existence quanti�er. We hence-forth take the formula in statement 2 above as stating the property of X beingwell-complete in the internal logic.Axiom 1 alone implies many important closure properties of well-completeobjects. The proposition below is now standard, with parts appearing essentiallyin [15, 5, 25]. The easiest proof uses the formulation of well-completeness givenby Proposition 3.2.Proposition 4. 1. Any well-complete object is complete.

2. For any internal family fXjgj2J in E (given by a morphism X - I),E j= (8j 2 J: Xj well-complete) �! (Qj2J Xj) well-complete3. If X and Y are well-complete then, for any f; g : X - Y , the equalizingobject is well-complete.4. If X is well-complete then so is LX.Externally, statement 2 above implies that C is closed under �nite products in E(hence, by statement 3, under �nite limits too), and is moreover an exponentialideal of E (i.e. If Y is well-complete then so is Y X for anyX in E). In particular Cis cartesian closed. Furthermore, if Y is well-complete then so isX * Y (becauseX * Y �= (LY)X and C is closed under lifting).At present there is nothing to prevent taking � = 1 (for any topos E whatso-ever), in which case 1 is the only (well-)complete object. The remaining axiomswill rule out such trivial examples (except in the case of a trivial E), and, morepositively, imply that C is closed under useful coproducts in E . First, we considerthe basic implications between the properties we shall later assume as axioms.Proposition 5. Consider the statements below.1. 0 is well-complete.2. 2 is well-complete.3. N is well-complete.Then 3) 2) 1.Proof. 0 is an equalizer of ?;> : 1 - 2, and 2 is a retract of N. Theimplications follow by Proposition 4(3). utExamples in [20] show that neither of the implications of Proposition 5 can bereversed in general.In the remainder of this section we examine further consequences of andrelationships between each of the 3 properties in Proposition 5.Proposition 6. The following are equivalent.1. 0 is well-complete.2. E j= ? 2 �.Proof.1 =) 2. Suppose 0 is well-complete. Then L0 is complete and carries a monadalgebra � : LL0 - L0. Therefore the identity id : L0 - L0 has a �xed-point �x(id) 2 L0. Because E j= 8x 2 0: ?, we have that E j= :(�x(id) #),i.e. E j= (�x(id)#) = ?. But E j= (�x(id)#) 2 � (because �x(id) 2 L0). Thusindeed E j= ? 2 �.2 =) 1. If ? 2 � then 1 �= L0. Thus L0 is complete, hence 0 is well-complete.ut

Axiom 0. 0 is well-complete.Henceforth in this section we assume Axiom 0.A �rst consequence of Axiom 0 is that, for any object X of E , we have a point?LX 2 LX de�ned as the everywhere unde�ned partial function in 1 * X .Given f : X - Y , it is clear that Lf : LX - LY maps ?LX to ?LY . Moregenerally, given any algebra for the lift functor, � : LX - X , de�ne ?� 2 Xby ?� = �(?LX). For any � : LY - Y and any algebra homomorphismh : � - �, it is clear that h(?�) = ?�. In the case that there is an identi�ed(usually monad) algebra � on an object X , we often write ?X for ?�, and referto ?X as the bottom of X . Thus algebra homomorphisms preserve bottoms.Another consequence of Axiom 0 is that a morphism step : N - I can bede�ned, using the initial algebra property of N, as the unique map making thediagram below commute.1+N 1 + step - 1+ IN[0; s] ? step - I� � [?LI; �]?The following technical lemma (whose straightforward proof is omitted, see e.g.[20]) will be used in the proof of Theorem 1 below. Recall, e.g. from [17], that amono m : X 0 - X is said to be ::-dense ifE j= 8x 2 X: ::(9x0 2 X 0: m(x0) = x):Lemma 1. The morphism step : N - I is a ::-dense mono.Next we examine condition 2 of Proposition 5.Proposition 7. The following are equivalent:1. 2 is well-complete.2. C is closed under �nite coproducts in E.Proof. The proof from [15] transfers to this more general setting. utAxiom 2. 2 is well-complete.Henceforth we asume Axiom 2. By Proposition 5 we can now drop Axiom 0. Infact, it is straightforward to show that Axiom 2 alone implies Axiom 1, so wecan also drop Axiom 1. Although we do not yet know that N is well-complete,Axiom 2 does allow a number of conditions to be given that are equivalent to,or at least imply, the well-completeness of N.To state the theorem, we require further terminology. An object X of E issaid to be ::-separated ifE j= 8x; y 2 X: ::(x = y) �! x = y:

This is a standard concept in topos theory with many equivalent formulations(see e.g. [17]). The following easy result depends only on � being a subobject of
 containing >.Lemma 2. The following are equivalent.1. � is ::-separated.2. E j= 8p 2 �: (::p) �! p.The property of � being ::-separated has been referred to as Markov'sPrinciple in the synthetic domain theory literature, see e.g. [25]. For certaindominances in certain toposes (e.g. the semidecidable subobject classi�er in thee�ective topos [26, 21]) this terminology is justi�ed because the ::-separationof � is equivalent to the standard logical property known as Markov's Principle(see statement 4 of Theorem 1 below). However, in general, it seems sensible tomaintain a distinction between the two non-equivalent properties. The theorembelow, which depends heavily on Axiom 2, shows that both notions have a roleto play in synthetic domain theory.Theorem 1. Consider the following statements.1. N is well-complete.2. pred : N - 1 +N is the �nal coalgebra for the functor 1 + (�) on thecategory EL of �-partial maps.3. E j= 8P 2 2N: (9n 2 N: P (n)) 2 �.4. Markov's Principle holds, i.e.E j= 8P 2 2N: ::(9n 2 N: P (n)) �! 9n 2 N: P (n).Then 1, 2, 3(4. Moreover, if � is ::-separated then 3) 4.Proof.1 =) 2. Suppose that N is well-complete, and that h : X * 1 + X is any�-partial map. We must show that there is a unique �-partial map g :X * N such that the diagram below commutes.1+X 1 + g* 1+NXh� g * N[0; s]?De�ne � : (X * N) - (X * N) by:�(f) = [0; s] � (1 + f) � h(the composition is, of course, composition of partial maps). By the well-completeness of N, we have that X * N is complete and carries a monad

algebra for L. Therefore, by Proposition 2, we can de�ne g = �x(�), which,by its very de�nition, makes the diagram commute.For uniqueness, suppose that g; g0 are two partial maps making the diagramcommute. Then, by an internal induction on n,E j= 8n 2 N: 8x 2 X: g(x) = n i� g0(x) = n:(Here we are using our conventions about possibly unde�ned expressions, asg(x) and g0(x) need not be de�ned.) Thus g = g0.2 =) 3. Suppose that pred : N - 1+N is the �nal coalgebra. Consider themap d : 2N - 1+ 2N de�ned, using the internal logic, by:d(P) = � inl(�) if P (0)inr(�n:P (n+ 1)) if not P (0)This is a good de�nition, because P (0) is a logically decidable proposition.Let h : 2N * N be the unique coalgebra homomorphism from d to pred.Using only the fact that h is a coalgebra homomorphism, one has, by aninternal induction on n, thatE j= 8n 2 N: 8P 2 2N: d(P) = n i� (P (n) ^ 8m < n: :P (m)): (1)Note that d(P) need not be de�ned. Indeed, we claim thatE j= 8P 2 2N: (9n 2 N: P (n)) i� d(P)# :Statement 3 follows, because (d(P)#) 2 � (as d is a �-partial map).The claim is derived from (1) by the following internal reasoning. For theright-to-left implication, if d(P) # then d(P) = n for some n. But, by (1),d(P) = n implies P (n), thus indeed 9n 2 N:P (n). For the converse, suppose9n 2 N: P (n). Then, because, for all n, the proposition P (n) is logicallydecidable, there exists a least n such that P (n). It follows from (1) thatd(P) equals this least n. Hence d(P)# as required.3 =) 1. Consider the subobject D- - 2N de�ned byD = fP 2 2N j 8n 2 N: P (n) �! 8m < n: :P (m)g:As the proposition 8m < n: :P (m) is logically decidable, it is easy to showthat the mono D- - 2N is split. Hence D is a retract of 2N, and thuswell-complete (because 2N is well-complete by Axiom 2).Consider the subobject C- - D de�ned byC = fP 2 D j 9n 2 N: P (n)g:Assume that statement 3 of the theorem holds. Then the inclusion C- - Dis an equalizer of the maps �P 2 D: (9n 2 N: P (n)) : D ! � (which is amap to � by the assumption) and �P 2 D:>. Therefore C is well-complete.We show that N is isomorphic to C, hence N is indeed well-complete. Theisomorphism from N to C maps n to �m 2 N: (n = m). Its inverse mapsany P 2 C to the unique n such that P (n). It is easily checked that the twomaps are indeed mutually inverse.

4 =) 3. First de�ne a function � : �2N - �2N by:�(f)(P) = �> if P (0)f(�n: P (n+ 1)) if not P (0).Now �2N is complete and carries a monad algebra for L. So, by Proposition2, we can de�ne a morphism e : 2N - � by e = �x(�). We claim thatMarkov's Principle implies:E j= 8P 2 2N: (9n 2 N: P (n)) i� e(P)Statement 3 follows because e(P) 2 �.For the left-to-right implication of the claim, one proves (internally) that,for all n 2 N, P (n) implies e(P). This is a straightforward induction on n,using only the �xed-point property of e. Markov's Principle is not required.To prove the right-to-left implication of the claim, let h : I - �2N be theunique algebra homomorphism (given by Proposition 1) such that � � h =h�up. Let h : F - �2N be the unique extension of h. Then, by de�nition,e = h(1). Assume :9n 2 N:P (n). Below we show that, for all i 2 I,h(i)(P) = ?. It follows that the unique extension �j 2 F:h(j)(P) : F - �of �i 2 I: h(i)(P) : I - � is the constant function �j 2 F:? : F - �.Therefore e(P) = h(1)(P) = ?, i.e. :e(P). Thus :9n 2 N: P (n) implies:e(P), or equivalently e(P) implies ::9n 2 N: P (n). Thus, by Markov'sPrinciple, e(P) implies 9n 2 N: P (n) as required.It remains to show that :9n 2 N: P (n) implies, for all i 2 I, h(i)(P) = ?.Assume :9n 2 N: P (n). The monad algebras on I and �2N determine theirbottoms: ?I = step(0) and ?�2N = �P:?. As algebra homomorphismspreserve bottoms, h(step(0))(P) = ?. Now, by an easy induction on n, forall n 2 N, it holds that h(step(n))(P) = ? (because we have assumed8n::P (n)). However, by Lemma 1, we have that, for all i 2 I, ::(9n: i =step(n)). Therefore, for all i 2 I, ::(h(i)(P) = ?), i.e. :::h(i)(P), i.e.:h(i)(P), i.e. h(i)(P) = ?.3 =) 4. Immediate from Lemma 2 when � is ::-separated. utAxiom N. N is well-complete.By Proposition 5, Axiom N implies Axiom 2, so in its presence Axiom 2 may bedropped. However, in practice it might be more convenient to establish Axiom2 directly, and then use one of the conditions of Theorem 1 to derive Axiom N.Markov's Principle is a particularly useful condition because it is independentof the de�nition of �. Indeed the proof in [15] that Axiom 2 implies Axiom N inrealizability models makes implicit use of the validity of Markov's Principle inall realizability toposes. Markov's Principle is also valid in all presheaf toposes,but not in all Grothendieck toposes. The other statements in Theorem 1 alsohave their uses. For example, in Section 8, we make crucial use of statement 3as a consequence of Axiom N.

We call an elementary topos E together with a dominance � satisfying AxiomN a natural model (of synthetic domain theory). (The adjective \natural" is toemphasise that the natural numbers object is well-complete.) All the realizabilityexamples considered in [15] provide natural models, as does the the model Hfrom [6, 5]. Throughout the rest of this paper, unless otherwise stated, we assumethat E and � together form a natural model.5 Interpreting a Programming LanguageThe axioms we have are su�cient for simply-typed programming languages likePCF [22] and its variants to be modelled in E . We exploit all the structure wehave identi�ed on well-complete objects by including sums and product types inthe language. The call-by-value language we introduce is essentially equivalentto similar languages considered in e.g. [8, 32].We shall use �, � , . . . to range over types, which are given by the grammar:� ::= 1 j N j � + � j � � � j � ! �:Assuming a countably in�nite collection of variable symbols, contexts are �nitesequences of variable-type assignments, written x1 : �1; : : : ; xk : �k . (We do notassume that all the xi are distinct.) We use � , . . . to range over contexts, andwe write x 2 � to say that the variable x appears in � .x 62 � 0�; x :�; � 0 ` x :� � ` � :1 � ` 0 :N � `M :N� ` s(M) :N � `M :N� ` pred(M) : 1+N� `M :�� ` inl� (M) : � + � � `M : �1 + �2 �; x1 :�1 ` N1 :� �; x2 :�2 ` N2 :�� ` case M of inl(x1): N1, inr(x2): N2 : �� `M :�� ` inr�(M) : � + � � `M :� � ` N :�� ` (M;N) : � � � � `M : � � �� ` fst(M) : � � `M : � � �� ` snd(M) : ��; x :� `M :�� ` �x :�:M : � ! � � `M : � ! � � ` N : �� `M(N) : � �; f :� ! �; x :� `M :�� ` rec f :�!� (x):M : � ! �Fig. 1. Typing rulesThe notation for terms is introduced simultaneously with their typing rules,which are presented in Fig. 1. These rules manipulate judgements � ` M : �,which say that the term M has type � in context � . The notions of bound andfree variable occurrences are de�ned in the standard way. We do not identifyterms up to alpha equivalence (as we have no reason to do so). (This simpli�esthe formalization of the programming language in E .)Observe that M has at most one type in any � (as just su�cient type infor-mation is included in terms for this to hold). Moreover, any typing judgement

� `M :� has at most one derivation. If M :� is derivable in the empty contextthen we say that M is a program of type �.� =) � 0 =) 0 M =) Vs(M) =) s(V) M =) 0pred(M) =) inl(�) M =) s(V)pred(M) =) inr(V)M =) Vinl(M) =) inl(V) M =) inl(U) N1[U=x1] =) Vcase M of inl(x1): N1, inr(x2): N2 =) VM =) Vinr(M) =) inr(V) M =) inr(U) N2[U=x2] =) Vcase M of inl(x1): N1, inr(x2): N2 =) VM =) U N =) V(M;N) =) (U; V) (M;N) =) (U; V)fst(M) =) U (M;N) =) (U; V)snd(M) =) V�x:M =) �x:M M =) �x:L N =) U L[U=x] =) VM(N) =) Vrec f (x):M =) �x:M [rec f (x):M = f]Fig. 2. Operational semanticsThe behaviour of programs is speci�ed by the operational semantics pre-sented in Fig. 2. The rules manipulate judgements of the form M =) V wherebothM and V are programs (to ease readability, we omit type information fromthe terms). In the rules, we write N [U=x] to mean the term N with programU substituted for all free occurrences of x in N . Because the only entities eversubstituted are closed terms, the possibility of variable capture does not arise,therefore a simple textual substitution su�ces.The programs V which appear on the right-hand side of the arrow in Fig.2 are known as values. It is straightforward to show that, for any program M ,there exists at most one value V such that M =) V . Moreover, for any M;V ,there exists at most one derivation of the judgement M =) V . These resultsstate that program evaluation is deterministic. It is also consistent with thetyping rules: if M is a program of type � and M =) V then V is also has type�. (Because we use a a simple textual substitution and do not identify termsup to alpha-equivalence, this last result depends on the possibility, which we dopermit, of contexts containing repeated variables.)We now turn to the denotational semantics. Types � are interpreted as well-complete objects [[�]], using the full strength of Axiom N to obtain the desiredclosure conditions. The de�nition of [[�]] is by the expected induction on types.From the viewpoint of the internal logic of E , the interpretation gives the fullset-theoretic �-partial type hierarchy overN (i.e. [[1]] = 1; [[N]] = N; [[�+ �]] =[[�]] + [[�]]; [[� � �]] = [[�]] � [[�]]; [[� ! �]] = [[�]] * [[�]]).

A context x1:�1; : : : ; xn:�n is interpreted as a product [[�1]]�: : :�[[�n]]. A termM such that � ` M : � is interpreted as a �-partial map [[M]] : [[�]] * [[�]].This map can be de�ned by induction on the structure of M , using the externalstructure of C. However, for later purposes, it is convenient to make an equivalentde�nition, using the internal logic of E . For any term M such that � ` M : �we de�ne, by induction on the structure of M , a de�nite description (in theinternal logic) of a partial function ([M]) 2 ([[�]] * [[�]]). Then ([M]) determinesa morphism 1 - ([[�]] * [[�]]) in E , which in turn determines the required�-partial map [[M]] : [[�]] * [[�]].Most of the de�nition of ([M]) is straightforward (indeed set-theoretic). Themost interesting clause is the de�nition of ([rec f : �!� (x):M]). Suppose that�; f :�!� ; x :� `M :� . Then we have ([M]) 2 ([[�]]� [[� ! �]]� [[�]])* [[�]]. So:E j= 8 2 [[�]]: (�f 2 [[�]]* [[�]]: (�x 2 [[�]]: ([M])(; f; x))) 2 ([[�]]* [[�]])([[�]]*[[�]]):Write �M for (�f 2 [[�]] * [[�]]: (�x 2 [[�]]: ([M])(; f; x))). As [[�]] * [[�]] is well-complete, hence complete, with a monad algebra structure (see Section 2), weuse Proposition 2 to de�ne ([rec f :�!� (x):M]) 2 [[�]]* [[� ! �]] by:([rec f :�!� (x):M])() = �x(�M):Observe that ([rec f :�!� (x):M]) is a total function from [[�]] to [[�]]* [[�]].6 Computational AdequacyWe now come to the main question addressed in this paper, the question ofcomputational adequacy, relating the operational behaviour of the programminglanguage and its denotational interpretation.We say that a programM :� converges (notation M +) if there exists V suchthat M =) V . For the denotational analogue, we write [[M]] # if the �-partialmap [[M]] : 1 * [[�]] is total. Denotational convergence corresponds to theexpected property of ([M]) in the internal logic of E . We have ([M]) 2 1 * [[�]],i.e. ([M]) 2 L[[�]], and, using our conventions for elements of lifted objects, [[M]]#if and only if E j= ([M])#. By an easy induction on operational derivations, oneshows that for all programs M : �, if M =) V then [[M]]# and [[M]] = [[V]].De�nition 3. We say that [[�]] is computationally adequate if, for all programsM : �, [[M]]# implies M +.As stated in the introduction, we shall obtain a complete characterisationof computational adequacy in terms of a logical property of E . Recall thatany semidecidable k-ary relation on N can be written in the standard form9n1 2 N; : : : ; nl 2 N: P (m1; : : : ;mk; n1; : : : ; nk), where P is a (k + l)-aryprimitive recursive relation. By a natural encoding of primitive recursive pred-icates in the internal logic of E [13], one obtains the analogous formal no-tion of a �01-formula. In particular, a �01-sentence is a sentence of the form

9n1 2 N; : : : ; nl 2 N: (n1; : : : ; nk), where is a naturally encoded k-ary prim-itive recursive predicate. (In fact, because one can de�ne a primitive recursivepairing operation, it is su�cient to consider just unary predicates .) We saythat E is 1-consistent if, for all �01 -sentences �, it holds that E j= � implies that� is true in reality. The next theorem is the main result of the paper.Theorem 2. The following are equivalent.1. [[�]] is computationally adequate.2. E is 1-consistent.To prove the theorem, we carry out, as far as possible, a proof of computationaladequacy within the internal logic of E . In fact E always believes itself to becomputationally adequate. The property of 1-consistency is just what is neededto relate this internal belief with external reality.First, we need to formalize the syntax of the programming language, andits operational semantics, within the internal logic. This is an exercise in G�odelnumbering. One encodes the types, terms and contexts as natural numbers in astandard way, so that all convenient operations on them are primitive recursive.Moreover, the relation � ` M : � is also primitive recursive, as the term Mdetermines the whole derivation tree, allowing a primitive recursive decisionprocedure. We write P� for the formalized set of programs of type �, which is,via its G�odel numbering, a primitive recursive subset of N.For the operational semantics, the G�odel numbering is extended to encodederivations of evaluation judgements M =) V . The relation \� is a derivationof M =) V " is a a primitive recursive ternary relation on �, M and V . Thusthe binary relation M =) V and the unary predicate M + are both �01 .The proposition below, is stated using the formalized operational semantics.Proposition 8. For all programs M :�, if [[M]]# then E j=M +.The lengthy proof is left for Sections 7 and 8. Here we apply the result to proveTheorem 2.The 2 =) 1 implication of Theorem 2 is now immediate. If E is 1-consistentthen we have that [[M]] # implies E j= M +, by Proposition 8, which in turnimplies M +, by 1-consistency.For the converse, suppose [[�]] is computationally adequate. We must show 1-consistency. Accordingly, let P be a primitive recursive predicate. Without lossof generality, we can assume P is unary. Using a straightforward encoding ofprimitive recursive predicates, we can de�ne a program M : N ! (1 + 1) suchthat, using only the �xed-point property of �x,E j= 8n 2 N: ([M])(n) = inl(�) i� P (n);and also M(n) =) inl(�) if and only if P (n) (where n is the value sn(0)). LetN : 1 be the following search program.(rec f :N!1 (n): case M(n) of inl(x): �, inr(y): f(s(n)))(0)

Then, by an internal induction on n using only the �xed-point property of �x,E j= (9n 2 N: P (n)) �! ([N])# :Also, by an induction on the number of unfoldings of rec in the operationalsemantics, N + implies there exists n such that P (n).Now, to show 1-consistency, suppose that E j= 9n 2 N: P (n). Then, by theimplication derived above, E j= ([N]) #, i.e. [[N]] #. It follows, by computationaladequacy, that N +. Thus indeed there exists n such that P (n). This completesthe derivation of Theorem 2 from Proposition 8.We end this section with some applications of Theorem 2. It is easily veri-�ed that any non-trivial Grothendieck topos is 1-consistent (indeed, it is a folktheorem that any Grothendieck topos validates all classically true sentences of el-ementary arithmetic). Also, any non-trivial realizability topos, E , is 1-consistent(because the hom-set E(1;N) consists of just the numerals). Therefore, by The-orem 2, any non-trivial natural model furnished by either a Grothendieck orrealizability topos is computationally adequate. (A di�erent argument for com-putational adequacy in the case of realizability toposes appears in [14].)One may wonder whether in fact any non-trivial model is computationallyadequate. As a negative application of Theorem 2, we show that this is notthe case. To be precise, we say that a model (E ; �) is trivial if E is equivalentto a category with a single (necessarily identity) morphism. Non-triviality aloneimplies many important well-behavedness properties of E , e.g. the two morphisms?;> : 1 ! 2 are distinct and the numerals n : 1 ! N are all distinct. Non-triviality is obviously also a necessary condition for computational adequacy tohold.Corollary 1. There exist non-trivial natural models (E ; �) such that the induced[[�]](E;�) is not computationally adequate.Proof. Suppose, on the contrary, that any non computationally adequatemodel is trivial. Let be the (easily constructed) sentence in the internal logicof an elementary topos with natural numbers object and distinguished object �saying \� is a dominance and Axiom N holds". Thus (E ; �) j= if and onlyif (E ; �) is a natural model of synthetic domain theory. Let � be any false �01 -sentence. By Theorem 2, any model of ^ � is not computationally adequate andhence, by the assumption, trivial. By the completeness theorem for elementarytoposes with respect to their internal logic [13], this means that :(^ �) is atheorem of the internal logic. On the other hand, when � is a true �01 -sentence,then ^ � is equivalent to , which is consistent as there exist non-trivialnatural models. In summary, for �01 -sentences �, we have that :(^ �) is atheorem in the internal logic of toposes if and only if � is false. But the theoremsof the internal logic are recursively enumerable. Therefore, we can recursivelyenumerate the false �01 -sentences (i.e. the true �01 -sentences). This is impossible,contradicting the initial assumption. ut

Incidentally, it is not too di�cult to give a similar direct proof of Corollary 1 (notrelying on Theorem 1) using the halting problem for the programming languagein place of the truth of �01 -sentences.7 Internal AdequacyIn this section we provide the missing proof of Proposition 8. This is achievedby formalising a standard relational proof of computational adequacy, see e.g.[8, 32], internally within E .For each type � we de�ne a predicate �� - - [[�]] � P� in the internallogic of E . The de�nition proceeds inductively on the structure of �, so that therelations satisfy the (internal) equivalences below.� �1 M i� M =) �n �N M i� M =) ninl(d) ��+� M i� M =) inl(V) where d �� Vinr(d) ��+� M i� M =) inr(V) where d �� V(d; d0) ���� M i� M =) (U; V) where d �� U ^ d0 �� Vf ��!� M i� M =) �x: L where 8d 2 [[�]]:8N 2 P�:(d �� N ^ f(d)#) �! f(d) �� L[N=x]These equivalences are easily translated into formal de�nitions, in the internallogic, of the �� predicates. It is a straightforward consequence of the de�nitionsthat (internally) ifM;M 0 2 P� are such that both M =) V andM 0 =) V (thesame V) then, for all d 2 [[�]], d �� M i� d �� M 0. This fact will be used in theproof of Lemma 5 below without further comment.De�ne [[�]]M = fx 2 [[�]] j x �� Mg. This de�nition determines, for any type�, an internal P�-indexed family, f[[�]]MgM2P� , of subobjects of [[�]].Lemma 3. For all types �, � ,E j= 8M 2 P�!� : M +�! ([[� ! �]]M carries a subalgebra of [[�]]* [[�]]):Proof. Recall [[�]] * [[�]] has the algebra � : L([[�]] * [[�]]) - ([[�]] * [[�]])de�ned by �(e)(x) ' e(x). Reasoning internally in E , suppose that M 2 P�!�and M +. We show that e 2 L[[� ! �]]M implies �(e) 2 [[� ! �]]M . Supposee 2 L[[� ! �]]M . As M +, we have that M =) �x: L for some �x: L. Wemust show that, for all d 2 [[�]] and all N 2 P� , if d �� N and �(e)(d) #then �(e)(d) �� L[N=x]. But if �(e)(d) # then �(e)(d) = e(d) and also e #,hence e 2 [[� ! �]]M . It follows that d �� N implies e(d) �� L[N=x], i.e.�(e)(d) �� L[N=x] as required. utLemma 4. For all types �,E j= 8M 2 P�: [[�]]M is well-complete:The proof of Lemma 4, which is surprisingly involved, is given in Section 8.

Lemma 5. If x1 :�1; : : : xk :�k `M :� thenE j= 8d1 2 [[�1]] : : :8dk 2 [[�k]]:8N1 2 P�1 : : :8Nk 2 P�k :d1 ��1 N1 ^ : : : ^ dk ��k Nk ^ ([M])(d1; : : : ; dk)#�! ([M])(d1; : : : ; dk) �� M [N1; : : : ; Nk = x1; : : : ; xk]Proof. This is proved by (external) induction on the derivation of � `M :�(where here and below we write � for the context x1 :�1; : : : xk :�k). In each case,reasoning internally in E , we suppose that, for each j with 1 � j � k, we havedj 2 [[�j]] and Nj 2 P�j such that dk ��k Nk. Then we show that ([M])(�!d) #implies ([M])(�!d) �� M [�!N=�!x] (where, of course, �!d abbreviates d1; : : : ; dk, and�!N abbreviates N1; : : : ; Nk). Here we consider only the critical case in which Mis rec f :�0!� 0 (y):M 0 (and hence � is �0 ! � 0).In this case, � ` M : � is derived from �; f : �0 ! � 0; y : �0 ` M 0 : � 0. Given�!d and �!N as above, it holds automatically that ([M])(�!d) #, so we must showthat ([M])(�!d) ��0!� 0 M [�!N=�!x], i.e. that ([M])(�!d) 2 [[�0 ! � 0]]M [�!N=�!x]. Recallthat ([M])(�!d) = �x(�M 0�!d), where �M 0�!d is the endofunction on [[�0]] * [[� 0]].de�ned by �M 0�!d (f)(e) ' ([M 0])(�!d ; f; e). We claim that �M 0�!d restricts to anendofunction on [[�0 ! � 0]]M [�!N=�!x]. By Lemmas 3 and 4, [[�0 ! � 0]]M [�!N=�!x]carries a monad algebra structure and is (well-)complete. By (the internalized)Proposition 2 (see, in particular, the discussion immediately after), the element�x(�M 0�!d) 2 �0 * � 0 is contained in the subset [[�0 ! � 0]]M [�!N=�!x]. Thus indeed([M])(�!d) 2 [[�0 ! � 0]]M [�!N=�!x].It remains to prove the claim. Suppose then that f ��0!� 0 M [�!N=�!x]. Wemust show that �M 0�!d (f) ��0!� 0 M [�!N=�!x]. As M is rec f : �0!� 0 (y):M 0, wehave that M [�!N=�!x] =) �y : �0:M 0[�!N;M [�!N=�!x] = �!x ; f]. Take any e 2 [[�0]]and N 0 2 P�0 such that e ��0 N 0 and �M 0�!d (f)(e) #. We must show that�M 0�!d (f)(e) �� 0 M 0[�!N;M [�!N=�!x]; N 0 =�!x ; f; y]. But �M 0�!d (f)(e) = ([M 0])(�!d ; f; e)and indeed �M 0�!d (f)(e) #�� 0 M 0[�!N;M [�!N=�!x]; N 0=�!x ; f; y], by the induction hy-pothesis on M 0. utProposition 8 is an easy consequence of Lemma 5. For any program M :�, if[[M]]# then, equivalently, E j= ([M])#. So, by Lemma 5, E j= ([M]) �� M . Hence,by the de�nition of ��, indeed E j=M +.One remark about Lemma 5 is that the quanti�cation over terms is external.This is by necessity, as there are limitations on the extent to which the deno-tational semantics can be formalized within E . In particular, writing T for theformalized set of types (as a primitive recursive subset of N), one cannot de�newithin the internal logic a semantic function [[�]] 2Q�2T P� * [[�]], because thefamily f[[�]]g�2T need not live as an internal family within E (its usual de�nitioninvolves the Axiom of Replacement from set theory).

8 The Well-completeness of [[�]]MIt remains only to prove Lemma 4, showing (internally) the well-completeness ofthe sets [[�]]M . Although the proof of Lemma 5 required only the completenessof these sets, it is necessary to establish the well-completeness in order to havea property that can be proved by induction on types.We begin with some useful closure properties of well-complete objects. Toestablish these, it is convenient to work with the formulation of well-completenessgiven by Proposition 3.2. (We write \X inhabited" for \9x 2 X: >".)Lemma 6.E j= (9p 2 �: (X inhabited �! p) ^ (p �! X well-complete))�! X well-completeProof. We reason in the internal logic. Let p 2 � satisfy the assumption.Suppose F 0 �� F. Take any f 2 XI0 , where I 0 = I \ F 0. We show that F 0inhabited implies X well-complete (using the assumed f). First , observe thatI 0 inhabited implies X inhabited (because i 2 I 0 implies f(i) 2 X), so the twofunctions �i:> 2 �I0 and �i:p 2 �I0 are equal (by the assumption). Therefore�j:> 2 �F 0 and �j:p 2 �F 0 both extend �i:> 2 �I0 . By the well-completenessof �, there is a unique such extension, thus, for all j 2 F 0, p = >, i.e. F 0inhabited implies p. But p implies X is well-complete. Thus indeed F 0 inhabitedimplies X is well-complete.We must show there is a unique function f 2 XF 0 such that f = f ��. For anyj 2 F 0, we have that X is well-complete so there exists a unique fj 2 XF 0 suchthat f = fj � � (the notation is to emphasise that fj depends on the assumedelement j). Therefore f = �j 2 F 0: fj(j) de�nes a function in XF 0 . It is easilychecked that this is the unique function such that f = f � �. utLemma 7. If fXjgj2J is an internal family of subobjects of a well-completeobject Y thenE j= (8j 2 J: Xj well-complete) �! (Tj2J Xj) well-complete:We now turn to the proof of Lemma 4. We prove, by an (external) inductionon the structure of the type �, the required property:E j= 8M 2 P�: [[�]]M is well-complete:Lemma 6 will be basic to the argument. To apply it, we crucially observe that, forany �01-sentence �, it holds that � 2 �. This is because any primitive-recursivepredicate determines a corresponding P 2 2N, so any �01 -sentence, �, is of theform 9n 2 N: P (n) for some P 2 2N, and therefore � 2 �, by Theorem 1.3. Weconsider just one case of the induction.When � is �0 ! � 0, reasoning internally, take anyM 2 P�0!� 0 . If [[�0 ! � 0]]Mis inhabited then there exists (a unique) (�x: L) 2 P�0!� 0 such thatM =) �x: L.We claim that M =) �x: L implies [[�0 ! � 0]]M is well-complete. From which,

it follows, by Lemma 6, that [[�0 ! � 0]]M is well-complete as required (as theproposition M =) �x: L is a �-property).To prove the claim, observe that if M =) �x: L then[[�0 ! � 0]]M = TN2P�0 Td2[[�0]]N XNdwhere XNd = ff 2 [[�0 ! � 0]] j f(d)# �! f(d) �� 0 L[N=x]g:As [[�0 ! � 0]] is well-complete, it su�ces, by Lemma 7, to show the well-completeness of each set XNd. However, writing i for the inclusion function from[[� 0]]L[N=x] to [[� 0]], and g for the function �f: f(d) : [[�0 ! � 0]] - L[[� 0]], wehave an evident pullback diagram:XNd - L[[� 0]]L[N=x][[�0 ! � 0]]?? p - L[[� 0]]Li??As the three vertices of the diagram being pulled back are well-complete (inparticular, L[[� 0]]L[N=x] is well-complete by the induction hypothesis on � 0), so isthe pullback XNd as required. This completes the proof of Lemma 4.AcknowledgementsThis paper was written during a visit to Utrecht University supported by theNWO Pionier Project The Geometry of Logic led by Ieke Moerdijk. I thank Jaapvan Oosten for many helpful and interesting discussions. Paul Taylor's diagrammacros were used.References1. A. Bucalo and G. Rosolini. Lifting. In Category Theory and Computer Science,Proceedings of CTCS '97. Springer LNCS 1290, 1997.2. R.L. Crole and A.M. Pitts. New foundations for �xpoint computations: FIX-hyperdoctrines and the FIX-logic. Inf. and Comp., 98:171{210, 1992.3. M.P. Fiore. Axiomatic Domain Theory in Categories of Partial Maps. CambridgeUniversity Press, 1996.4. M.P. Fiore and G.D. Plotkin. An extension of models of axiomatic domain theoryto models of synthetic domain theory. In Proceedings of CSL 96, pages 129{149.Springer LNCS 1258, 1997.5. M.P. Fiore and G. Rosolini. The category of cpos from a synthetic viepoint. Pre-sented at MFPS XIII, 1997.

6. M.P. Fiore and G. Rosolini. Two models of synthetic domain theory. Journal ofPure and Applied Algebra, 116:151{162, 1997.7. P.J. Freyd, P. Mulry, G. Rosolini, and D.S. Scott. Extensional PERs. In Proc. of5th Annual Symposium on Logic in Computer Science, 1990.8. C.A. Gunter. Semantics of Programming Languages. MIT Press, 1992.9. H. Huwig and A. Poign�e. A note on inconstencies caused by �xpoints in a cartesianclosed category. Theoretical Computer Science, 73:101{112, 1990.10. J.M.E. Hyland. First steps in synthetic domain theory. In Category Theory, Pro-ceedings, Como 1990. Springer LNM 1488, 1990.11. M. Jibladze. A presentation of the initial lift algebra. Journal of Pure and AppliedAlgebra, 116:185{198, 1997.12. A. Joyal and I. Moerdijk. Algebraic Set Theory. LMS Lecture Notes, CUP, 1995.13. J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic. Cam-bridge studies in Advanced Mathematics. Cambridge University Press, 1986.14. J.R. Longley. Realizability Toposes and Language Semantics. Ph.D. thesis, De-partment of Computer Science, University of Edinburgh, 1995.15. J.R. Longley and A.K. Simpson. A uniform account of domain theory in realiz-ability models. Math. Struct. in Comp. Sci., 7:469{505, 1997.16. S. Mac Lane. Categories for the Working Mathematician. Graduate Texts inMathematics. Springer Verlag, 1971.17. S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic: a First Introductionto Topos Theory. Universitext. Springer Verlag, 1992.18. P. S. Mulry. Categorical �xed-point semantics. Theoretical Computer Science,70:85{97, 1990.19. J. van Oosten. A combinatory algebra for sequential functionals of higher type. InLogic Colloquium 1997. Cambridge University Press. To appear. Currently avail-able as Preprint 996, Dept. of Mathematics, Utrecht University, 1997.20. J. van Oosten and A.K. Simpson. Axioms and (Counter)examples in SyntheticDomain Theory. Preprint 1080, Dept. of Mathematics, Utrecht University, 1998.21. W.K.-S. Phoa. E�ective domains and intrinsic structure. In Proceedings of 5thAnnual Symposium on Logic in Computer Science, 1990.22. G.D. Plotkin. LCF considered as a programming language. Theoretical ComputerScience, 5:223{255, 1977.23. G.D. Plotkin. Denotational semantics with partial functions. Lecture notes, CSLISummer School, 1985.24. B. Reus. Program Veri�cation in Synthetic Domain Theory. PhD thesis, Universityof Munich, 1995.25. B. Reus and Th. Streicher. General synthetic domain theory | a logical approach.In Proceedings of CTCS '97, pages 293{313. Springer LNCS 1290, 1997.26. G. Rosolini. Continuity and E�ectivity in Topoi. PhD thesis, Oxford, 1986.27. G. Rosolini. Notes on Synthetic Domain Theory. Unpublished notes, Availablefrom ftp://ftp.disi.unige.it/, 1995.28. D. S. Scott. Identity and existence in intuitionistic logic. InApplications of Sheaves,pages 661{696. Springer LNM 753, 1979.29. A.K. Simpson. Recursive types in Kleisli categories. Unpublished manuscript.Available from ftp://ftp.dcs.ed.ac.uk/pub/als/Research/, 1992.30. A.K. Simpson. Algebraic Compactness in Intuitionistic Set Theory. Presented atPSSL, Edinburgh, October 1995. In preparation, 1999.31. P. Taylor. The �xed point property in synthetic domain theory. In Proc. of 6thAnnual Symposium on Logic in Computer Science, 1991.32. G. Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993.

