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Abstract. We place simple axioms on an elementary topos which suf-
fice for it to provide a denotational model of call-by-value PCF with
sum and product types. The model is synthetic in the sense that types
are interpreted by their set-theoretic counterparts within the topos. The
main result characterises when the model is computationally adequate
with respect to the operational semantics of the programming language.
We prove that computational adequacy holds if and only if the topos is
1-consistent (i.e. its internal logic validates only true X{-sentences).

1 Introduction

One axiomatic approach to domain theory is based on axiomatizing properties of
the category of predomains (in which objects need not have a “least” element).
Typically, such a category is assumed to be bicartesian closed (although it is not
really necessary to require all exponentials) with natural numbers object, allow-
ing the denotations of simple datatypes to be determined by universal properties.
It is well known that such a category cannot have a fixed-point operator [9], but
crucially predomains have a lift monad acting on them which plays a critical
role in recovering the more familiar category of domains in which the expected
fixed-point operator resides. The lift monad also determines the subcategory
of strict functions between domains, with respect to which the fixed-point is
characterised by the property of wuniformity. Further, the monad determines a
category of partial functions, which is arguably the most suitable category for
program semantics. The development of this viewpoint can be found in [23,2,
18,29, 3].

In recent years it has become apparent that many natural categories of pre-
domains arise as full subcategories of elementary toposes. For example, the cat-
egory of w-complete partial orders and w-continuous functions is a full reflective
subcategory of the Grothendieck topos, H, considered in [6,5]. More generally,
models of Fiore and Plotkin’s axioms for domain theory also have such em-
beddings [4]. Other categories of predomains are found as full subcategories of
realizability toposes, see [15] for examples and references. Certain such exam-
ples have been shown to account for phenomena such as effectivity [21,7] and
strong stability [19]. Work in progress by a number of researchers looks likely to
establish similar embeddings for categories of games.
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The wealth of examples suggests that elementary toposes provide a plausible
environment for developing a unified account of the many models of domain
theory. However, early axiomatizations of domain theory inside toposes, [10,
31,27, 24], included axioms that are valid only in restricted classes of models. A
general axiomatization, encompassing both parallel and sequential computation,
was proposed in [15], where its consequences were worked out in detail in the
specific case of realizability toposes. This axiomatization has since proved to be
applicable also to: Grothendieck toposes [5, 4], models of intuitionistic Zermelo-
Fraenkel set theory [30], and models of intuitionistic type theory [25].

In this paper we consider the same general axiomatic approach in the setting
of an elementary topos. Given an elementary topos with a natural numbers
object and a distinguished dominance (determining a lift monad), we isolate
a full subcategory of predomains, the well-complete objects, as in [15]. Under
a first (now ubiquitous) axiom, this category is closed under function spaces,
products and the lift functor and supports recursion on appropriate objects. To
obtain closure under finite coproducts (in the topos), it is necessary to strengthen
the axiom in a simple way. For the natural numbers to be a predomain, yet
another simple strengthening is necessary in general, although not in the case
that Markov’s Principle is valid in the topos (Theorem 1).

The axioms are sufficient to enable any of the many variants of PCF [22] to be
modelled in the topos. Moreover, the closure properties of predomains have the
important consequence that datatypes are modelled by their set-theoretic coun-
terparts within the internal logic of the topos. Obtaining such a set-theoretic in-
terpretation of type constructors was one of Dana Scott’s motivations for propos-
ing synthetic domain theory. He hoped that the set-theoretic viewpoint would
lead to simple and intuitive logics for reasoning about programs. Whether or not
this proves to be the case, we would like to stress another motivation for the work
in this paper, and for the programme of synthetic domain theory as a whole.
The axioms of synthetic domain theory allow technically distinct constructions
across a wide range of models to be uniformly accounted for as examples of the
same set-theoretic construction (when regarded from the viewpoint of the inter-
nal logic). Thus synthetic domain theory offers a general and unifying axiomatic
account of the constructions of domain theory, and one which applies across a
very wide class of models.

The main goal of this paper is to exploit this axiomatic account to understand
the induced interpretation of PCF-like languages in the topos. For maximum
generality, we consider a call-by-value version with sum and product types. The
question we consider is: When is the interpretation of the language in the topos
computationally adequate with respect to its operational semantics [8,32]7 We
obtain a complete characterisation in terms of the internal logic of the topos. We
prove that computational adequacy holds if and only if the topos is 1-consistent
(Theorem 2). (A topos is said to be 1-consistent if it validates only true X9-
sentences.) Thus computational adequacy is equivalent to a simple logical prop-
erty whose statement makes no reference to PCF. It is to be expected that an
identical result will hold for other programming languages too.



2 Partiality and Lifting

Throughout this paper we assume that £ is an elementary topos with a natural
numbers object N, see e.g. [13,17]. We write 0 and 1 for chosen initial and
terminal objects respectively, [0,s] : 1 + N —— N for the structure map of
N as the initial algebra of the endofunctor 1 4+ (=) on the topos, and pred :
N —— 1+ N for its inverse. We write 2 for the object 1 + 1, denoting the left
and right injections by —, T : 1 —— 2. We consider 2 as a subobject of the
subobject classifier, {2, via a distinguished mono taking — T : 1 —— 2. to the
standard —, T : 1 — {2.

We shall require one other piece of primitive data, an object X arising as a
subobject X —— (2 (thus X classifies a family of subobjects, the X'-subobjects,
in £). Moreover, we require that X' is a dominance in the sense of Rosolini [26, 3].
Specifically this means that T : 1 —— (2 factors through the mono X —— (2
(i.e. all isomorphisms are X-subobjects) and that X-subobjects are closed under
composition.

Because 2 and X' are subobjects of {2, we shall often consider them, in the
internal logic, as subsets of the set of all propositions. In particular, we sometimes
refer to 2 as the subset of logically decidable propositions, because 2 can be
defined internally as {p € 2 |p V -p}.

The conditions above imply that the collection of partial maps in £ with X/-
subobjects for domains forms a category under the usual composition of partial
maps. We write X — Y for the object of such X-partial maps from X to YV
(easily defined using the internal logic). For f € X — Y and z € X, we shall
loosely write f(z) to mean a possibly undefined element of Y. We use equality
between such possibly undefined expressions in the strict sense, thus e = ¢
means that both e and e’ are defined and equal. We write e ] to mean that e is
defined, i.e. the X-property 3y € Y. e = y holds (such a y is necessarily unique).
We use Kleene equality, e ~ ¢’ to mean that e is defined iff €' is, in which case
both are equal. The above notation is adopted for its readability. The formally
inclined reader will have no problem in translating the expressions we use into an
appropriate rigorous logic for partial terms (see e.g. [28]), although our partial
terms will always be special ones whose definedness property is a X-proposition.

The operation 1 — (=) determines, in the obvious way, an endofunctor on &,
the lift functor L. Given e € LX, we write e in place of the more cumbersome
e(x) | (where we write x for the unique element of 1), and similarly, when e |
we write e for the determined value e(x) € X. We write xy : LX —— X for the
morphism mapping any e € LX to its definedness property e, which is indeed
a X proposition.

The lift functor carries the structure of a monad (L,n,u) on £. Its unit
n : X —— LX maps any z to the unique e € LX such that e = z (thus
el). The lift monad is a strong commutative monad satisfying some additional
well-documented properties, see e.g. [26,3,1]. The Kleisli category, &;,, of the
lift monad is isomorphic to the category of X-partial maps on £. The object X
is isomorphic to L1 and X — Y is isomorphic to the exponential (LY)X. An
alternative, but equivalent, development is to take the lift monad as primitive



(as in [5]) and to derive the dominance and partial function space using the
above isomorphisms

One consequence of £ having a natural numbers object, is that the functor,
L, has both an initial algebra ¢ : LI — I and a final coalgebra 7 : F —— LF.
Moreover, the object F is a retract of XV, and the unique algebra homomorphism
from ¢ to 77! is a mono ¢ : I —— F. These results were proved in 1995 by the
author and Mamuka Jibladze independently. For a published account see [11].

The initial algebra of L as a functor, interacts nicely with the monad structure
on L. We call a morphism a : LX —— X a monad algebra if it is an Eilenberg-
Moore algebra for the monad (L, 7, 1) [16]. The morphism y' = g oo Lot is
a monad algebra LI —— I. We write up : I — I for the composite o o). The
result below appears as Theorem A.5 of [12], where it is attributed to Bénabou
and Jibladze.

Proposition 1. For any monad algebra o : LX —— X and any morphism

f: X —— X, there erists a unique algebra homomorphism h : p' — a such
that foh =houp (in &).

An important example of a monad algebrais a: L(X = Y) — (X = Y)
defined by a(e)(z) ~ e(z). When referring to such monad algebras, we shall just
refer to the underlying object X — Y, always understanding the structure map
to be that given above.

3 Completeness and Fixed-points

The mono ¢ : I —— F plays a fundamental role in developing a basic notion of
“chain completeness” sufficient for establishing fixed-points for endomorphisms
on suitable objects. For further motivation see [15]. The results in this section
are, by now, standard [15,27,25].

Definition 1. An object X is said to be complete if the induced morphism
X*: X¥ —+ XTis an isomorphism.

If X is complete and a : LX —— X is a monad algebra, then, for any
morphism f: X —— X let h: I —— X be the unique algebra homomorphism
given by Proposition 1. Because X is complete, h : I —— X extends along : to
a unique morphism h : F —— X. Let oo : 1 —— F be the unique coalgebra
homomorphism from 5p: 1 —— L1 to 7 : F —— LF. We write fiz,(f) for the
point h o oc.

Proposition 2. For any monad algebra o : LX —— X with X complete, and
any morphism f : X —— X it holds that f o fix,(f) = fix,(f). (i-e. fixis a
fized-point operator.)

Moreover, for any monad algebras a: LX — X and 8 : LY — Y (where
X andY are complete), morphisms f : X — X andg:Y —— Y, and algebra
homomorphism h: X —— Y, if ho f = goh then fizg(g) = ho fir,(f). (i-e. fir
is uniform.)



Because the property of X' being a dominance can be expressed in the internal
logic [26], the dominance transfers to any slice topos £/Z. Thus the above propo-
sition holds in any slice. Essentially, this means that the obvious internalization
of the above proposition holds in the internal logic of £.

Our main application of uniformity will be in the proof of Lemma 5 in Section
7, where it will be used in the following form. Suppose that X is complete and
carries a monad algebra o : LX —— X. We say that a mono m : X' —— X
carries a subalgebra of a if there exists o' : LX' = X' such that mof = aoLm.
One easily shows that such an o' is unique, and further that it is itself a monad
algebra. (Indeed, it holds for an arbitrary monad that any subalgebra of a monad
algebra is also a monad algebra.) Now suppose that X' is complete and that an
endomorphism f : X —— X restricts to an endomorphism f' : X' —— X'
(i.e. that m o f' = f om). Then it follows from the uniformity of fixed-points
that m o fiz,, (f') = fiz,(f), i.e. that fiz,(f) factors through the subobject m :
X' — X.

4 Axioms for Synthetic Domain Theory

The complete objects are not, in general, closed under the lifting functor, L, [20].
As our category of predomains we take the largest full subcategory of complete
objects that is closed under lifting, following [15].

Definition 2. An object X is said to be well-complete if LX is complete.

We write C for the full subcategory of well-complete objects of £. We shall adopt
C as our category of predomains.

Our axioms will all be assertions that useful objects are well-complete. We
begin with the basic completeness azxiom of [15].

Axiom 1. 1 is well-complete.

Henceforth we assume that Axiom 1 holds. As a first consequence, we obtain a
helpful reformulation of the notion of well-completeness [5].

Proposition 3. The following are equivalent.

1. X is well-complete. _ _
2. EVF Cx F.Vfe XUINF) If e XF' f=TFou

Here, as is standard, we write 3! for the unique existence quantifier. We hence-
forth take the formula in statement 2 above as stating the property of X being
well-complete in the internal logic.

Axiom 1 alone implies many important closure properties of well-complete
objects. The proposition below is now standard, with parts appearing essentially
in [15,5,25]. The easiest proof uses the formulation of well-completeness given
by Proposition 3.2.

Proposition 4. 1. Any well-complete object is complete.



2. For any internal family {X;};cs in € (given by a morphism X — I),
& | (V)€ J. X; well-complete) — ([];c, X;) well-complete

3. If X and Y are well-complete then, for any f,g: X —— Y, the equalizing
object is well-complete.
4. If X is well-complete then so is LX.

Externally, statement 2 above implies that C is closed under finite products in £
(hence, by statement 3, under finite limits too), and is moreover an exponential
ideal of £ (i.e. If Y is well-complete then so is Y¥ for any X in £). In particular C
is cartesian closed. Furthermore, if Y is well-complete then sois X — Y (because
X =Y = (LY)X and C is closed under lifting).

At present there is nothing to prevent taking ¥ = 1 (for any topos £& whatso-
ever), in which case 1 is the only (well-)complete object. The remaining axioms
will rule out such trivial examples (except in the case of a trivial £), and, more
positively, imply that C is closed under useful coproducts in £. First, we consider
the basic implications between the properties we shall later assume as axioms.

Proposition 5. Consider the statements below.

1. 0 is well-complete.
2. 2 is well-complete.
3. N is well-complete.

Then 3 = 2 = 1.

PROOF. 0 is an equalizer of —, T : 1 —— 2, and 2 is a retract of N. The
implications follow by Proposition 4(3). O
Examples in [20] show that neither of the implications of Proposition 5 can be
reversed in general.

In the remainder of this section we examine further consequences of and
relationships between each of the 3 properties in Proposition 5.

Proposition 6. The following are equivalent.

1. 0 is well-complete.

2.8 F —eX.
PROOF.

1 = 2. Suppose 0 is well-complete. Then LO is complete and carries a monad
algebra 1 LLO — LO. Therefore the identity id : L0 —— L0 has a fixed-
point fir(id) € LO. Because £ =V € 0. —, we have that £ |= —(fiz(id) }),
ie. & E (fir(id))) = —. But £ = (fiz(id) ) € X (because fiz(id) € L0). Thus
indeed £ = — € X.

2 = 1. If — € XY then 1 = LO. Thus L0 is complete, hence 0 is well-complete.

a



Axiom 0. 0 is well-complete.

Henceforth in this section we assume Axiom 0.

A first consequence of Axiom 0 is that, for any object X of £, we have a point
—rx € LX defined as the everywhere undefined partial function in 1 — X.
Given f: X —— Y, itisclear that Lf : LX — LY maps —x to —ry. More
generally, given any algebra for the lift functor, o : LX —— X, define —, € X
by —n = a(—rx). For any 8 : LY —— Y and any algebra homomorphism
h:a —— @, it is clear that h(—,) = —p. In the case that there is an identified
(usually monad) algebra a on an object X, we often write —x for —,, and refer
to —x as the bottom of X. Thus algebra homomorphisms preserve bottoms.

Another consequence of Axiom 0 is that a morphism step : N —— I can be
defined, using the initial algebra property of IN, as the unique map making the
diagram below commute.

1+ step

1+N 1+1

[0, s] oo [—r11]

step

N I

The following technical lemma (whose straightforward proof is omitted, see e.g.
[20]) will be used in the proof of Theorem 1 below. Recall, e.g. from [17], that a
mono m : X' — X is said to be —~—-dense if

£ = Vze X -3 € X'.m(z') =z).
Lemma 1. The morphism step : N —— I is a =—-dense mono.
Next we examine condition 2 of Proposition 5.
Proposition 7. The following are equivalent:

1. 2 is well-complete.
2. C is closed under finite coproducts in .

PROOF. The proof from [15] transfers to this more general setting. O

Axiom 2. 2 is well-complete.

Henceforth we asume Axiom 2. By Proposition 5 we can now drop Axiom 0. In
fact, it is straightforward to show that Axiom 2 alone implies Axiom 1, so we
can also drop Axiom 1. Although we do not yet know that N is well-complete,
Axiom 2 does allow a number of conditions to be given that are equivalent to,
or at least imply, the well-completeness of IN.

To state the theorem, we require further terminology. An object X of £ is
said to be ——-separated if

EEVz,yeX. " ~(z=y) — z=y.



This is a standard concept in topos theory with many equivalent formulations
(see e.g. [17]). The following easy result depends only on X' being a subobject of
{2 containing T.

Lemma 2. The following are equivalent.

1. X is ——-separated.
2. & ‘: Vp e Y. (—|—|p) — D.

The property of X being ——-separated has been referred to as Markov’s
Principle in the synthetic domain theory literature, see e.g. [25]. For certain
dominances in certain toposes (e.g. the semidecidable subobject classifier in the
effective topos [26,21]) this terminology is justified because the ——-separation
of X' is equivalent to the standard logical property known as Markov’s Principle
(see statement 4 of Theorem 1 below). However, in general, it seems sensible to
maintain a distinction between the two non-equivalent properties. The theorem
below, which depends heavily on Axiom 2, shows that both notions have a role
to play in synthetic domain theory.

Theorem 1. Consider the following statements.

1. N is well-complete.

2. pred : N —— 1 + N is the final coalgebra for the functor 1 + (=) on the
category £, of X -partial maps.

3. & =VPe2N. (3IneN.Pn))eXx.

4. Markov’s Principle holds, i.e.
£ = VP e2N. -=(3n € N.P(n)) — In € N.P(n).

Then 1 & 2 < 3 < 4. Moreover, if X' is ~—-separated then 3 = 4.

PROOF.

1 = 2. Suppose that N is well-complete, and that h : X —— 1 + X is any
Y-partial map. We must show that there is a unique X-partial map g :
X —— N such that the diagram below commutes.

1
1+x "% 94N
h [0, s]

X
Define ¢ : (X = N) — (X — N) by:

o(f) = [0,5]o(1+f)oh

N

(the composition is, of course, composition of partial maps). By the well-
completeness of N, we have that X — N is complete and carries a monad



algebra for L. Therefore, by Proposition 2, we can define g = fiz(¢), which,
by its very definition, makes the diagram commute.

For uniqueness, suppose that g, ¢’ are two partial maps making the diagram
commute. Then, by an internal induction on n,

E E VneN.Vxe X.g(z)=n iff g'(x) =n.

(Here we are using our conventions about possibly undefined expressions, as
g(z) and ¢'(z) need not be defined.) Thus g = ¢'.

2 — 3. Suppose that pred : N —— 1 + N is the final coalgebra. Consider the
map d: 2N —— 1 4 2N defined, using the internal logic, by:

_ finl(x) if P(0)
d(P) = {mr(,\n.P(n+1))if not P(0)

This is a good definition, because P(0) is a logically decidable proposition.
Let h: 2N —— N be the unique coalgebra homomorphism from d to pred.
Using only the fact that h is a coalgebra homomorphism, one has, by an
internal induction on n, that

£ E VneN.VPec2N d(P)=n iff (P(n) A VYm < n.=P(m)). (1)
Note that d(P) need not be defined. Indeed, we claim that
£ E VPe2N. (3neN.P(n)) iff d(P)| .

Statement 3 follows, because (d(P)J) € X' (as d is a X-partial map).

The claim is derived from (1) by the following internal reasoning. For the
right-to-left implication, if d(P) | then d(P) = n for some n. But, by (1),
d(P) = n implies P(n), thus indeed 3n € N. P(n). For the converse, suppose
In € N. P(n). Then, because, for all n, the proposition P(n) is logically
decidable, there exists a least n such that P(n). It follows from (1) that
d(P) equals this least n. Hence d(P) ] as required.

3 — 1. Consider the subobject D —— 2N defined by

D = {Pe2N|VneN.P(n) — Vm<n.—P(m)}.

As the proposition Vm < n. =P(m) is logically decidable, it is easy to show
that the mono D =~ 2N is split. Hence D is a retract of 2V, and thus

well-complete (because 2N is well-complete by Axiom 2).
Consider the subobject C — D defined by

C = {PeD|3IneN.P(n)}.

Assume that statement 3 of the theorem holds. Then the inclusion C' —— D
is an equalizer of the maps AP € D. (3n € N.P(n)) : D — X (which is a
map to X by the assumption) and AP € D. T. Therefore C' is well-complete.
We show that N is isomorphic to C, hence N is indeed well-complete. The
isomorphism from N to C maps n to Am € N. (n = m). Its inverse maps
any P € C to the unique n such that P(n). It is easily checked that the two
maps are indeed mutually inverse.



4 = 3. First define a function ¢ : £2° —— X2" by:

T if P(0)
¢(f)(P) = {f()m,.P(n+ 1)) if not P(0).

Now 52" is complete and carries a monad algebra for L. So, by Proposition
2, we can define a morphism e : 2N —— X by e = fiz{¢). We claim that
Markov’s Principle implies:

£ = VPec2N (3neN.P(n) iff e(P)

Statement 3 follows because e(P) € X.

For the left-to-right implication of the claim, one proves (internally) that,
for all n € N, P(n) implies e(P). This is a straightforward induction on n,
using only the fixed-point property of e. Markov’s Principle is not required.
To prove the right-to-left implication of the claim, let h : T — 22" be the
unique algebra homomorphism (given by Proposition 1) such that ¢ o h =
houp. Let h: F —— 22" he the unique extension of h. Then, by definition,
e = h(cc). Assume —3n € N.P(n). Below we show that, for all i € I,

h(i)(P) = —. It follows that the unique extension \j € F.h(j)(P) : F — %
of Xi € L. h(i)(P) : I — X is the constant function A\j € F. — : F —— Y.
Therefore e(P) = h(oo)(P) = —, i.e. =e(P). Thus =3n € N. P(n) implies

—e(P), or equivalently e(P) implies -—=3n € N.P(n). Thus, by Markov’s
Principle, e(P) implies dn € N. P(n) as required.

It remains to show that —3n € N. P(n) implies, for all i € I, h(i)(P) = —.
Assume —3n € N. P(n). The monad algebras on I and £2" determine their
bottoms: —1 = step(0) and —,;.~ = AP.—. As algebra homomorphisms
preserve bottoms, h(step(0))(P) = —. Now, by an easy induction on n, for
all n € N, it holds that h(step(n))(P) = — (because we have assumed
Vn.—P(n)). However, by Lemma 1, we have that, for all i € I, =—(3In.i =
step(n)). Therefore, for all i € I, == (h(i)(P) = —), i.e. =—==h(i)(P), i.e.
=h(i)(P), i.e. h(i)(P) = —.

3 — 4. Immediate from Lemma 2 when Y is —=—-separated.

Axiom N. N is well-complete.

By Proposition 5, Axiom N implies Axiom 2, so in its presence Axiom 2 may be
dropped. However, in practice it might be more convenient to establish Axiom
2 directly, and then use one of the conditions of Theorem 1 to derive Axiom N.
Markov’s Principle is a particularly useful condition because it is independent
of the definition of ¥. Indeed the proof in [15] that Axiom 2 implies Axiom N in
realizability models makes implicit use of the validity of Markov’s Principle in
all realizability toposes. Markov’s Principle is also valid in all presheaf toposes,
but not in all Grothendieck toposes. The other statements in Theorem 1 also
have their uses. For example, in Section 8, we make crucial use of statement 3
as a consequence of Axiom N.



We call an elementary topos £ together with a dominance X' satisfying Axiom
N a natural model (of synthetic domain theory). (The adjective “natural” is to
emphasise that the natural numbers object is well-complete.) All the realizability
examples considered in [15] provide natural models, as does the the model H
from [6, 5]. Throughout the rest of this paper, unless otherwise stated, we assume
that £ and X together form a natural model.

5 Interpreting a Programming Language

The axioms we have are sufficient for simply-typed programming languages like
PCF [22] and its variants to be modelled in £. We exploit all the structure we
have identified on well-complete objects by including sums and product types in
the language. The call-by-value language we introduce is essentially equivalent
to similar languages considered in e.g. [8,32].

We shall use o, 7, ...to range over types, which are given by the grammar:

o :=1|N|o+7|oxT]0o—>T

Assuming a countably infinite collection of variable symbols, contexts are finite
sequences of variable-type assignments, written 1 : 01, ..., 2 : 6. (We do not
assume that all the z; are distinct.) We use I', ...to range over contexts, and
we write x € I to say that the variable 2 appears in I'.

cg I r'FM:N I M:N
Iz:o,'Fz:0 I'Fx:1 TI'FON TI'Fs(M):N I'FpredM):1+N

I'M:o I'EM:o1+00 xi:o1ENi:m [xo:oa bk Nao:7
I'tml.(M):0+T I't case M of inl(x1). N1, inr(z2). No : T

I'+-M:t I'-M:0 'EN:t I'bFM:oxt I'EM:oxrT
I'tmre(M):o+17 TI'F(M,N):oxt I'Ffst(M):0 ITFsndM):T

.o M:T I'-M:0—>7 I'N:r I'fioo>r,x:0FM:T
I'FXMz:ooM:o—T I'FM(N): T I'trecfiost(x)M:o—>T

Fig. 1. Typing rules

The notation for terms is introduced simultaneously with their typing rules,
which are presented in Fig. 1. These rules manipulate judgements I' - M : g,
which say that the term M has type o in context I'. The notions of bound and
free variable occurrences are defined in the standard way. We do not identify
terms up to alpha equivalence (as we have no reason to do so). (This simplifies
the formalization of the programming language in £.)

Observe that M has at most one type in any I" (as just sufficient type infor-
mation is included in terms for this to hold). Moreover, any typing judgement



I' = M :0 has at most one derivation. If M :¢ is derivable in the empty context
then we say that M is a program of type o.

M=V M =0 M = s(V)
*=x 0=0 s(M)=s(V) pred(M) = wl(x) pred(M) = inr(V)
M=V M = ml(U) N[U/z:] =V
wl(M) = ml(V) case M of inl(z1). N1, inr(z2). No =V
M=V M = inr(U) No|U/z] =V

nr(M) = inr(V) case M of inl(z1). Ny, inr(z2). N, =V

M—=U N=—V (M,N) = (U,V) (M,N) = (U,V)
(M,N) = (U,V) Fst(M) = U snd(M) =V

M= X.L N=U LU/z]=V
Az. M = X z. M M(N)=YV

rec f (x). M = Ax. M[rec f (z). M [ f]

Fig. 2. Operational semantics

The behaviour of programs is specified by the operational semantics pre-
sented in Fig. 2. The rules manipulate judgements of the form M = V where
both M and V are programs (to ease readability, we omit type information from
the terms). In the rules, we write N[U/z] to mean the term N with program
U substituted for all free occurrences of  in N. Because the only entities ever
substituted are closed terms, the possibility of variable capture does not arise,
therefore a simple textual substitution suffices.

The programs V' which appear on the right-hand side of the arrow in Fig.
2 are known as wvalues. It is straightforward to show that, for any program M,
there exists at most one value V such that M = V. Moreover, for any M,V
there exists at most one derivation of the judgement M = V. These results
state that program evaluation is deterministic. It is also consistent with the
typing rules: if M is a program of type 0 and M = V then V is also has type
o. (Because we use a a simple textual substitution and do not identify terms
up to alpha-equivalence, this last result depends on the possibility, which we do
permit, of contexts containing repeated variables.)

We now turn to the denotational semantics. Types o are interpreted as well-
complete objects [o], using the full strength of Axiom N to obtain the desired
closure conditions. The definition of [o] is by the expected induction on types.
From the viewpoint of the internal logic of £, the interpretation gives the full
set-theoretic X-partial type hierarchy over N (i.e. [1] = 1; [N] =N; [o+71] =

[o] + [71; [0 x 7] =1o] x[7]; [o = 7] =[o] = [7])-



A context x1:01, ..., Ty 0y is interpreted as a product [o1]X...x[o,]. A term
M such that I' b M : o is interpreted as a X-partial map [M] : [['] — [o].
This map can be defined by induction on the structure of M, using the external
structure of C. However, for later purposes, it is convenient to make an equivalent
definition, using the internal logic of £. For any term M such that I' - M : o
we define, by induction on the structure of M, a definite description (in the
internal logic) of a partial function (M) € ([I'] — [o]). Then (M) determines
a morphism 1 — ([I'] — [o]) in &, which in turn determines the required
XY-partial map [M] : [I'] — [o].

Most of the definition of (M) is straightforward (indeed set-theoretic). The
most interesting clause is the definition of (rec f:o0— 7 (). M]). Suppose that
I f:o—7,2z:0 b M:7. Then we have (M]) € ([I'] x [o — 7] % [o]) — [7]- So:

£ EVy €T (Af € [o] = [7]. Oz € [0]. (M) (7, £,2))) € ([o] = [DI=TD.

Write ¢ary for (Af € [o] — [7]. (Az € [o]. (M)(v, f,2))). As [o] — [7] is well-
complete, hence complete, with a monad algebra structure (see Section 2), we
use Proposition 2 to define (rec f:o0—7 (x). M]) € [I'] = [o — 7] by:

(rec f:o—=7(x). M)(v) = fix(dnm~).

Observe that (rec f:o0—7 (z). M) is a total function from [I'] to [o] — [7].

6 Computational Adequacy

We now come to the main question addressed in this paper, the question of
computational adequacy, relating the operational behaviour of the programming
language and its denotational interpretation.

We say that a program M :0 converges (notation M |}) if there exists V' such
that M = V. For the denotational analogue, we write [M] ] if the Y-partial
map [M] : 1 —— [o] is total. Denotational convergence corresponds to the
expected property of (M) in the internal logic of £. We have (M) € 1 — [o],
i.e. (M) € L]o], and, using our conventions for elements of lifted objects, [M]]
if and only if £ = (M) J. By an easy induction on operational derivations, one
shows that for all programs M : o, it M = V then [M]] and [M] = [V].

Definition 3. We say that [-] is computationally adequate if, for all programs
M: o, [M]{ implies M.

As stated in the introduction, we shall obtain a complete characterisation
of computational adequacy in terms of a logical property of £. Recall that
any semidecidable k-ary relation on NN can be written in the standard form
dny € N,...,n; € N. P(my,...,mg,n1,...,ny), where P is a (k + [)-ary
primitive recursive relation. By a natural encoding of primitive recursive pred-
icates in the internal logic of £ [13], one obtains the analogous formal no-
tion of a X9-formula. In particular, a XV-sentence is a sentence of the form



dng €N,...,n; € N.¢p(ny,...,ni), where ¢ is a naturally encoded k-ary prim-
itive recursive predicate. (In fact, because one can define a primitive recursive
pairing operation, it is sufficient to consider just unary predicates 1).) We say
that &£ is I-consistent if, for all X%-sentences ¢, it holds that £ |= ¢ implies that
¢ is true in reality. The next theorem is the main result of the paper.

Theorem 2. The following are equivalent.

1. [-] is computationally adequate.
2. & is 1-consistent.

To prove the theorem, we carry out, as far as possible, a proof of computational
adequacy within the internal logic of £. In fact £ always believes itself to be
computationally adequate. The property of 1-consistency is just what is needed
to relate this internal belief with external reality.

First, we need to formalize the syntax of the programming language, and
its operational semantics, within the internal logic. This is an exercise in Godel
numbering. One encodes the types, terms and contexts as natural numbers in a
standard way, so that all convenient operations on them are primitive recursive.
Moreover, the relation I' = M : o is also primitive recursive, as the term M
determines the whole derivation tree, allowing a primitive recursive decision
procedure. We write P, for the formalized set of programs of type o, which is,
via its Godel numbering, a primitive recursive subset of IN.

For the operational semantics, the Godel numbering is extended to encode
derivations of evaluation judgements M = V. The relation “7 is a derivation
of M = V” is a a primitive recursive ternary relation on 7w, M and V. Thus
the binary relation M = V and the unary predicate M |} are both X¥.

The proposition below, is stated using the formalized operational semantics.

Proposition 8. For all programs M :o, if [M]] then & = M |.

The lengthy proof is left for Sections 7 and 8. Here we apply the result to prove
Theorem 2.

The 2 = 1 implication of Theorem 2 is now immediate. If £ is 1-consistent
then we have that [M] | implies £ = M |, by Proposition 8, which in turn
implies M |}, by 1-consistency.

For the converse, suppose [-] is computationally adequate. We must show 1-
consistency. Accordingly, let P be a primitive recursive predicate. Without loss
of generality, we can assume P is unary. Using a straightforward encoding of
primitive recursive predicates, we can define a program M : N — (1 + 1) such
that, using only the fixed-point property of fiz,

E EVneN. (M)(n) = inl(x) iff P(n),
and also M (n) = inl(x) if and only if P(n) (where 7 is the value s™(0)). Let
N : 1 be the following search program.

(rec f:N—1(n). case M(n) of inl(z).*, inr(y). f(s(n)))(0)



Then, by an internal induction on n using only the fixed-point property of fiz,
£ E (AneN.P(n)) — (N)J.

Also, by an induction on the number of unfoldings of rec in the operational
semantics, N |} implies there exists n such that P(n).

Now, to show 1-consistency, suppose that £ |= 3n € N. P(n). Then, by the
implication derived above, £ |= (N] |, i.e. [N]|. It follows, by computational
adequacy, that N {}. Thus indeed there exists n such that P(n). This completes
the derivation of Theorem 2 from Proposition 8.

We end this section with some applications of Theorem 2. It is easily veri-
fied that any non-trivial Grothendieck topos is 1-consistent (indeed, it is a folk
theorem that any Grothendieck topos validates all classically true sentences of el-
ementary arithmetic). Also, any non-trivial realizability topos, £, is 1-consistent
(because the hom-set £(1,N) cousists of just the numerals). Therefore, by The-
orem 2, any non-trivial natural model furnished by either a Grothendieck or
realizability topos is computationally adequate. (A different argument for com-
putational adequacy in the case of realizability toposes appears in [14].)

One may wonder whether in fact any non-trivial model is computationally
adequate. As a negative application of Theorem 2, we show that this is not
the case. To be precise, we say that a model (£, ) is trivial if £ is equivalent
to a category with a single (necessarily identity) morphism. Non-triviality alone
implies many important well-behavedness properties of £, e.g. the two morphisms
—, T :1 — 2 are distinct and the numerals @ : 1 — N are all distinct. Non-
triviality is obviously also a necessary condition for computational adequacy to
hold.

Corollary 1. There exist non-trivial natural models (€, X) such that the induced
[](e.x) is not computationally adequate.

PROOF.  Suppose, on the contrary, that any non computationally adequate
model is trivial. Let ¢ be the (easily constructed) sentence in the internal logic
of an elementary topos with natural numbers object and distinguished object X
saying “Y is a dominance and Axiom N holds”. Thus (£,Y) |= ¢ if and only
if (£, %) is a natural model of synthetic domain theory. Let ¢ be any false X9-
sentence. By Theorem 2, any model of ¥ A ¢ is not computationally adequate and
hence, by the assumption, trivial. By the completeness theorem for elementary
toposes with respect to their internal logic [13], this means that —=(¢» A ¢) is a
theorem of the internal logic. On the other hand, when ¢ is a true X%-sentence,
then 1 A ¢ is equivalent to %, which is consistent as there exist non-trivial
natural models. In summary, for X?-sentences ¢, we have that =(¢p A ¢) is a
theorem in the internal logic of toposes if and only if ¢ is false. But the theorems
of the internal logic are recursively enumerable. Therefore, we can recursively
enumerate the false X)-sentences (i.e. the true I1{-sentences). This is impossible,
contradicting the initial assumption.

a



Incidentally, it is not too difficult to give a similar direct proof of Corollary 1 (not
relying on Theorem 1) using the halting problem for the programming language
in place of the truth of X-sentences.

7 Internal Adequacy

In this section we provide the missing proof of Proposition 8. This is achieved
by formalising a standard relational proof of computational adequacy, see e.g.
[8,32], internally within €.

For each type o we define a predicate < »—— [o] x P, in the internal
logic of £. The definition proceeds inductively on the structure of o, so that the

relations satisfy the (internal) equivalences below.

x <1 M if M — x

n <N M iff M—=mn

inl(d) =TT M iff M = inl(V) where d <°V

inr(d) <°tT M iff M = inr(V) where d <7V

(d,d") =*" M iff M = (U,V) where d<"U ANd <"V

[T M iff M = A\x.L where ¥Yd € [0].YN € P,.
(@7 NAf(d))) — f(d) <" L[N/a]

These equivalences are easily translated into formal definitions, in the internal
logic, of the <7 predicates. It is a straightforward consequence of the definitions
that (internally) if M, M' € P, are such that both M =V and M' = V (the
same V) then, for all d € [o], d X7 M iff d <7 M'. This fact will be used in the
proof of Lemma 5 below without further comment.

Define [o]ar = {z € [o] | <7 M }. This definition determines, for any type
o, an internal P,-indexed family, {[o]ar}mep, , of subobjects of [o].

Lemma 3. For all types o, T,
EEVM € Pyyr. M — (Jo — 7T]m carries a subalgebra of [o] — [7]).

ProOF. Recall [o] — [r] has the algebra a : L([o] — [7]) — ([¢] — [7])
defined by a(e)(z) ~ e(x). Reasoning internally in &, suppose that M € P,_,,
and M |}. We show that e € L[o — 7]» implies a(e) € [o — 7]m. Suppose
e € Llo — 7]m. As M |, we have that M = Az.L for some Az.L. We
must show that, for all d € [o] and all N € P,, if d <7 N and a(e)(d) |
then «a(e)(d) =<7 L[N/z]. But if a(e)(d) | then a(e)(d) = e(d) and also e |,
hence e € o — 7]m. It follows that d <7 N implies e(d) <" L[N/z], i.e.
a(e)(d) 27 L[N/z] as required. |

Lemma 4. For all types o,
E = VM € P,. [o]m is well-complete.

The proof of Lemma 4, which is surprisingly involved, is given in Section 8.



Lemma 5. If z1:01,...x5:0 = M:7T then

£ ‘: Vd, € [[(71]]...de S [[O'k]].VNl E’P,Tl...VNk Epgk.
dy <7 Ny A .. A dp <7 Ny A (M)(ds .. di) b
— ([MD(d]7dk) <7 M[N]Nk/ﬂf];l?k]

ProoF. This is proved by (external) induction on the derivation of I" + M : 7
(where here and below we write I" for the context x1:04, ...z :0k). In each case,
reasoning internally in £, we suppose that, for each j with 1 < 57 < k, we have
d; € [o;] and N; € P,; such that d <7* Nj. Then we show that ([M])(ﬁ) l
implies ([MD(?) =<7 M[N)/?] (where, of course, d abbreviates d; yoo ., dy, and

abbreviates N, ..., Ny). Here we consider only the critical case in which M
is rec f:0' = 7' (y). M' (and hence 7 is o' — 7').

In this case, I' = M : 7 is derived from I', f:0' = 7/, y:0' - M':7". Given

and N as above, it holds automatically that ([MD(E)) 1, so we must show
that (M)(d) <" =7 M[N/Z], ie. that (M])(d) € [0/ — ™18 - Recall
that ([MD(E)) = ﬁx(¢M,7)7 where ¢M17 is the endofunction on [o'] — [7'].
defined by ¢M17(f)(e) ~ ([M’])(E),f,e). We claim that quMIE) restricts to an

M ! /! ! !

endofunction on [o' — T]]M[N)/?]. By Lemmas 3 and 4, [0/ —» 7 ]]M[N)/?]
carries a monad algebra structure and is (well-)complete. By (the internalized)

Proposition 2 (see, in particular, the discussion immediately after), the element
ﬁx(d)M,ﬁ) € o/ — 7' is contained in the subset [0/ — T/]]M[N)/?]. Thus indeed

(M)(2) € [o' - W

It remains to prove the claim. Suppose then that f <7 =7 M[N)/?] We
must show that ¢M17(f) <o’ =7 M[ﬁ/?] As M is recf : o' =7 (y). M', we

have that M[N)/?] = Ay : U’.M’[N)7M[N)/?] | @, f]. Take any e € [o']
and N' € P, such that e < N’ and ¢M,7(f)(e) . We must show that

6 (&) <7 M'[N,M[N/ZN' | 7, f,y]. But 6 _—(f)(e) = (M)(d, f,e)
and indeed ¢ —(f)(e) 4=" M'[N,M[N/2],N'/Z, f.y], by the induction hy-
pothesis on M. O

Proposition 8 is an easy consequence of Lemma 5. For any program M : o, if
[M]J then, equivalently, £ = (M]{. So, by Lemma 5, £ = (M]) <° M. Hence,
by the definition of <7, indeed £ = M |.

One remark about Lemma 5 is that the quantification over terms is external.
This is by necessity, as there are limitations on the extent to which the deno-
tational semantics can be formalized within £. In particular, writing 7 for the
formalized set of types (as a primitive recursive subset of N), one cannot define
within the internal logic a semantic function [-] € [[, .+ Ps — [o], because the
family {[o]}se7 need not live as an internal family within £ (its usual definition
involves the Axiom of Replacement from set theory).



8 The Well-completeness of [o]

It remains only to prove Lemma 4, showing (internally) the well-completeness of
the sets [o]ar. Although the proof of Lemma 5 required only the completeness
of these sets, it is necessary to establish the well-completeness in order to have
a property that can be proved by induction on types.

We begin with some useful closure properties of well-complete objects. To
establish these, it is convenient to work with the formulation of well-completeness
given by Proposition 3.2. (We write “X inhabited’ for “Jx € X. T”.)

Lemma 6.

£ E (@pe X. (X inhabited — p) A (p — X well-complete))
— X well-complete

PROOF. We reason in the internal logic. Let p € X satisfy the assumption.
Suppose F' Cy; F. Take any f € X', where I' = I N F'. We show that F’
inhabited implies X well-complete (using the assumed f). First , observe that
I' inhabited implies X inhabited (because i € I' implies f(i) € X), so the two
functions Mi.T € 27 and Xip € T are equal (by the assumption). Therefore
M. T € £F and Aj.p € ZF both extend \i.T € X7 By the well-completeness
of ¥, there is a unique such extension, thus, for all j € F', p = T, i.e. F'
inhabited implies p. But p implies X is well-complete. Thus indeed F' inhabited
implies X is well-complete.

We must show there is a unique function f € X*" such that f = fou. For any
j € F', we have that X is well-complete so there exists a unique f_7 e X*' such
that f = f_7 o ¢ (the notation is to emphasise that f_7 depends on the assumed
element j). Therefore f = A\j € F'.f;(j) defines a function in X*'. Tt is easily
checked that this is the unique function such that f = f o . O

Lemma 7. If {X;};cs is an internal family of subobjects of a well-complete
object Y then

& [ (Vj € J. X; well-complete) — ((;c; X;) well-complete.

We now turn to the proof of Lemma 4. We prove, by an (external) induction
on the structure of the type o, the required property:

E |E VM € P,. [o]m is well-complete.

Lemma 6 will be basic to the argument. To apply it, we crucially observe that, for
any Y¥-sentence ¢, it holds that ¢ € X. This is because any primitive-recursive
predicate determines a corresponding P € 2N, so any XV-sentence, ¢, is of the
form 3In € N. P(n) for some P € 2N, and therefore ¢ € X, by Theorem 1.3. We
consider just one case of the induction.

When o is ¢’ — 7', reasoning internally, take any M € Py, If [o! = 7'|p
is inhabited then there exists (a unique) (Ax. L) € Py, such that M = Az. L.
We claim that M = Az. L implies [o' — 7']as is well-complete. From which,



it follows, by Lemma 6, that [o' — 7] is well-complete as required (as the
proposition M = Az. L is a Y-property).
To prove the claim, observe that if M =— Az. L then

[[(7’ — TI]]M = ﬂNePuz nde[[tf’]]zv XNa

where
Xna = {felo’ = 71| fd)} — f(d) <" LIN/z]}.

As o' — 7'] is well-complete, it suffices, by Lemma 7, to show the well-
completeness of each set Xny. However, writing i for the inclusion function from
[7'1Linya) to [T'], and g for the function Af. f(d) : [o' = 7'] —— L[7'], we
have an evident pullback diagram:

Xng — L7 Lin/a

_
Li

[o" = '] —— L[7']

As the three vertices of the diagram being pulled back are well-complete (in
particular, L[7']1[n/,) is well-complete by the induction hypothesis on 7'), so is
the pullback Xng as required. This completes the proof of Lemma 4.
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