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There are two main approaches to obtaining ‘topological’ cartesian-closed categories. Under

one approach, one restricts to a full subcategory of topological spaces that happens to be

cartesian closed – for example, the category of sequential spaces. Under the other, one

generalises the notion of space – for example, to Scott’s notion of equilogical space. In this

paper, we show that the two approaches are equivalent for a large class of objects. We first

observe that the category of countably based equilogical spaces has, in a precisely defined

sense, a largest full subcategory that can be simultaneously viewed as a full subcategory of

topological spaces. In fact, this category turns out to be equivalent to the category of all

quotient spaces of countably based topological spaces. We show that the category is

bicartesian closed with its structure inherited, on the one hand, from the category of

sequential spaces, and, on the other, from the category of equilogical spaces.

We also show that the category of countably based equilogical spaces has a larger full

subcategory that can be simultaneously viewed as a full subcategory of limit spaces. This full

subcategory is locally cartesian closed and the embeddings into limit spaces and countably

based equilogical spaces preserve this structure. We observe that it seems essential to go

beyond the realm of topological spaces to achieve this result.

1. Introduction

It is important in computer science to reconcile topological and type-theoretic structure.

On the one hand, as has often been stressed, see, for example, Smyth (1992), topolog-

ical structure accounts for an abstract notion of observable property, and continuity

provides a mathematical alternative to computability, emphasising the finitary aspect of

computation whilst avoiding the technicalities of recursion theory. On the other hand,

type constructors, such as function space, arise fundamentally in both the syntax and

semantics of programming languages. The challenge for reconciling them is provided by

the well-known mathematical anomaly: the category, Top, of topological spaces is not

cartesian closed.
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nacional, a CVCP ORS scholarship, Consejo Nacional de Investigaciones Cientı́ficas y Técnicas, Fundación
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Of course very many reconciliations of this situation have been proposed. One pos-

sibility is to cut down the category of topological spaces to a full subcategory that

is cartesian closed. Some well-known examples are: Steenrod’s category of compactly-

generated Hausdorff spaces (Mac Lane 1971); the category, Seq, of sequential spaces

(which contains many computationally important non-Hausdorff spaces) (Hyland 1979b);

or the even larger category of quotients of exponentiable spaces considered in Day (1972).

However, the received wisdom about such categories is that their function spaces are

topologically hard to understand. It is much quoted that the exponential NB, where B
is Baire space, can never be first-countable (Hyland 1979b), whereas an ideal approach

from a computational viewpoint would allow effectivity issues to be addressed, and the

stricter requirement of second-countability is often claimed to be necessary for such, see,

for example, Smyth (1992).

A second alternative is to expand the category Top by adding new objects and hence

new potential exponentials. Again there are many ways of doing this. A very elegant

construction is to take the regular completion of Top (as a left-exact category) or the

related exact completion (Birkedal et al. 1998; Carboni and Rosolini 2000; Rosolini 2000).

The regular completion has a straightforward description as a category of equivalence

relations on topological spaces, whose importance (in the case of T0 spaces) was first

recognised by Dana Scott (Bauer et al. 1998). Following Scott, we call such structures,

consisting of spaces together with equivalence relations, equilogical spaces (although we

do not make the restriction to T0 spaces), and we call the associated category Equ. Not

only is Equ cartesian closed, but recent investigations have shown that other approaches

to expanding Top to a cartesian-closed category (such as Hyland’s filter space approach

(Hyland 1979b)) can be naturally embedded within Equ (Hyland 1979a; Heckmann 1998;

Rosolini 2000). A further important feature of Equ is that its full subcategory, ωEqu, of

countably based equilogical spaces is also a cartesian-closed category (with its structure

inherited from Equ). This fact allows equilogical spaces to support an analysis of effectivity

at higher types. It is also the basis of an interesting connection with realizability semantics.

The category ωEqu is equivalent to the category of assemblies over the combinatory

algebra Pω defined by Scott in Scott (1976).

In this paper we demonstrate an interesting connection between the subcategory and

supercategory approaches to achieving cartesian closure. We first show that the categories

Top and ωEqu share, in a precisely defined sense, a largest common full subcategory. This

category, PQ, turns out to be none other than the full subcategory of Top consisting of

all quotient spaces of countably based topological spaces. This includes, of course, all

the countably based spaces themselves. The following diagram depicts the relationship

between the categories mentioned above (the square does not commute).

ωTop ⊂ - PQ ⊂ - Seq ⊂ - Top

ωEqu
?

∩

⊂ - Equ
?

∩
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The remarkable fact is that PQ is also bicartesian closed (with finite limits). As a category

of topological spaces, PQ inherits its bicartesian-closed structure from Seq (which contains

all quotients of countably based spaces). Similarly, as a category of equilogical spaces,

PQ inherits its bicartesian-closed structure from Equ. Thus one may conclude that, at

least for (iterated) exponentials over countably based spaces, the subcategory approach, as

exemplified by Seq, and the supercategory approach, as exemplified by Equ, give equivalent

ways of modelling continuity at higher types.

On the other hand, ωEqu supports a still richer type structure: it is locally cartesian

closed. It seems that no non-trivial topological subcategory can share this richer structure

(we give a partial result to this effect in Section 9.1). However, we can, nonetheless, obtain

an extensional account of local cartesian closure using the category Lim of Kuratowski

limit spaces, into which Seq fully embeds. By analogy with the earlier results, we show

that:

— Lim and ωEqu share a largest common full subcategory, PQL;

— PQL is locally cartesian closed;

— the embeddings of PQL into Lim and ωEqu preserve the locally cartesian closed

structure.

2. Topological subcategories of equilogical spaces

D. S. Scott introduced the category of Equilogical spaces as a simple extension with very

good properties of the category of T0 topological spaces. The idea generalises immediately

from T0 spaces to arbitrary spaces and in the present paper we use the term equilogical

space to mean this natural generalisation.

Definition 2.1.

1 An equilogical space is a pair (X,∼) where X is a topological space and ∼ is an

arbitrary equivalence relation on the underlying set of X.

2 An equivariant map† φ : (X,∼X) → (Y ,∼Y ) is a function φ from the quotient set

X/∼X to the quotient set Y /∼Y that is realized by some continuous f : X → Y that

preserves the equivalence relations (that is, the diagram below commutes).

X
f - Y

X/∼X
??

φ
- Y /∼Y

??

We write Equ for the category of equilogical spaces and equivariant maps.

Scott’s interesting insight was that the category of equilogical spaces is cartesian closed

(Bauer et al. 1998). The proof made use of his old result that the injective objects in the

† In Bauer et al. (1998) the equivariant maps are defined as equivalence classes of equivalence-relation preserving

continuous functions, rather than as functions between quotient sets.
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category of T0 spaces, the continuous lattices, themselves form a cartesian-closed category

(Scott 1972). Subsequently, Carboni and Rosolini realised that the construction is an

example of a regular completion of a left-exact category, and that cartesian closure (and

even local cartesian closure) are obtained for very general reasons (Birkedal et al. 1998;

Carboni and Rosolini 2000; Rosolini 2000). The original T0 version of equilogical spaces

is just the regular completion of Top0 (the category of T0 spaces). Similarly, the category

Equ defined above is the regular completion of Top. In Section 8 we sketch a direct

proof of the cartesian closure of Equ using constructions from Bauer et al. (1998) and

Rosolini (2000). Yet another proof is presented in Rosický (1999).

The evident functor I : Top → Equ, mapping a topological space X to the equilogical

space (X,=), exhibits Top as a full subcategory of Equ. We call the objects (isomorphic

to those) in its image the topological objects of Equ. As Top is not cartesian closed, it

is clear that Equ also contains many non-topological objects, and some such objects can

be obtained by exponentiation from topological objects. One example is the object NB

(Hyland 1979b).

The inclusion functor I has a left-adjoint Q : Equ→ Top that maps an equilogical space

(X,∼) to the topological quotient X/∼. Thus Top is a full reflective subcategory of Equ.

The topological quotient functor Q has another important property: it is faithful. This

fact motivates the following definition of when a full subcategory of Equ can be viewed

as a ‘topological’ category (that is, as a category of topological spaces and all continuous

functions between them).

Definition 2.2. We say that a full subcategory C of Equ is topological if the (faithful)

composite functor C ⊂ - Equ
Q- Top is full.

In other words, C is topological if Q : Equ - Top cuts down to an equivalence between

C and a full subcategory of Top.

It is easily seen that the full subcategory of topological objects of Equ gives one

topological subcategory of Equ. Moreover, this category can be shown to be a maximal

(but not the maximum – see below!) topological subcategory of Equ: any strictly larger

full subcategory of Equ is not topological.

These remarks are hardly surprising. However, what is interesting about the notion

of topological subcategory is that there exist other topological subcategories of Equ

that contain non-topological equilogical spaces amongst their objects (and are hence

incomparable with the maximal topological subcategory identified above). We shall see

that one such subcategory arises in a very natural way.

Let us consider what happens when equilogical spaces are restricted to equivalence

relations over countably based spaces. We say that a topological space is countably based

if there exists some countable base for its topology (Smyth 1992). Such spaces are also

known as second-countable spaces. We write ωTop for the category of countably based

topological spaces and ωEqu for the category of those equilogical spaces (X,∼) where X

is countably based. As mentioned in the introduction, ωEqu is cartesian closed with its

cartesian-closed structure inherited from Equ (see Section 8). From a computer science

viewpoint, the restriction to countably based spaces is natural, allowing ωEqu to be used

to formalise issues of effectivity at higher types.
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Clearly, the functor I : Top→ Equ cuts down to a functor I : ωTop→ ωEqu, identifying

(up to isomorphism) the topological objects in ωEqu. We also have the topological quotient

functor Q : ωEqu→ Top. Note that the image of Q does not land in ωTop as topological

quotients of countably based spaces are not in general countably based.

As with Equ, the topological objects of ωEqu form a topological subcategory of ωEqu.

The difference this time is that the topological objects do not form a maximal topological

subcategory. Instead, there is a unique maximal topological subcategory of ωEqu, including

all topological objects, but also containing many non-topological equilogical spaces.

Definition 2.3. We say that a full subcategory C of ωEqu contains ωTop if the functor

I : ωTop - ωEqu factors through the inclusion C ⊂ - ωEqu.

Theorem 1. There exists a unique largest topological full subcategory, C, of ωEqu contain-

ing ωTop. (That is, for any other topological full subcategory, C′, of ωEqu also containing

ωTop, the inclusion C′ ⊂ - ωEqu factors through the inclusion C ⊂ - ωEqu.)

In order to prove the theorem, we define the largest topological subcategory explicitly.

Definition 2.4. We say that an object A (in any category) is projective with respect to a

map r : B → R if for every f : A→ R there exists some f : A→ B such that r.f = f.

Definition 2.5. We say that a morphism r : B → R in Top is ω-projecting if every countably

based space is projective with respect to it.

Definition 2.6. We write EPQ for the full subcategory of ωEqu consisting of those objects

(A,∼) for which the induced quotient A→ (A/∼) in Top is ω-projecting.

The acronym EPQ stands for Equilogical ω-Projecting Quotient.

Proof of Theorem 1. We show that EPQ is the category characterised by the theorem.

First, ωTop is trivially contained in EPQ. For the fullness of Q : EPQ → Top, suppose

we have f : (A/∼A) → (B/∼B) in Top where (B,∼B) is in EPQ. Then, as the quotient

qB : B → (B/∼B) is ω-projecting, there exists g : A → B such that qB. g = f. qA. Then g

realizes the equivariant map f : (A,∼A)→ (B,∼B). Thus EPQ is a topological subcategory

containing ωTop.

It remains to show that EPQ is the largest such subcategory. Suppose that an object

(B,∼) of ωEqu lies in some other such category C′. To show the quotient q : B → (B/∼)

is ω-projecting, suppose A is countably based and take any f : A→ (B/∼) in Top. As C′
contains ωTop, the object (A,=) is in C′. As C′ is a topological subcategory, the continuous

function f : A → (B/∼) gives an equivariant map φf : (A,=) → (B,∼) in ωEqu. Then

any realizer f : A → B for φf will satisfy qB.f = f. Thus, we have qB : B → (B/∼) is

ω-projecting.

It is not immediately obvious that EPQ is not just the category of all topological

objects of ωEqu. That this is not the case is given by the following surprising theorem,

whose proof will eventually be given in Section 8. A consequence of the theorem is that

the non-topological equilogical space NB (see Section 1) is an object of EPQ.
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Theorem 2. The category EPQ is bicartesian closed with finite limits. Moreover, the

inclusion functor EPQ ⊂ - ωEqu preserves this structure.

By its definition as a topological subcategory of Equ, we have that EPQ is equivalent to

a full subcategory of Top, which, because of the equivalence, must itself be cartesian closed.

Thus, even though exponentiation in EPQ goes outside the world of the topological objects

of Equ, it can nonetheless be viewed as a purely topological phenomenon. Accordingly, it

is of interest to give an explicit description of the equivalent topological category.

Definition 2.7. We write PQ for the full subcategory of Top consisting of those spaces Q

for which there exists a countably based space A together with an ω-projecting topological

quotient q : A -- Q.

The acronym PQ stands for ω-Projecting Quotient spaces. It is immediate from the

definitions that the functor Q : Equ → Top cuts down to the claimed equivalence of

categories Q : EPQ → PQ. In Sections 3–7 we shall prove the bicartesian closure of PQ

directly, culminating in Theorem 4 of Section 7. Theorem 2 will be derived from this in

Section 8.

Although the above definition of PQ is the one needed for the proof of Theorem 2,

the definition itself is not particularly satisfying, as it does not yield an easy method

of showing that a space is in PQ. The next result addresses this problem, and also

demonstrates that PQ is a more natural category than its definition, at first, suggests.

Theorem 3. PQ is the full subcategory of Top consisting of all quotient spaces of countably

based spaces.

The proof, for which Matthias Schröder provided the key idea, is given in Section 7.

We conclude the present section with some remarks and questions. The fact that PQ

is a cartesian-closed category consisting entirely of quotients of countably based spaces

is important as it offers a means of extending Weihrauch’s ‘Type 2’ computability to

higher-type computation. Furthermore, Scott’s approach to computability in countably

based algebraic lattices (Scott 1976) can be applied to ωEqu, and hence to EPQ. Thus

the equivalence between PQ and EPQ opens up the possibility of comparing Weihrauch’s

and Scott’s approaches. In fact, recent research programmes along these lines have been

carried out by Matthias Schröder (Schröder 2000b) and Andrej Bauer (Bauer 2000; Bauer

2001). See the Addendum to this paper for further discussion.

The potential relation to computability gives a computational motivation for the choice

of ωTop as the basis for the identification of EPQ as the category characterised by

Theorem 1. However, it is interesting to consider what variation is possible in this choice

of topological category. For any full subcategory T of Top, we can form the evident

full subcategory EquT of equilogical spaces over T. For any such category T, the proof

of Theorem 1 generalises to determine a largest topological subcategory LTT of EquT

containing T itself. As we have already mentioned, in the case that T is Top, we have LTTop

is equivalent to Top itself, hence LTTop is not cartesian closed. Why is it then that in the

case that T is ωTop, we do obtain a cartesian-closed category for LTT? We do not know

a good general answer to this question, but the choice of ωTop seems very constrained.
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For example, one can show that if T is the full subcategory κ-based topological spaces

for any cardinal κ > 2ω , then LTT is not a cartesian-closed subcategory of Equ. The

essential problem is that all such categories contain the equilogical space (NB,=) with the

exponential NB calculated in Seq, given which, the definition of topological subcategory

prevents the actual exponential (N,=)(B,=) in Equ from being in LTT (if it were in LTT,

it would have to be isomorphic in Equ to (NB,=), which is not the case).

However, there may be other ways of obtaining categories T such that LTT is a cartesian-

closed subcategory of Equ. Two possibilities for T that could be worth investigating are: the

category of first-countable spaces, cf. Franklin (1965); and the category of exponentiable

spaces, cf. Day (1972).

3. Sequential spaces and limit spaces

In this section we introduce the category Seq of sequential spaces (Franklin 1965), which

is a full subcategory of Top. We also introduce the category Lim of limit spaces in the

sense of Kuratowski (Kuratowski 1952). Although this category is not a subcategory of

Top, it does embed the category of sequential spaces. It is easy to prove that Lim is

cartesian closed because products and exponentials have straightforward definitions. We

use this to prove the known result that Seq is also cartesian closed and that it inherits

this structure from that in Lim (Day 1972; Hyland 1979b). These properties of Seq and

Lim will be used in Sections 4–7 to prove the cartesian closure of PQ.

3.1. Sequential spaces

The sequential spaces are those topological spaces whose topologies are determined by

sequence convergence. Explicitly, say that a sequence (xi) of elements of a set X is

eventually in a subset O ⊆ X if there exists l such that, for all i > l, xi ∈ O. Recall that,

in an arbitrary topological space X, a sequence (xi) is said to converge to a point x if, for

every neighbourhood of x, the sequence is eventually in the neighbourhood.

Definition 3.1. Let X be a topological space.

1 A subset O of X is sequentially open if every sequence converging to a point in O is

eventually in O.

2 A subset O of X is sequentially closed if no sequence in O converges to a point not in

O.

3 X is sequential if every sequentially open subset is open or, equivalently, if every

sequentially closed subset is closed.

Let Seq denote the category of sequential spaces and continuous functions. For sequential

spaces, the notion of continuity has a natural reformulation. In order to state it properly

we define a convergent sequence (with limit) to be a sequence (xi) together with a point

x such that (xi) converges to x. It is easy to check that a function f : X → Y between

sequential spaces is continuous if and only if it preserves convergent sequences.

There is another way of viewing convergent sequences. Let N+ denote the one point

compactification of the natural numbers. This has N ∪ {∞} as underlying set and its
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topology is given by the following base {{n} | n ∈ N} ∪ {{n, n + 1, ...,∞} | n ∈ N}.
That is, a sequence converges to some n ∈ N if and only if the sequence is eventually

equal to n. On the other hand, a sequence converges to ∞ if and only if, for all n, the

sequence is eventually greater than n. It is easily verified that, for any topological space

X, the convergent sequences in X are in one-to-one correspondence with the continuous

functions from N+ to X.

It is easy to check that every countably based space is sequential (as, indeed, is any

first-countable space). Thus ωTop is a full subcategory of Seq. Moreover, the embed-

ding ωTop ⊂ - Seq preserves countable products, countable coproducts and subspaces

(equalizers).

The set of sequentially open subsets of any topological space is a sequential topology.

This fact induces a functor Top → Seq, which is right adjoint to the embedding in the

opposite direction. That is, Seq is a full coreflective subcategory of Top. This shows that

Seq is complete and cocomplete and explains why, in Top, coproducts and quotients of

sequential spaces are again sequential spaces (Franklin 1965). It follows that every quotient

of a countably based space is sequential. Thus, in particular, PQ is a full subcategory of

Seq.

On the other hand, in contrast to the countably based case, subspaces and (even finite)

products (in Top) of sequential spaces, need not be sequential in general. Thus, products

in Seq do not always coincide with topological products. Similarly, regular subobjects in

Seq do not, in general, have the subspace topology.

3.2. Limit spaces

In order to gain a better understanding of the structure of Seq, we introduce the related

notion of Kuratowski limit space (Kuratowski 1952).

Definition 3.2.

1 A limit space consists of a set X together with a distinguished family of functions

(N ∪ {∞})→ X, called convergent sequences in X. We say that (xi) converges to x∞ in

X if the induced function (N ∪ {∞}) → X is one of the convergent sequences in X.

The convergent sequences must satisfy the following axioms:

(a) The constant sequence (x) converges to x.

(b) If (xi) converges to x, then so does every subsequence of (xi).

(c) If (xi) is a sequence such that every subsequence of (xi) contains a subsequence

converging to x, then (xi) converges to x.

2 A function between limit spaces is said to be continuous if it preserves convergent

sequences.

Actually, Kuratowski (Kuratowski 1952) imposed the further axiom that a sequence should

have at most one limit. The notion of limit space at the level of generality above seems to

have appeared first in Johnstone (1979) (where they are called subsequential spaces) and

Hyland (1979b) (where they are called L-spaces).
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When manipulating limit spaces, we usually write (xi) → x as a shorthand for (xi)

converges to x. We also write (xfi) for a subsequence of (xi), where f is tacitly assumed

to be an injective monotonic function from N to N.

It is easy to see that Seq is a full subcategory of Lim. The embedding assigns to each

sequential space, the limit space with same underlying set and as convergent sequences

those that converge topologically.

Viewed as a limit space, the one point compactification of the natural numbers, N+,

acts as a generic convergent sequence in Lim: convergent sequences, in any limit space X,

are in one-to-one correspondence with the continuous functions (in the limit space sense)

from N+ to X. This fact will be useful later in the proofs of Propositions 3.1 and 5.2.

Let Lim denote the category of limit spaces and continuous maps. In Johnstone (1979),

it is shown that it arises as the full and reflective subcategory of ¬¬-separated sheaves of a

Grothendieck topos. This fact implies that Lim is a quasitopos. Although we shall mainly

use properties of the categorical structure of Lim that are true in any quasitopos, it is

instructive to give an explicit description of finite limits, finite colimits and exponentials.

There is an evident forgetful functor Lim→ Set. It has a ‘chaotic’ right adjoint ∇ that

assigns to each set, the limit space with this underlying set and where every sequence

converges to every point. It also has a ‘discrete’ left adjoint that assigns to each set, the

limit space with this underlying set but where a sequence converges to a point if and only

if the sequence is eventually the constant sequence of that point.

The existence of these adjoints implies that the forgetful functor preserves limits and

colimits. This gives us the underlying sets of many constructions among limit spaces. The

corresponding convergent sequences are as follows.

Let X and Y be limit spaces. A sequence ((xi, yi)) of pairs converges to (x, y) in X × Y
iff (xi)→ x in X and (yi)→ y in Y .

A sequence (zi) converges in X + Y to an x ∈ X if there exists a k such that for each

j > k, zj ∈ X (that is, (zi) is eventually in X) and (zj)j>k converges to x in X, and similarly

for y ∈ Y .

The underlying set of Y X is the set of continuous functions from X to Y and (fi)→ f

if for each (xi)→ x in X, (fixi)→ fx in Y .

Monos are exactly those morphisms with injective underlying functions, and epis are

exactly those morphisms with surjective underlying functions.

A mono m : A→ X is regular if and only if (mai)→ ma in X implies (ai)→ a in A.

An epi q : X → Q is regular if and only if for each (zi)→ z in Q it holds that for every

subsequence (zαi) there exits a subsequence (zαβi) and a sequence (xi)→ x in X such that,

for each i, qxi = zαβi and qx = z.

3.3. Seq as a reflective subcategory of Lim

We say that a limit space is topological if it lies in the image of the embedding of Seq in

Lim. Such limit spaces are easily characterised explicitly. We say that a subset U of the

underlying set of a limit space X is sequentially open if every sequence in X converging

to a point in U is eventually in U. We say that a sequence (xi) topologically converges to

a point x in X if, for every sequentially open subset U containing x, the sequence (xi)
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is eventually in U. Clearly, (xi) → x implies (xi) topologically converges to x. The limit

space X is topological if and only if the converse holds, that is, X is topological if and

only if convergence agrees with topological convergence.

Underlying the above characterisation is a reflection functor from Lim to Seq. The

family of sequentially open subsets of a limit space forms a topology and the resulting

topological space is sequential. This operation determines a functor F : Lim → Seq

that is left adjoint to the embedding in the opposite direction (Johnstone 1979; Hyland

1979b). An immediate consequence of this is that the embedding preserves products and

equalizers. Also, using the explicit description of coproducts in Lim, it is easy to see that

the embedding also preserves coproducts. We shall use these facts later.

In the proof of Corollary 10.2 of Hyland (1979b), the following property of the reflection

is stated as obvious. We thought it worth giving a proof.

Proposition 3.1. The left adjoint F : Lim→ Seq preserves finite products.

Proof. It is clear that F(X ×Lim Y ) and FX ×Seq FY have the same underlying set

and that the identity function F(X ×Lim Y ) → FX ×Seq FY is continuous. So we need

only prove that every open in F(X ×Lim Y ) is open in FX ×Seq FY , that is, that every

sequentially open subset of X ×Lim Y is a sequentially open subset of FX ×Lim FY (as

the inclusion from Seq to Lim preserves products).

By the symmetry of product, it suffices to prove that if a subset W ⊆ X ×Lim Y

is sequentially open, then W is sequentially open in X ×Lim FY . Suppose then that

((ai, bi)) → (a, b) in X ×Lim FY where (a, b) ∈ W . As {x ∈ X | (x, b) ∈ W } is sequentially

open in X, there exists an m such that, for all i > m, (ai, b) ∈W . Write a∞ for a and define

V = {y ∈ Y | for all j with m 6 j 6 ∞, (aj , y) ∈W }.

We now prove that V ⊆ Y is sequentially open. Suppose for contradiction that, in Y ,

(yi) → y ∈ V but (yi) is not eventually in V . Then, there exists a subsequence ygi → y

in Y with each ygi not in V . So for each i there exists fi with m 6 fi 6 ∞ such that

(afi, ygi) is not in W . The sequence (fi) is an arbitrary sequence of elements of N+. By

the compactness of N+, (fi) has a converging subsequence in N+, (fhi) → j for some j

with m 6 j 6 ∞. But then we have that (afhi) → aj in X and that (yghi) → y in Y . So

((afhi, yghi))→ (aj , y) in X ×Lim Y .

But (aj , y) ∈ W , as y ∈ V . Yet for no i is (afhi, yghi) in W . This contradicts the

assumption that W is sequentially open in X ×Lim Y . So V is sequentially open.

Then (bi) is eventually in V . Hence, ((ai, bi)) is indeed eventually in W , proving that W

is sequentially open.

By an elementary categorical argument (Freyd and Scedrov 1990, 1.857), it follows that

Seq is an exponential ideal of Lim (that is, if X is a sequential space and Y is a limit space,

the object XY of Lim is topological). This means, in particular, that Seq is a cartesian-

closed category, and that the embedding Seq ⊂ - Lim preserves the cartesian-closed

structure.
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4. Pre-embeddings and pre-extensional spaces

In this section we introduce the notion of a pre-embedding and use it to give an abstract

characterisation of sequential spaces as a subcategory of Lim. Pre-embeddings will also

be important later for obtaining injectivity results.

A continuous f : X → Y between topological spaces is a (topological) pre-embedding

if for every open U in X there exists an open V in Y such that f−1V = U. Notice that

if f : X → Y is a pre-embedding and Y is countably based, then X is countably based.

Also, consider the following fact whose easy proof we omit.

Proposition 4.1. Let f : X → Y be a pre-embedding between topological spaces. If (fxi)

converges to fx in Y , then (xi) converges to x in X.

This proposition suggests how to formulate the notion of pre-embedding between limit

spaces.

We say that a map f : X → Y in Lim is a Lim-pre-embedding if (fxi) → fx in Y

implies (xi)→ x in X. Note that a map in Lim is a regular mono if and only if it is both

mono and a Lim-pre-embedding. In fact, Lim-pre-embeddings in general share many of

the properties of regular monos.

Proposition 4.2. Let f : X → Y be a Lim-pre-embedding.

1 If g : Y → Z is also a Lim-pre-embedding, the composition g.f is too.

2 For an arbitrary h : Z → Y , the pullback h∗f of f along h is a Lim-pre-embedding.

3 If f′ : X ′ → Y ′ is a Lim-pre-embedding, the product f × f′ is also.

4 For any object Z , fZ : XZ → Y Z is a Lim-pre-embedding.

Proof. The first two are easy calculations, and the third follows from them. The last is

also easy, but we will give it explicitly as an example. Let (fZhi)→ fZh in Y Z . We want

to prove that (hi) → h in XZ . To do this, let (zi) → z in Z . Then ((fZhi)zi) → (fZh)z.

That is, (f(hizi))→ f(hz). As f is a Lim-pre-embedding, (hizi)→ hz. So, in fact, (hi)→ h.

Hence, as required, fZ is also a Lim-pre-embedding.

It is worth noting that Lim-pre-embeddings have a nice categorical characterisation from

which the above properties follow. Recall the ‘chaotic’ inclusion ∇ : Set → Lim and for

any limit space X, let ∇X be the corresponding chaotic limit space; also let X → ∇X be

the unit of the adjunction and ∇f : ∇X → ∇Y be the reflection of f. A map f : X → Y

is a Lim-pre-embedding if and only if the following square is a pullback.

X
f - Y

∇X
? ∇f- ∇Y

?

As we have already said, in Top, subspaces of sequential spaces need not be sequential.

The following may then come as a surprise.
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Proposition 4.3. Let X be a sequential space and let f : A→ X be a Lim-pre-embedding.

Then:

1 A is topological.

2 If X is countably based, then f is a topological pre-embedding.

Proof. To prove 1 we are going to show that if (ai) is eventually in every sequentially

open neighbourhood of a, then (ai) → a in A. In order to do this, let U be an open

neighbourhood of fa. As f−1U is sequentially open, (ai) is eventually in f−1U. Then,

(fai) is eventually in U. As X is topological, this means that (fai) → fa in X. As f is a

pre-embedding, (ai)→ a in A.

To prove 2 we are going to use the following property of countably based spaces: the

closure of any subset is obtained by adding the limits of all convergent sequences in the

subset. Moreover, we are going to use the characterisation of sequential spaces in terms

of closed sets.

By 1, we know that A is topological. We now show that if U ⊆ A is sequentially closed,

then there exists a sequentially closed V ⊆ X such that f−1V = U.

Suppose U is sequentially closed. Now take the closure fU of fU, the image of U

under f. We are going to prove that U = f−1fU. Trivially U ⊆ f−1fU. For the other

inclusion, let fa ∈ fU. As X is countably based, there exists a sequence (fai) in fU such

that (fai)→ fa. As f is a pre-embedding, (ai)→ a. As U is closed, a ∈ U. So U = f−1fU.

Actually, property 2 holds for every space that satisfies the condition mentioned in the

proof. Such spaces are known as Fréchet spaces (Franklin 1965).

By Propositions 4.1 and 4.3, it follows that it is irrelevant to distinguish between

topological and Lim-pre-embeddings into countably based spaces.

Corollary 4.1. In Lim:

1 Regular subobjects of topological objects are topological (though they need not have

the subspace topology).

2 However, regular subobjects of countably based spaces are in one-to-one correspon-

dence with topological subspaces.

We conclude this section with an application of pre-embeddings in order to obtain an

abstract characterisation of the topological objects in Lim. This characterisation will play

a surprising role in the proof of Theorem 3 in Section 7.

Let Σ be Sierpinski space (that is, the two element space {⊥,>} with the singleton {>}
as the only non-trivial open). It is an easy fact in topology that the continuous functions

from any topological space X to Σ are in one-to-one correspondence with the open subsets

of X. Similarly, Σ is also a limit space and the maps from any limit space X to Σ are in

one-to-one correspondence with the sequentially open subsets of X.

By the last observation, ΣX in Lim is an object of sequentially open subsets of a limit

space X. Moreover, as Seq is an exponential ideal of Lim, the object ΣX is topological.

(Warning – in general, its topology is not the Scott topology!) For any limit space X let

Ω : X → ΣΣX

denote the transpose of the evaluation map. If X is topological, it is easy
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to check that Ω is mono if and only if X is a T0 space. It is useful to consider a stronger

property of Ω.

Definition 4.1. A limit space X is extensional if Ω : X → ΣΣX

is a regular mono. It is

pre-extensional if the map is a Lim-pre-embedding.

The terminology is taken from Hyland (1991).

As ΣΣX

is topological, by Proposition 4.3, it follows that so is any pre-extensional object.

Moreover, if X is extensional, then Ω : X → ΣΣX

is also mono, so X is T0.

Recall that F : Lim→ Seq is the reflection functor.

Proposition 4.4. If (Ωxi)→ Ωx in ΣΣX

then (xi)→ x in FX.

Proof. Let O be sequentially open in X and x ∈ O. It is clear that (O) → O in ΣX .

Then, as (Ωxi)→ Ωx, ((Ωxi)O)→ (Ωx)O. That is, ((Ωxi)O) must be eventually >. In other

words, (xi) must be eventually in O. So (xi)→ x in FX.

So, if X is a sequential space, Ω : X → ΣΣX

is a Lim-pre-embedding.

Corollary 4.2. In Lim:

1 The full subcategory of pre-extensional objects is equivalent to Seq.

2 The full subcategory of extensional objects is equivalent to the category of T0 sequential

spaces.

5. Projectivity

Recall the notion of ω-projecting map used to define PQ in Section 2. As ωTop is

a full subcategory of Seq and hence also of Lim, it is clear that we can also define

the ω-projecting maps in any of these categories. We shall be mainly interested in the

ω-projecting maps in Lim, and their relationship to ω-projecting quotients in Top.

We first prove some closure properties of ω-projecting maps.

Proposition 5.1. Let f : X → Y be an ω-projecting map in Lim.

1 If g : Y → Z is also ω-projecting, the composition g.f is also.

2 For an arbitrary h : Y ′ → Y , the pullback h∗f of f along h is ω-projecting.

3 If f : X ′ → Y ′ is ω-projecting, the product f × f′ is also.

4 If B is a countably based space, fB : XB → Y B is ω-projecting.

Proof. Statement 1 is straightforward.

To prove 2, let f′ : X ′ → Y ′ be the pullback of f along any h : Y ′ → Y . For any

g : A → Y ′ where A is countably based, let g′ : A → X be such that f.g′ = h.g (as

given by f being ω-projecting). Let g : A→ X ′ be given by the universal property of the

pullback. Then f′.g = g, as required.

Statement 3 is a consequence of 1 and 2.

To prove 4, consider any map g : A → Y B where A is countably based. Take the

exponential transpose h : A× B → Y and extend to h : A× B → X such that f.h = h (as
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f is ω-projecting). Defining g : A → XB as the exponential transpose of h, we have that

fB.g = g, as required.

Now observe that, by our explicit description of regular epis in Lim (given in Section

3.2), if N+ is projective with respect to a map h, then h is a regular epi. As N+ is countably

based, we obtain the following proposition.

Proposition 5.2. If q : X - Y is ω-projecting, it is a regular epi.

By the previous two propositions, if q : X → Y is ω-projecting in Lim, then, for every

countably based space A, the map qA : XA → Y A is a regular epi. Note that the converse

holds trivially. Thus we have that q : X → Y is ω-projecting if and only if, for every

countably based space A, the following property holds in the internal logic of Lim†:

Lim |= (∀f ∈ Y A)(∃f ∈ XA)(f = q.f)

Thus the original external notion of being ω-projecting is equivalent to its natural internal

analogue.

In section 7 we are going to prove the cartesian closure of PQ, by working inside Lim

and using the closure properties of ω-projecting maps. In order to do this, we need to

study what projecting quotients in Top look like from the perspective of Lim.

Proposition 5.3. Let r : B → R be a continuous function between sequential spaces. The

following are equivalent:

1 r : B → R is ω-projecting in Top.

2 r : B → R is an ω-projecting quotient in Top.

3 r : B → R is ω-projecting in Lim.

Proof. As Seq is a full subcategory of both Top and Lim, it is clear that 1 and 3 are

equivalent and that 2 implies both of them.

We now prove that 3 implies 2. By the previous proposition, r is a regular epi in Lim.

But the functor Lim → Seq → Top has a right adjoint and so preserves regular epis. As

B and R are sequential spaces, the functor maps r to the continuous function r : B → R

in Top. Therefore r is a regular epi in Top, that is, it is a topological quotient.

Beware, in Top (unlike in Seq), there exist ω-projecting maps, which are not necessarily

between sequential spaces, that are not topological quotients.

6. Injectivity

In order to prove the cartesian closure of PQ, we need to investigate injectivity, the dual

notion to projectivity.

Definition 6.1. In any category, we say that an object X is injective with respect to a map

g : Y → Z if for every f : Y → X there exists f : Z → X such that f = f.g.

† As Lim is a quasitopos it has a full first-order intuitionistic internal logic. However, the property in question

can be interpreted more generally in any cartesian-closed regular category.
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We shall be interested, in particular, in objects that are injective with respect to all

pre-embeddings between countably based spaces. (Recall from Section 4 that topological

pre-embeddings and Lim-pre-embeddings agree between countably based spaces.) In Lim,

such injective objects are related to ω-projecting maps as follows.

Proposition 6.1. In Lim, E is injective with respect to pre-embeddings between countably

based spaces if and only if, for every pre-embedding a : A→ B between countably based

spaces, Ea : EB → EA is ω-projecting.

Proof. For the ‘if ’ direction, suppose Ea is ω-projecting. Then, given any f : A→ E, we

obtain g : 1→ EA by exponential transpose, then g : 1→ EB because Ea is ω-projecting,

and then f : B → E again by exponential transpose. The equation f.a = f is easily

verified.

For the ‘only if’ direction, suppose E is injective with respect to pre-embeddings

between countably based spaces, and let a : A → B be a pre-embedding between two

countably based spaces. Take any f : C → EA where C is countably based. We then

obtain g : A × C → E (by exponential transpose), whence g : B × C → A (because

a × idC : A × C → B × C is a pre-embedding between countably based spaces by

Proposition 4.2), whence f : C → EB (again by exponential transpose). The equation

Ea.f = f is easily verified.

In Scott (1972), Dana Scott introduced the continuous lattices, and characterised these as

the injective objects with respect to subspace embeddings in the category of T0 topological

spaces. Martı́n Escardó pointed out to us that, in Top itself, the continuous lattices are,

more generally, injective with respect to topological pre-embeddings. (Note that the

topological pre-embeddings between T0 spaces are exactly the subspace embeddings.)

For our purposes, we require only a convenient collection of injective objects in ωTop.

Although we could work with countably based continuous lattices, it suffices to restrict

attention to the (even more manageable) algebraic lattices. We assume that the reader is

familiar with the definition of these (Davey and Priestly 1990; Gierz et al. 1980). We shall

only sketch the various constructions on algebraic lattices that we shall require.

Proposition 6.2. Every algebraic lattice is injective with respect to every topological pre-

embedding.

Proof. Let a : X → Y be any topological pre-embedding. Suppose D is an algebraic

lattice. Consider any f : X → D. Then the extension f : Y → D is defined by

f(y) =
⊔{l

f(a−1U) | U is an open neighbourhood of y
}
.

The proof that this is a continuous extension of f is identical to the standard proof of the

injectivity of continuous lattices with respect to subspace embeddings between T0 spaces

(Scott 1972).

Proposition 6.3. Every topological space can be topologically pre-embedded into an alge-

braic lattice. Moreover, every countably based space can be pre-embedded in a countably

based algebraic lattice.
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Proof. For any topological space X, construct the algebraic lattice D as the set of all

filters of opens ordered by inclusion. The function mapping x to its neighbourhood filter

is a topological pre-embedding (with respect to the Scott topology on D).

For a countably based space, choose a countable base containing the empty set and the

whole set. Construct D as the set of filters of basic opens ordered by inclusion. The pre-

embedding is given by the function mapping x to its filter of basic open neighbourhoods.

7. Bicartesian closure

In this section we finally prove, as Theorem 4, that PQ is a full bicartesian-closed

subcategory of Seq, and we also prove Theorem 3.

We write ωAlg for the category of countably based algebraic lattices. It is well known

that ωAlg is cartesian closed (Davey and Priestly 1990; Gierz et al. 1980). We assume that

the reader is familiar with the construction of exponentials in this category. In particular,

for compact elements a ∈ D and b ∈ E of any two objects D,E in ωAlg, we write

(a↘ b) : D → E for the related step function. Explicitly,

(a↘ b)d =

{
b if a 6 d
⊥ otherwise.

Lemma 7.1. The embedding S : ωAlg→ Lim is a cartesian closed functor.

Proof. The embedding S assigns to each countably based algebraic lattice the corre-

sponding space with the Scott topology. It is easy to see that it preserves products. Now,

for D,E countably based algebraic lattices, it is also clear that S(ED) and SESD have the

same underlying set, so we need only prove that they have the same convergent sequences.

So, let (fi)→ f in S(ED) and let (xi)→ x in SD. We must show that (fixi)→ fx in SE. In

order to do this, given any compact e 6 fx, we will prove that (fixi) is eventually above e.

So, let (ai) be an ascending sequence of compact elements such that
⊔
ai = x. Then,

f(
⊔
ai) =

⊔
fai = fx. So there exists an m such that e 6 fam. That is, (am ↘ e) 6 f.

As am is compact, there exists L such that for all j > L, we have xj > am. On the other

hand, as (am ↘ e) is compact, there exists L′ such that for all j > L′, fj > (am ↘ e). Now

let M = Max{L, L′}. For all j > M, fj > (am ↘ e), so e 6 fjam. Also, am 6 xj , and then

fjam 6 fjxj . So e 6 fjxj . That is, (fixi) is eventually above e.

We now prove the converse, so assume (fi)→ f in SESD . For any compact c 6 f we will

show that (fi) is eventually above c. Actually, as it is known that the compact elements

are finite joins of step functions, it is enough to prove that (fi) is eventually above (a↘ b)

for compact elements a, b in D and E, respectively, such that (a ↘ b) 6 f. To see this,

consider the sequence that is constantly a. By hypothesis, (fia) → fa. As (a ↘ b) 6 f if

and only if b 6 fa, it follows that (fia) is eventually above b. That is, there exists L such

that for all j > L, fja > b. Then, for all j > L, (a↘ b) 6 fj .

Theorem 4. The category PQ is bicartesian closed with finite limits. Moreover, the inclu-

sion PQ ⊂ - Seq preserves this structure.
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Proof. As the inclusion from Seq to Lim preserves finite limits, exponentials and

coproducts, it suffices to show that PQ inherits all the specified structure from Lim.

Let Q and R be in PQ. Then, there exist ω-projecting maps q : A→ Q and r : B → R

in Lim with A and B countably based.

To prove that Q×R is in PQ, just recall that Q×R is topological, that A×B is countably

based and that ω-projecting maps are closed under products in Lim, by Proposition 5.1.

Thus, by Proposition 5.3, Q× R is an ω-projecting quotient of A× B in Top.

For equalizers, we show that any regular subobject m : Q′- - Q (in Lim) of Q is in

PQ. Construct the pullback

A′- - A

Q′

q′

↓↓
- m - Q

q

↓↓

Then A′ is countably based and Q′ is topological, both by Corollary 4.1, and q′ is ω-

projecting, by Proposition 5.1. Again, by Proposition 5.3, Q′ is an ω-projecting quotient

of A′ in Top.

For coproducts, Q+R is topological and A+B is countably based, so, by Proposition 5.1,

we need only prove that (q + r) : A+ B → Q+ R is ω-projecting. So, let C be countably

based and take any h : C → Q+ R.

As coproducts are stable, we get that C is isomorphic to F + G and h is isomorphic to

f + g in the following diagram:

F-
inF - C �

inG �G

Q

f

?
- inQ- Q+ R

h

?
�inR �R

g

?

As C is countably based and the injections are regular monos, F and G are countably

based. Then, as q and r are projecting, there exist f : F → A and g : G → B such

that q.f = f and r.g = g. So we have h = f + g : C ∼= F + G → A + B such that

(q + r).h = h.

Now we consider exponentials. Let q : A→ Q and r : B → R be as before. As Seq is an

exponential ideal of Lim, RQ is topological. So, by Proposition 5.3, it suffices to construct

an ω-projecting map e : [A,B]→ RQ from a countably based space [A,B].

Using Proposition 6.3, let A and B arise as domains of pre-embeddings a : A→ D and

b : B → E into ω-algebraic lattices D and E.
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We define [A,B] by taking pullbacks as follows:

[A,B]-
χ- 〈A,B〉 ψ - ED

BA

d

↓↓
bA - EA

Ea

↓↓

RQ

e

↓↓
- Rq - RA

rA

↓↓

As b is a pre-embedding between countably based spaces, it is a Lim-pre-embedding by

Proposition 4.1. By Proposition 4.2, bA is also, and so ψ is too. By Lemma 7.1, ED is

countably based, so 〈A,B〉 is countably based too.

As E is injective with respect to pre-embeddings between countably based spaces, we

have by Proposition 6.1 that Ea is ω-projecting. It then follows by Proposition 5.1, that

d, rA, rA.d and finally e are ω-projecting. So, in order to prove that RQ is in PQ, we

need only prove that [A,B] is countably based. To see this, notice that as the functor R( )

carries colimits to limits, and q is a regular epi (by Proposition 5.2), then Rq : RQ → RA

is a regular mono. Then χ is also, and as 〈A,B〉 is countably based, [A,B] is countably

based too.

As EPQ is equivalent to PQ, we obtain the following.

Corollary 7.1. EPQ is bicartesian closed with finite limits.

We conclude this section with the proof of Theorem 3. The proof is a minor adaptation

of the proof of a closely related result by Matthias Schröder (private communication).

Theorem 3 is an immediate consequence of Proposition 7.1 below, which says that every

quotient of a countably based space has an ω-projecting countably based ‘cover’.

Lemma 7.2. Suppose Q is a quotient of a countably based space and R is in PQ. Then

RQ (calculated in Seq) is in PQ.

Proof. The assumptions give a quotient q : A → Q and an ω-projecting quotient

r : B → R with A,B countably based. Construct the map e : [A,B]→ RQ as in the proof

of closure under exponentials for Theorem 4. As q is a quotient in Top, it is the coequaliser

of its kernel pair, which, because A is countably based, has countably based domain. Thus

q is the coequaliser in Top of maps between countably based (hence sequential) spaces.

Then, as Seq is a full coreflective subcategory of Top, q also coequalises these maps in

Seq, so q is a regular epi in Seq. This allows the above proof that e : [A,B] → RQ is

ω-projecting to go through (without the assumption that q is ω-projecting).

Proposition 7.1. If Q is a quotient of a countably based space, there exists an ω-projecting

quotient q : A→ Q with A countably based.
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Proof. As in Section 4, let Σ be Sierpinski space. By the above lemma (twice), ΣΣQ

is

in PQ. Thus there exists an ω-projecting quotient q : B → ΣΣQ

with B countably based.

By Corollary 4.2, Ω : Q→ ΣΣQ

is a Lim-pre-embedding. Then the pullback Ω∗q : A→ Q

is an ω-projecting quotient, by Proposition 5.1. Moreover, q∗Ω : A → B is a Lim-pre-

embedding, by Proposition 4.2, and thus A is indeed countably based, by Proposition 4.3.

8. Relating to equilogical spaces

To complete the proof of Theorem 2, it remains to show that the embedding of EPQ

in ωEqu preserves all the identified structure. By the description of finite limits and

coproducts in ωEqu, and the fact that countably based spaces are closed under these

operations, it follows that EPQ inherits this structure from ωEqu. It remains to prove

that the embedding EPQ → ωEqu preserves exponentials. For this, we need explicitly to

introduce the cartesian-closed structure on ωEqu. This is most easily done by considering

an equivalent category, introduced in Bauer et al. (1998).

Definition 8.1.

1 An assembly (over an algebraic lattice) M is a triple M = (|M|, δM, DM) such that

|M| is a set, DM is an algebraic lattice and δM is a function from |M| to the set of

non-empty subsets of DM .

2 A morphism between assemblies f : M → N is a function f : |M| → |N| such that

there exists a continuous f : DM → DN realizing f in the sense that for all m ∈ |M|
and d ∈ δM(m), we have fd ∈ δN(fm).

Let Ass be the category of assemblies over algebraic lattices and morphisms between

them. The proposition below appears in Remark 3.1 of Rosolini (2000).

Proposition 8.1. Ass and Equ are equivalent.

Proof. First define a functor E ′ : Equ → Ass. For any space X, let ηX : X → X̂ be its

representation as a chosen pre-embedding into an algebraic lattice. To each (X,∼X) in

Equ, assign (X/∼X, δX, X̂), where δX assigns to each [x] in X/∼X the non-empty subset

{ηx′ | x′ ∼ x} of X̂.

The action on maps is the identity (using Proposition 6.2 to see that this produces a

morphism between assemblies). It is easy to see that this functor is full and faithful.

The functor E : Ass → Equ is defined as follows. For an assembly M= (|M|, δM, DM),

let EM be the topological space with underlying set {(m, d) ∈ |M| × DM | d ∈ δMm} and

with the unique topology that makes the projection EM → DM into a pre-embedding. Let

∼EM be the equivalence relation defined by

(m, d) ∼EM (m′, d′) iff m = m′.

Define E(M) = (EM,∼EM ).

To define the action on arrows, note that EM/∼EM is isomorphic to M. So the action

of E on arrows is the identity up to the evident isomorphism.
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It is straightforward to check that this functor is also full and faithful and that together

with E ′ they give an equivalence between Ass and Equ.

The advantage of Ass over Equ is that its exponentials have an easy description. For

assemblies M,N let |NM | be the set of morphisms from M to N. Then, the exponential is

defined by NM = (|NM |, δNM , DN
DM ) where DN

DM is the exponential of algebraic lattices

and δNM (f : M → N) = {g : DM → DN | g realizes f}.
Let ωAss denote the category of assemblies between countably based algebraic lattices.

It is not difficult to see that the equivalence of the Proposition 8.1 cuts down to one

between ωAss and ωEqu so long as the choice of pre-embedding in the definition of E′
is chosen so as to preserve the countable base. Also, the description of exponentials in

ωAss is identical to that in Ass.

We can now prove that the embedding of EPQ in ωEqu preserves exponentials. To

calculate the exponential in EPQ, we use its equivalence with PQ.

Given objects (A,∼A) and (B,∼B) in EPQ, we write q : A → Q and r : B → R

for the induced ω-projecting regular epis in Lim. In Section 7, we constructed the ω-

projecting regular epi e : [A,B] → RQ and a pre-embedding c : [A,B] → B̂Â. Writing ∼
for the induced equivalence relation on the countably based space [A,B], we have that the

quotient [A,B]/∼ is isomorphic to the exponential RQ. As the equivalence EPQ → PQ

reflects exponentials, we obtain the following.

Proposition 8.2. In EPQ, (B,∼B)(A,∼A) is isomorphic to ([A,B],∼).

So we must prove the proposition below.

Proposition 8.3. In ωEqu, (B,∼B)(A,∼A) is isomorphic to ([A,B],∼).

Proof. We use the equivalence between ωAss and ωEqu. Calculate the exponential

E ′(B,∼B)E
′(A,∼A) = (R, δB, B̂)(Q,δA,Â) = (RQ, δ, B̂Â) where, for k ∈ RQ, we have δ(k) = {c(f) |

f ∈ [A,B] and e(f) = k}.
But ERQ is iso to [A,B] and the projection ERQ → B̂Â is a pre-embedding. Moreover,

ERQ/∼ERQ ∼= RQ, so the image of the exponential assembly above is isomorphic to

([A,B],∼). As the functor E is part of an equivalence, it preserves exponentials. So

([A,B],∼) is indeed the exponential of (A,∼A) and (B,∼B) in ωEqu.

Corollary 8.1. The embedding EPQ → ωEqu is a bicartesian-closed functor preserving

finite limits.

9. Lim-subcategories of ωEqu

The category PQ was characterised as the largest topological category (containing ωTop)

induced by the topological quotient functor Q : ωEqu → Top. It was shown to be a

bicartesian-closed category inheriting its structure from both Seq and ωEqu. However,

ωEqu is also locally cartesian closed, but, as we shall see in this section, PQ is not. In fact,

in order to achieve an extensional account of local cartesian closure, it seems essential

to go beyond the realm of topological spaces. Although PQ is the largest common full

subcategory of Seq and ωEqu, it turns out that ωEqu shares an even larger full subcategory
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with Lim. This larger category is locally cartesian closed and the embeddings into Lim

and ωEqu preserve this structure. Thus, via the use of limit spaces, this category offers an

extensional approach to understanding local cartesian closure within ωEqu.

For an equivalence relation ∼ on a limit space X we define the Lim-quotient to be

the limit space on the set-theoretic quotient X/∼ determined by the requirement that

the quotient function X → (X/∼) be regular epi in Lim. We can then define a functor

QL : ωEqu→ Lim that takes an object (A,∼) to its Lim-quotient. As with the topological

quotient functor, the functor QL is faithful. Thus, by analogy with Definition 2.2, we

say that a full subcategory C of ωEqu is a Lim-subcategory if the composite functor

C ⊂ - ωEqu
QL- Lim is full.

Let PQL be the full subcategory of Lim given by those limit spaces X for which there

exists a countably based A and an ω-projecting map A → X in Lim. Also, let EPQL be

the full subcategory of ωEqu given by those (A,∼) such that the Lim-quotient A→ (A/∼)

is ω-projecting.

Theorem 5.

1 EPQL is the largest Lim-subcategory of ωEqu containing ωTop.

2 PQL and EPQL are equivalent.

3 PQL is bicartesian closed with finite limits, and the embedding into Lim preserves this

structure.

4 The embedding of EPQL in ωEqu also preserves the above structure.

The proof of Theorem 5 follows exactly the lines of the proofs for PQ and EPQ (except

that the category Seq can be avoided altogether). Indeed, because of the correspondence

between ω-projectivity in Top and Lim for sequential spaces (Proposition 5.3) we obtain

the following corollary.

Corollary 9.1. PQ is a full subcategory of PQL. Moreover, the embedding preserves the

bicartesian-closed structure and finite limits.

The benefit of PQ is that it consists entirely of topological spaces, which are familiar

mathematical objects. However, the benefit of PQL over PQ is that the following theorem

holds, as we shall prove in this section.

Theorem 6.

1 PQL is locally cartesian closed, and the embedding into Lim preserves this structure.

2 The embedding of EPQL in ωEqu also preserves this structure.

In the next section (see discussion below Proposition 9.3) we show that achieving local

cartesian closure necessitates considering non-topological subcategories of ωEqu. This

remark relates to the observation of Normann and Waagbø (Normann and Waagbø

1998), who found that non-topological limit spaces are necessary for modelling dependent

types.

It is worth mentioning that it is possible to fully embed the whole of Lim in Equ by

composing the inclusion functors Lim - Fil (the category of filter spaces (Hyland
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1979b, Theorem 9.2)), and Fil - Equ (Rosolini 2000; Heckmann 1998). However, this

embedding is not cartesian closed, cf. Hyland (1979b).

9.1. Strong partial map classifiers in Lim

In this subsection we define strong partial map classifiers. It is a standard result in category

theory that cartesian closure and the existence of strong partial maps together imply local

cartesian closure (Proposition 9.1 below). Also in this subsection we describe the strong

partial map classifiers in Lim. These results will be used in the next subsection to prove

that PQL is locally cartesian closed.

Definition 9.1. A mono m : Y → Z is strong if for every epi e : X -- W and maps

g : X → Y and g′ : W → Z such that g′.e = m.g, we have that there exists a (necessarily

unique) h : W → Y such that m.h = g′ and h.e = g.

A strong partial map 〈m, f〉 : Y ⇀ X is a pair consisting of a strong mono m : Y ′ → Y

and a map f : Y ′ → X. (Normally, strong partial maps are equivalence classes of such

pairs, but we shall not be concerned with the equivalence of partial maps.)

Notice that in a category with epi/regular-mono factorizations, strong monos are

equalizers – for example, in Top.

Definition 9.2. A classifier for strong partial maps with codomain X is an object X̃ together

with a strong mono τ : X- - X̃ such that for every strong partial map 〈m, f〉 : Y ⇀ X

there exists a unique map χf : Y → X̃ such that the following square is a pullback.

Y ′ f - X

Y

m

?

?

χf
- X̃

τ

?

?

We say that a category has strong partial map classifiers if for every X it has a classifier

for strong partial maps with codomain X.

Proposition 9.1. If E is cartesian closed and has strong partial map classifiers, then E is

locally cartesian closed.

Proof. See, for example, Wyler (1991, paragraph 19.3).

Then, in order to prove that PQL is locally cartesian closed, it is enough to prove that

it has strong partial map classifiers. To do this, we first show that the strong monos in

PQL are exactly the regular monos in Lim between objects in PQL. We then describe

the strong partial map classifiers in Lim. In the next subsection we will prove that this

description also works in PQL.

Proposition 9.2. In any of the categories Lim, PQ and PQL, a mono m : Y → Z is strong

if and only if (myi)→ my in Z implies (yi)→ y in Y .
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Proof. In all the categories in the statement, monos are exactly the maps with an

underlying injective function. One then proves that the strong monos are exactly the

regular ones as follows. Let m : Y → Z be a strong mono. Now, assume that (myi)→ my

in Z; we need to prove that (yi)→ y in Y .

Let ∆N+ be the topological space with underlying set N ∪ {∞} and the discrete

topology. The identity function is obviously an epi map ∆N+ -- N+. Then define a

map ∆N+ → Y by sending n to yn and ∞ to y. Define also a map N+ → Y by sending n

to myn and ∞ to my. Then we have a square as below, which we can complete because m

is strong:

∆N+ id-- N+

	�
�
�
�
�

Y
?
-

m
- Z
?

But this means that (yi) converges to y.

For every limit space X, we define X̃ to have underlying set |X| ∪ ⊥ and the following

convergent sequences. First, every (zi) converges to ⊥. Then, for every z in X, (zi) converges

to z in X̃ if and only if for every subsequence (zαi) there exists a subsequence (zαβi) such

that one of the following holds:

1 (zαβi) is constantly ⊥ or

2 (zαβi) is inside X and it converges to z in X.

Proposition 9.3. For every X, X̃ is a limit space.

Proof. The first two axioms of Definition 3.2 are easy to prove.

For the third, let (zi) be such that for every subsequence (zαi) there exists a subsequence

(zαγi) that converges to z. If z =⊥, the axiom holds trivially because everything converges

to ⊥. So, let z ∈ X. By the definition of X̃, there exists a subsequence (zαγδi) satisfying one

of the conditions above. Then put β = γ.δ, and this proves that (zi) converges to z.

It is worth pointing out that the limit space X̃ is almost never topological, even when

X is. Indeed, if X̃ were topological, the only closed inhabited set would be the entirety of

X, as, for any x, the constant x sequence converges to ⊥ and the constant ⊥ sequence

converges to x. Thus the topology on X̃ would have to be the chaotic topology. But

this cannot be the case whenever X contains two distinct elements x, y with x not in the

closure of y, because then the constant y sequence does not converge to x in X̃ although

it does in the chaotic topology.

This example also shows that it is essential to go beyond topological spaces to achieve

local cartesian closure. The reason is that X̃ can be defined from X and ∇(1 + 1) (the

strong subobject classifier) using the local cartesian closed structure of Lim. Thus, any

locally cartesian closed subcategory of Lim containing 1 + 1 and ∇(1 + 1) must contain a

non-topological limit space.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 07 Jan 2014 IP address: 129.215.224.40

M. Menni and A. Simpson 762

Let τX : X- - X̃ be the evident regular mono embedding X into X̃.

Proposition 9.4. For every X in Lim, τX : X- - X̃ is a strong partial map classifier in

Lim.

Proof. Let 〈m, f〉 : Y ⇀ X be a strong partial map with m : Y ′- - Y . Define

χf : Y → X̃ by

χfy =

{
τ(fy) if y ∈ Y ′
⊥ otherwise.

To prove that χf is continuous, let (yi) → y in Y . If y 6∈ Y ′, then χfy =⊥, and hence

(χfyi) converges to χfy in X̃. So, let y ∈ Y ′ and consider a subsequence (χfyαi).

If (yαi) is eventually in Y ′, it has a subsequence (yαβi) that is completely inside Y ′. As

m is strong, (yαβi) converges to y in Y ′. Then (τ(fyαβi)) converges to τ(fy) in X̃. That is,

(χfyαβi) converges to χfy.

If (yαi) is not eventually in Y ′, there exists a subsequence (yαβi) that is completely

outside Y ′. So (χfyαβi) is a constant sequence of ⊥’s and hence converges to χfy.

This completes the proof that χf is continuous. It is not difficult to see that χf.m = τ.f.

To prove that the diagram in Definition 9.2 is a pullback square, let h : Z → Y and

g : Z → X be such that χf.h = τ.g. By the definitions of χf and τ, it follows that the image

of h is included in the image of m. As m is a regular mono, it follows that h factors as

h = m.h′ for a unique h′ : Z → Y ′.
On the other hand, τ.g = χf.h = χf.m.h

′ = τ.f.h′. As τ is mono, g = f.h′, and hence the

square is a pullback. In order to see that χf is the unique map that allows us to prove this,

note that there is no room for another definition. This is because the value on y ∈ Y ′ is

determined by the partial map and the value on y 6∈ Y ′ has to go to ⊥. This finishes the

proof that τ is a partial map classifier.

9.2. PQL is locally cartesian closed

In this subsection we prove that PQL is locally cartesian closed. In order to do this we

prove that it is closed under the formation of strong partial map classifiers. That is, if

q : A→ Q is ω-projecting in Lim with A ∈ ωTop, there exists an ω-projecting r : Ă→ Q̃

with Ă in ωTop.

An important part of the construction, though, does not depend on the topological

spaces involved being countably based. In fact, the essential parts of this construction will

be used later to describe the strong partial map classifiers in Equ.

For any topological space A, let a : A→ Â be the usual pre-embedding into an algebraic

lattice Â. Also, let |Ă| = |Â| + |A| and let Ă be the topological space with underlying set

|Ă| and topology given by the open sets of the form U ∪ {x | ax ∈ U} where U is open in

Â. The idea is to add to Â a copy of A in such a way that if x ∈ A and ax ∈ Â, then x

and ax have the same open neighbourhoods. Notice that if A is a countably based space,

we can find a countably based Â, and hence a countably based Ă.

In spite of Ă not being a coproduct, we still have continuous injections inA : A→ Ă and
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inÂ : Â → Ă that are, in fact, regular monos in Top. This remark restricts to countably

based spaces.

Lemma 9.1. For any topological space C and strong partial map 〈m, f〉 : C ⇀ A there

exists a (not necessarily unique) νf : C → Ă such that the following square is a pullback:

C0
f - A

C

m

?

?

νf
- Ă

inA

?

?

Proof. Consider the map a.f : C0 → Â. As Â is injective with respect to subspace

embeddings, there exists an f : C → Â such that a.f = f.m. Now define νf : C → Ă by

νfc =

{
inA(fc) if c ∈ C0

inÂ (fc) otherwise.

We now prove that νf is continuous. So, let V be open in Ă. Then V = U∪{x | ax ∈ U}
with U open in Â. So ν−1

f V = {c 6∈ C0 | fc ∈ U} ∪ {c ∈ C0 | afc = fmc ∈ U} = f
−1
U,

which is open because f is continuous.

To see that the square is a pullback, let j : D → C and k : D → A be such that

νf.j = inA.k. As the image of νf.j has to be included in the image of inA, it follows that

the image of f is included in the image of m. As m is a subspace embedding, j factors

through m via a (necessarily unique) j ′ : D → C0. Using the fact that inA is mono, one

proves that f.j ′ = k.

Proposition 9.5. If Q is in PQL, then so is Q̃.

Proof. Let q : A → Q be ω-projecting in Lim with A ∈ ωTop. First notice that as inA
is a regular mono, Ă �

inA�A
q-- Q is a strong partial map. Then we have a unique

r : Ă → Q̃ making the right-hand square in the second diagram below a pullback. We

now prove that this r is ω-projecting.

Let C be countably based, let g : C → Q̃ and take the following pullback:

C0
h - Q

C

m

?

?

g
- Q̃

τ

?

?

As q is ω-projecting, the map h : C0 → Q factors as q.f = h for some f : C0 → A.
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Then, Lemma 9.1 gives us a map νf and the left-hand pullback in the diagram below:

C0
f - A

q - Q

C

m

?

?

νf
- Ă

inA

?

?

r
- Q̃

τ

?

?

Both squares are pullbacks so the rectangle is. As τ is a strong partial map classifier,

the map r.νf is the unique one making the rectangle a pullback. But q.f = h, so r.νf = g.

Hence r is ω-projecting.

Corollary 9.2. PQL is locally cartesian closed and the embedding in Lim preserves this

structure.

Proof. The proof is by Proposition 9.1 and Proposition 9.5.

9.3. The preservation of the local structure

We now prove that the embedding of PQL into ωEqu preserves the locally cartesian

closed structure. In order to do this, we describe the strong partial map classifiers in

Equ. We indicate that the description restricts to ωEqu and show that the embedding

PQL → ωEqu preserves this structure. Then, as the cartesian closed structure is also

preserved, the construction of the exponentials in the slices coincides.

Using the equivalence between PQL and EPQL, it is easy to see that for any object

(A,∼A) in EPQL, the partial map classifier (̃A,∼A) is (Ă,∼Ă), where Ă is the topological

space associated to A as described before Lemma 9.1 and ∼Ă is the equivalence relation

given by:

1 For every x, x′ ∈ A, inAx ∼Ă inAx′ if and only if x ∼A x′.
2 For every z, z′ ∈ Â, inÂz ∼Ă inÂz′.

Moreover, the classifying map τ : (A,∼A) → (Ă,∼Ă) is just the induced quotient of

inA : A→ Ă, which clearly preserves the equivalence relations.

It is clear that we can construct such a τ : (A,∼A) → (Ă,∼Ă) for any equilogical space

(A,∼A). We now prove that these maps are strong partial map classifiers in Equ. As we

mentioned before, if A is countably based, we can find a countably based Ă. It will then

follow that the embedding PQL → ωEqu preserves strong partial map classifiers.

First we need a technical lemma on pullbacks in Equ. Before stating it, let us recall that

regular monos in (W,∼W )- - (Y ,∼Y ) in Equ can be described as subspace embeddings

m : W- - Y where ∼W is the restriction of ∼Y , and, moreover, W is closed under the

equivalence relation, that is, if mw ∼Y y′, then there exists (a necessarily unique, as m is

injective) w′ such that mw′ = y′.
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Lemma 9.2. Consider the following commutative square in Equ:

(W,∼W )
φ- (X,∼X)

(Y ,∼Y )

ψ

?

?

φ′
- (Z,∼Z )

ψ′

?

?

Suppose that ψ and ψ′ are realized by subspace embeddings m and n that are closed

under the equivalences ∼Y and ∼Z , respectively. Also, let φ and φ′ be realized by f and

g. Finally, assume that the following square is a pullback in Top:

W
f - X

Y

m

?

?

g
- Z

n

?

?

Then the first square is a pullback in Equ.

Proof. Let us first calculate the pullback (P ,∼P ) of ψ′ and φ′. The usual construction

of pullbacks in Equ gives that the underlying set of P is {(y, x) ∈ Y ×X | gy ∼Z nx}. But

we are going to find a more suitable representation.

Suppose that gy ∼Z nx. Then, as n is closed under ∼Z , we have that there exists an

x′ ∈ X such that nx′ = gy. Then, it must be the case that there is a (necessarily unique)

w in W such that mw = y.

So the underlying set of P can be described as {(w, x) ∈ W × X | g(mw) ∼Z nx}. The

topology of P is inherited from W × X and the equivalence relation is inherited from

∼W × ∼X .

Clearly, the continuous 〈id, f〉 : W → W × X factors through P . On the other hand,

there is an obvious projection π : P → W . We will show that these maps induce an

isomorphism between (W,∼W ) and (P ,∼P ).

Of course, π.〈id, f〉 = id : W →W .

On the other hand, 〈id, f〉(π((w, x) ∈ P )) = (w, fw). We want to show that fw ∼X x to

be able to conclude that (w, fw) ∼P (w, x). But as (w, x) is in P , we have that g(mw) ∼Z nx.

Then n(fw) ∼Z nx, so, as ∼X is the restriction of ∼Z , fw ∼X x. So (W,∼W ) is the pullback

in Equ.

Clearly, the proposition above restricts to ωEqu.

Now, as explained in Rosolini (2000), Equ is a quasitopos, so every strong mono in it

is an equalizer. We use this fact to prove the following proposition.

Proposition 9.6. τ : (A,∼A)- - (Ă,∼Ă) is a strong partial map classifier in Equ.
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Proof. Let ψ : (Y ′,∼Y ′ )- - (Y ,∼Y ) and φ : (Y ′,∼Y ′ ) - (A,∼A) be equivariant

maps in Equ with ψ a strong mono forming together a strong partial map.

By the description of equalizers in Equ, we can assume that ψ is realized by a subspace

embedding m : Y ′- - Y that is closed under the equivalence relation ∼Y . Moreover,

∼Y ′ is the restriction of ∼Y to Y ′. Also, let f : Y ′ → A realize φ.

By Lemma 9.1, we have a pullback square (of topological spaces) as follows:

Y ′ f - A

Y

m

?

?

νf
- Ă

inA

?

?

Let us check that νf preserves ∼Y .

1 If y ∼Y y′ are both in Y ′, then νf(my) = inA(fy) ∼Ă inA(fy′) = νf(my
′).

2 Now suppose that y ∼Y y′ are not in Y ′. Then it must be the case that both νfy and

νfy
′ are not in the image of inA : A→ Ă. Then, by the definition of ∼Ă, we have that

νfy and νfy
′ are related.

So, as claimed, νf preserves ∼Y .

Then it realizes a map χφ : (Y ,∼Y )→ (Ă,∼Ă). Hence, by Lemma 9.2, we have that the

following square is a pullback in Equ:

(Y ′,∼Y ′ ) φ- (A,∼A)

(Y ,∼Y )

ψ

?

?

χφ
- (Ă,∼Ă)

τ

?

?

Now we must prove that χφ is unique. So, let χ′ be any other such map and let

h : Y → Ă realize it. Then it must be the case that for every y ∈ Y ′, h(my) ∼Ă inA(fy).

But then, as inA(fy) = νf(my), we have h(my) ∼Ă νf(my). Also, for y 6∈ Y ′ it must be the

case that hy is in the image of inÂ. So, νfy ∼Ă hy in this case also. Hence, h realizes χφ,

and this implies that χφ = χ′.
This finishes the proof that τ is a strong partial map classifier in Equ.

Again, the proposition above restricts to ωEqu.

Corollary 9.3. The embedding EPQL → ωEqu preserves the local cartesian closed struc-

ture.

Proof. See the discussion at the beginning of this subsection (9.3).
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10. Conclusions

Our results have some immediate applications. For example, one readily sees that the

space of discrete natural numbers occurs as the natural numbers object in PQ and PQL,

and that the inclusions to Seq, Lim and Equ all preserve the natural numbers object. Thus

one gets that the type hierarchies over N in both Lim and Equ agree. It has long been

known that the type hierarchy over N in Lim is given by the Kleene/Kreisel continuous

functionals (Scarpellini 1971). Thus we have an alternative proof of the recent result

from Bauer et al. (1998) that the continuous functionals arise as the full type hierarchy

in Equ. More interesting is that a similar analysis applies to the full type hierarchy

over any countably based space. For example, the type hierarchy over the Euclidean

reals in Lim (see Normann (2000) for a detailed study of this hierarchy) coincides with

the hierarchy over the topological (projective) reals in Equ. Also, a similar analysis is

available for hierarchies of dependent types, the so called transfinite types (Normann

and Waagbø 1998) in PQL. Similar results relating type hierarchies in categories of

filter spaces to type hierarchies in Equ have appeared recently in Rosolini (2000) and

Heckmann (1998).

Our results and techniques bear comparison with recent work by Berger and Normann

on totality in type hierarchies, in which they relate intensional ‘totality’ structure on

Scott domains to extensional structure modelled either topologically or in limit spaces

(Berger 1993; Berger 1997; Normann 2000; Normann and Waagbø 1998). Our work is

similar in motivation. In fact, it seems that the techniques used in our proof of Theorem 4

generalise to give a categorical approach to proving some of their results. Also, our analysis

of largest common subcategories shared by the extensional and intensional approaches

provides a conceptual basis for understanding the ‘lifting theorems’ of Normann and

Waagbø (Normann and Waagbø 1998).

Another interesting connection is that the proof of Theorem 4 essentially gives a cate-

gorical approach to the logical relations known as partial surjective homorphisms, which

originated in Friedman’s completeness proof for the simply-typed λ-calculus (Friedman

1975). It seems that the notions of injectivity and projectivity form an abstract basis for

understanding such special logical relations.

The functor QL : ωEqu → Lim, investigated in Section 9, arises in a natural way that

yields connections with topos theory. The category ωEqu is the regular completion of

ωTop (as a left-exact category) and Lim is a regular category. Therefore the left-exact

inclusion ωTop ⊂ - Lim determines a regular functor from ωEqu to Lim. This functor

turns out to be QL. Interestingly, both ωEqu and Lim arise as the categories of double-

negation separated objects within containing toposes. In the case of ωEqu the associated

topos is the realizability topos RT(Pω), which is equivalent to the exact completion of

ωTop. In the case of Lim the topos is Johnstone’s ‘topological’ (Grothendieck) topos J
(Johnstone 1979). The characterisation of RT(Pω) as an exact completion yields an exact

functor from RT(Pω) to J extending QL. Thus the functor QL is part of an intriguing

larger relationship between two well-studied ambient toposes.

One possible application of PQ is to tame the ‘troublesome’ probabilistic powerdo-

main (Jung 1998). Using ideas from synthetic domain theory (Hyland 1991), one can
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find a natural left-exact cartesian-closed full subcategory of predomains within PQ.

This structure can be used to give an ‘internal’ definition of a predomain of con-

tinuous valuations on any predomain, that is, a candidate probabilistic powerdomain.

It seems plausible that, because of the representation of the objects of PQ as quo-

tients of countably based spaces, this powerdomain will address the problems raised in

Jung (1998).

Addendum

The work in this paper was first submitted in November 1999 after presentation at the

April 1999 MFCS in New Orleans. Since the original submission of the paper, several

other papers on closely related topics have appeared. In Bauer and Birkedal (2000),

dependent types in Equ are related to dependent types in domains with ‘totalities’ (Berger

1997). Taken together, Theorem 1 of Bauer and Birkedal (2000), Theorem 4 of Nor-

mann and Waagbø (1998) and our Theorem 6 provide a satisfying picture of dependent

types, showing that the constructions coincide in many prima facie different models.

However, it is worth noting that our Theorem 6 also applies to many spaces, such as

the reals, that fall outside the scope of Bauer and Birkedal (2000) and Normann and

Waagbø (1998).

Another strand of related work has been undertaken by Matthias Schröder, who has

extended Weihrauch’s notion of ‘admissible representation’ (Kreitz and Weihrauch 1985;

Weihrauch and Schafer 1983; Weihrauch 2000) to non-countably based spaces (Schröder

2000b). Schröder defines an admissible representation of a topological space Q to be

a continuous map q : A → Q, where A is a subspace of Cantor space (equivalently

a countably based zero-dimensional T0 space), and q is projecting with respect to all

such sub-Cantor spaces. Schröder proves many interesting results about spaces with

admissible relations, including the cartesian closure of the category of sequential spaces

with admissible representations (Schröder 2000b, Section 5).

The similarity between our definitions and results and those of Schröder was first

observed by Andrej Bauer, who proved that the sequential spaces with admissible rep-

resentations are exactly the T0 PQ spaces, and used this to establish connections with

Weihrauch’s work (Bauer 2000; Bauer 2001). In the light of Bauer’s results, there is some

overlap between results in our Sections 3–7 and results in Schröder (2000b).

Recently, Schröder proved that every T0 space that arises as a quotient of a countably

based T0 space has an admissible representation (private communication). Our proof of

Theorem 3, which we posed as a question in earlier versions of the paper, is a minor

adaptation of Schröder’s proof.

Schröder has also extended his notion of admissibility to limit spaces, and also to a

larger category of ‘weak limit spaces’ (Schröder 2000a). Here the connection with our

work in Section 9 is more tenuous as, on the one hand, Schröder is working with a

more general notion of limit space, and, on the other, he proves cartesian closure rather

than local cartesian closure. Nonetheless, it seems likely that, fundamentally, Schröder’s

techniques for representing limit spaces are essentially interchangeable with ours.
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