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Abstract

We introduce the notion of an equational lifting monad: a commutative strong monad satis-
fying one additional equation (valid for monads arising from partial map classi/ers). We prove
that any equational lifting monad has a representation by a partial map classi/er such that the
Kleisli category of the former fully embeds in the partial category of the latter. Thus, equational
lifting monads precisely capture the equational properties of partial maps as induced by partial
map classi/ers. The representation theorem also provides a tool for transferring non-equational
properties of partial map classi/ers to equational lifting monads. It is proved using a direct ax-
iomatization of Kleisli categories of equational lifting monads. This axiomatization is of interest
in its own right. c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Commutative strong monads; Partiality and partial categories; Abstract Kleisli;
Categories; Premonoidal categories

1. Introduction

Ever since Moggi’s work [13, 14], the use of strong monads has provided a struc-
tural discipline underpinning the categorical approach to denotational semantics. The
underlying idea is to make a denotational distinction between the operational notions
of value and computation by modelling them in two separate categories. The category
of values, C, is a category of total functions in which the usual datatypes are given
their standard universal properties. Programs, however, are interpreted in the category
of computations, which is obtained (at least in the call-by-value case) as the Kleisli
category of a strong monad on C embodying a suitable “notion of computation”. The
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precise nature of the notion of computation varies with the programming language mod-
elled. In general, it will cater for the various kinds of possible computational eGect
such as: non-termination, non-determinism, input=output, etc. (see [14]).
In this paper we concern ourselves solely with one of the simplest forms of compu-

tational eGect: deterministic computation with possible non-termination. This notion of
computation is naturally modelled using partial functions. Thus, in a categorical setting,
one looks for monads embodying notions of partiality.
The study of such “lifting” monads goes back to work of Mulry, Rosolini and Moggi

in the 1980s [15, 17, 12]. In particular, in his Ph.D. thesis [17], Rosolini considered a
general categorical approach to partiality (based on the associated notions of dominion,
see Section 3, and dominance) and proved representation results into categories of
partial functions on presheaf toposes. In computer science, this categorical approach to
partiality has proved its value through applications in axiomatic domain theory [5, 6]
and synthetic domain theory [8].
In spite of the above, there are reasons to look for more general approaches to

partiality. In particular, the notion of dominion requires every partial map to have its
domain of de/nition represented as an object of the category. There are cases in which
it is arguable that such domain objects should not be assumed as primitive. For example,
the requirement of their existence prevents one from building syntactic models in which
the objects are the types of a programming language and the morphisms are programs
(unless either the programs are very simple or the types are very complex). It might
be argued that such syntactic models should not lie within the realm of semantics.
But one of the elegant features of category theory is that it potentially allows syntax
and semantics to be treated on a par, with term models arising as (quotients of) free
categories with structure.
In this paper we identify the properties a strong monad must possess in order for

its Kleisli category to behave like an induced category of partial maps. The standard
examples here are the monads determined by partial map classi/ers with respect to a
dominion—we review the properties of such dominical lifting monads in Section 3.
However, as motivated above, we aim for an axiomatization of lifting monads without
making reference to any notion of domain. The domain-free axiomatization will ex-
plicitly allow the class of models to include natural examples (such as the term models
mentioned above) that would otherwise be excluded. In Section 4, we shall present an
example of such a term model, based on call-by-value PCF.
Section 4 also contains our principal de/nition, the notion of equational lifting

monad, and presents our main results. Theorem 9 shows that Kleisli categories of
equational lifting monads fully embed in Kleisli categories of dominical lifting monads
via structure-preserving functors. An immediate corollary, Corollary 10, characterises
conditions (applying to the original category itself, rather than to the Kleisli category)
under which stronger forms of representation hold. These results justify the de/nition
of equational lifting monad. They also have applications to showing that equational
lifting monads inherit certain non-equational properties from dominical lifting monads
(Corollaries 11 and 12).
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The proof of Theorem 9 occupies the remainder of the paper. However, much of
the development directed towards its proof is of independent interest.
In Sections 5 and 6 we provide an alternative perspective on equational lifting mon-

ads, by giving a direct axiomatization of the categorical structure of their Kleisli cat-
egories. This work continues in a tradition, exempli/ed by Robinson and Rosolini’s
notion of p-category [16], of providing direct, domain-free axiomatizations of categories
of partial maps. In the case of p-categories, the axiomatized categories correspond to
categories of partial maps with a suitable product structure. The structure we require
is that of a p-category that, in addition, is the Kleisli category of an equational lift-
ing monad on its associated total category. Our axiomatization of such categories is
obtained by extending the notion of abstract Kleisli category [7], which provides a
direct axiomatization of categories that arise as Kleisli categories, with the necessary
additional structure, to obtain the notion of abstract Kleisli p-category.
In Section 7 we characterise when an abstract Kleisli p-category arises as the Kleisli

category of a dominical lifting monad (Theorem 29). The characterisation, similar to
[16, Theorem 1:7], requires a collection of idempotents in the Kleisli category to split.
We then show that the structure of an abstract Kleisli p-category is preserved under a
formal idempotent splitting, allowing any abstract Kleisli p-category to be embedded in
a dominical one. This preservation result is not a priori obvious, as not all the abstract
Kleisli p-category structure is natural (in the technical sense of the word).
Finally, in Section 8, we complete the proof of Theorem 9, making crucial use of

the results and constructions from the previous sections. We also characterise when an
equational lifting monad is dominical (Theorem 33), and discuss other miscellaneous
properties of lifting monads.

2. Preliminaries

In this section, we brieMy review facts we require about monads [11, 1], monoidal
categories [11], strong monads [10, 14] and idempotent splittings. The reader may prefer
to skip this section, and refer back to it as and when necessary.
First, some general remarks about our policy towards structure-preserving functors

between categories with additional structure. In all cases, the correct general notion
of structure-preserving functor should be given by a functor with speci/ed natural
transformations satisfying appropriate coherence conditions. However, in this paper,
we shall always assume a more restrictive notion of structure-preserving functor, in
which the natural transformations are required to be isomorphisms. (In the literature,
such special structure-preserving functors are often identi/ed by the adjective strong.)
In the special case in which the assumed natural isomorphisms are in fact identities,
we call the functors strict. Throughout the paper, we adopt the policy of stating results
for arbitrary structure-preserving functors, mediated by natural isomorphisms, but we
give proofs just in the special case of strict functors. This serves to reduce notational
clutter in the proofs, which all adapt easily to the non-strict case.
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Given a monad (T; �; �) on a category C, we write CT for the Kleisli category,
J :C→CT for the associated left-adjoint functor, and K :CT →C for its right adjoint.
We shall often refer to a monad by just naming its underlying functor.
We say that a monad T satis/es: the mono property if all components of � are

mono; and the equaliser property if all diagrams A
�→TA

�
�
T�

T 2A are equalisers. The

mono property is easily seen to be equivalent to the faithfulness of T , and also to the
faithfulness of J . The equaliser property trivially implies the mono property; in fact, it
is equivalent to every component A

�→TA being a regular mono [1, Lemma 6, p. 110].
Suppose that (T; �; �) is a monad on C and (T ′; �′; �′) is a monad on C′. We say

that a functor F :C→C′ is monad preserving if it comes with a natural transformation
� :FT⇒T ′F such that �′= �◦F� and �′ ◦T ′�◦ �= �◦F�, and also (as discussed above)
� is an isomorphism.
A monad-preserving functor F :C→C′ determines a functor FK :CT →C′

T ′ between

Kleisli categories, mapping any f∈CT (A; B), given by A
f→TB in C, to � ◦ Ff in

CT ′(FA; FB). We say F is Kleisli full (resp. Kleisli faithful) to mean that the induced
functor FK is full (resp. faithful). Observe that full and faithful imply Kleisli full and
Kleisli faithful, respectively. The converse implications are closely linked to properties
of �.

Proposition 1. Suppose T is a monad on C; T ′ is a monad on C′ and F :C→C′ is
monad preserving.
(1) Suppose F is Kleisli faithful and the mono property holds for T ′. Then F is

faithful if and only if the mono property holds for T .
(2) Suppose F is Kleisli full and Kleisli faithful and the equaliser property holds for

T ′. Then F is full and faithful if and only if the equaliser property holds for T .

Proof. As stated above, we give the proof in the case that F is strict monad preserving:
(1) Let J ′ be the functor C′ → C′

T ′ . The mono property on T (resp. T ′) is equivalent
to the faithfulness of J (resp. J ′). So the equivalence follows from the equality
FKJ = J ′F .

(2) For the right-to-left implication, the faithfulness of F follows from 1. To prove
fullness, take any f∈C′(FA; FB). We must /nd g such that f=Fg. Consider
�′ ◦f∈C′

T ′(FA; FB). As FK is full, there exists h∈CT (A; B) such that Fh= �′ ◦f.
Then

FT� ◦ Fh = T ′�′ ◦ �′ ◦ f = �′ ◦ �′ ◦ f = F� ◦ Fh:

So T� ◦ h= � ◦ h, by the faithfulness of FK . Thus, as T satis/es the equaliser
property, there exists g∈C(A; B) such that � ◦ g= h. Finally,

�′ ◦ Fg = F� ◦ Fg = Fh = �′ ◦ f

and so, as �′ is mono, Fg=f.
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For the converse, consider f∈C(A; TB) such that � ◦ f=T� ◦ f. Then �′ ◦
Ff=T ′�′◦Ff. So, as T ′ satis/es the equaliser property, there exists h∈C′(FA; FB)
such that Ff= �′◦h. Now, since F is full, there exists g∈C(A; B) such that Fg= h.
So we obtain

Ff = �′ ◦ Fg = F� ◦ Fg = F(� ◦ g):
As F is faithful, f= � ◦ g. Uniqueness follows from the fact that � is mono, as
�′ is mono and F is faithful.

We shall also be interested in conditions under which monad-preserving functors
preserve (existing) pullbacks (although the proposition below applies equally well to
any other type of limit).

Proposition 2. Suppose T is a monad on C; T ′ is a monad on C′ and F :C→C′ is
monad preserving.
(1) If T and FK preserve pullbacks and T ′ re6ects pullbacks then F preserves pull-

backs.
(2) If T ′ and F preserve pullbacks and FK re6ects pullbacks then T preserves pull-

backs.

Proof. First, K preserves and reMects limits (it is a right adjoint of descent type [1]).
So T =KJ preserves pullbacks if and only if J does. Similarly, T ′ preserves pullbacks
if and only if J ′ does.
(1) If T and FK preserve pullbacks then so does K ′FKJ =T ′F . So if T ′ reMects pull-

backs, F preserves them.
(2) If T ′ and F preserve pullbacks then so does J ′F =FKJ . So if FK reMects pullbacks,

J preserves them, hence so does T .

Symmetric monoidal structure on C is given by a functor ⊗ :C × C→C, an ob-
ject I (the unit), and natural isomorphisms � : (A⊗B)⊗C→A⊗ (B⊗C), � :A⊗B→
B⊗A, � :A⊗ I→A, and � : I ⊗A→A satisfying the coherence diagrams in [11, Chap.
VII, Sections 1 and 7]. Given symmetric monoidal structure (⊗; I; �; �; �; �) on C and
(⊗′; I ′; �′; �′; �′; �′) on C′, we say that a functor F :C→C′ is monoidal if it comes
with a natural transformation �2 :F ⊗F ⇒ F(Id ⊗ Id) and a morphism �0 : I ′→FI
subject to the coherence conditions in [11, Chap. XI], and in addition (as discussed
above) �2 and �0 are isomorphisms.
Given symmetric monoidal structure on C, a strong monad (T; �; �; t) on C is a

monad together with a natural transformation A⊗TB t→T (A⊗B) (its strength) that
satis/es the four equations:

T� ◦ t = �;

T� ◦ t = t ◦ (id× t) ◦ �;
t ◦ (id⊗ �) = �;

t ◦ (id⊗ �) = � ◦ Tt ◦ t:
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A dual “costrength” TA⊗B t′→T (A⊗B) is de/ned by t′=T� ◦ t ◦ �. A strong monad

is commutative if � ◦ Tt′ ◦ t= � ◦ Tt ◦ t′, in which case we write TA⊗TB
 →T (A⊗B)

for this map (the symmetric strength). Given a strong monad (T ′; �′; �′; t′) on C′, we
say that F :C→C′ is strong-monad preserving if it is monad preserving, monoidal
and also � ◦ Ft ◦ �2 =T ′�2 ◦ t′ ◦ (id⊗ �).
In this paper, we shall only be interested in strong monads arising from

monoidal structure given by speci/ed /nite products, in which case we always
take �; �; �; � to be the usual natural transformations de/ned from tuples of project-
ions (e.g. �= 〈�1 ◦ �1; 〈�2 ◦ �1; �2〉〉). In such cases, monoidal functors (and
hence strong-monad-preserving functors) automatically preserve the /nite product
structure (this is only true because we are assuming that structure is preserved
up to isomorphism).
In any category C, an idempotent is an endomorphism A a→A such that a= a ◦ a.

An idempotent a is said to split if there exist maps A r→A′ m→A such that r ◦m= idA′

and m ◦ r= a. For any collection S of idempotents, the category SplitS(C) has as

objects the idempotents in S, and the morphisms from A a→A to B b→B are those

A
f→B such that b ◦ f=f=f ◦ a. The identity on an object a is given by a itself.

Composition is inherited from C. If S contains all identities in C then there is a full
and faithful functor I :C→SplitS(C) mapping each object A to idA. Moreover, for
every idempotent a∈ S, the idempotent I(a) splits in SplitS(C). Further, the functor
I preserves all existing limits and colimits (because Yoneda and its dual both factor
through I).

3. Dominical lifting monads

In this section we review the standard categorical approach to partiality and the
notion of lifting monad it induces. All the de/nitions and results are contained (at
least implicitly) in [17]. A good range of computationally motivated examples can be
found in [5].

De�nition 3. A dominion on a category C is given by a collection D of monomor-
phisms in C that is closed under composition, contains every isomorphism, and is
closed under pullback along arbitrary morphisms.

Let C be a category and let D be a dominion on it. We use the symbol ,→ to
represent monos in D.
A D-partial map from an object A of C to an object B is given by an equivalence

class of spans of the form A m A′ f→B, where m is in D, under the equivalence
identifying (f;m) and (f′; m′) if there exist maps i; i′ such that: m′ ◦ i=m, f′ ◦ i=f,
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m ◦ i′=m′, and f ◦ i′=f′. (The equations involving monos imply that i and i′ are
inverse isomorphisms.)
The conditions imposed on D are just what is needed for the collection of partial

maps to form a category (with the same objects as C). In particular, composition is
performed using closure under pullbacks. We write PtlD(C) for the category of partial
maps. There is an evident faithful functor J :C→PtlD(C), which is the identity on
objects.

De�nition 4. We say that C has D-partial map classi7ers if, for every object B, there
exists an object LB and a morphism B

�
,→LB in D such that, for every partial map

A m A′ f→B, there exists a unique characteristic map A
g→LB such that the square

below is a pullback.

The existence of partial map classi/ers is equivalent to the representability in C of all
functors PtlD(C)(J (−); B) :Cop→Set, which is, in turn, equivalent to the existence of
a functor K : PtlD(C)→C right adjoint to J . When such a right adjoint K exists, its
unit � provides D-partial map classi/ers, where D is the collection of all pullbacks of
components of � (which is indeed a dominion). As for any adjunction, the composite
L=KJ :C→C has an associated monad structure. Further, because J : C→PtlD(C)
is bijective on objects, the category PtlD(C) of partial maps is (isomorphic to) the
Kleisli category of the monad.
The aim of this paper is to analyse what properties a monad must enjoy in or-

der for its Kleisli category to behave like a category of partial maps. Monads de-
rived, as above, from D-partial map classi/ers will be our paradigmatic examples
of such “lifting” monads. For later purposes, it will be useful to have a name for
these.

De�nition 5. We say that a monad (L; �; �) on a category C is a dominical
lifting monad if there exists a dominion D on C such that C has D-partial map
classi/ers and (L; �; �) is the monad determined by the adjunction between C and
PtlD(C).

It is instructive to analyse the structure of a dominical lifting monad (L; �; �) directly
in terms of the associated D-partial map classi/ers. The unit is given by the family
A

�→ LA required by De/nition 4. The multiplication, L2A
�→LA, is the unique



38 A. Bucalo et al. / Theoretical Computer Science 294 (2003) 31–60

map making the square below a pullback.

(1)

Dominical lifting monads have many properties not shared by arbitrary monads. For
example, the natural transformations � and � are both cartesian, i.e. all their naturality
squares

(2)

are pullbacks. The cartesianness of � implies that L satis/es the equaliser property. In
addition, L preserves existing pullbacks. Also, L reMects pullbacks (using a cube of
pullbacks whose four walls are � squares).
Now suppose C has speci/ed /nite products. Then L is a strong monad, with a

unique strength A× LB t→L(A× B), de/ned as the characteristic map below:

The costrength LA × B t′→L(A × B) can be de/ned analogously. By pasting pullback
squares, it is straightforward to verify that the monad is commutative, with its symmet-
ric strength obtained as the unique morphism making the square below into a pullback.
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An important consequence of the discussion above is that, given D-partial map clas-
si/ers B

�
,→LB, there is a unique dominical lifting monad that has � as its unit. The

action of L on morphisms is determined by the left-hand pullback of (2). Similarly,
the multiplication � is determined by pullback (1). Moreover, if C has speci/ed /nite
products then the unique strength is determined by the de/ning pullback above.

4. Equational lifting monads

In the previous section, we investigated some of the properties of dominical lifting
monads. The main de/nition of the paper aims to precisely identify their equational
properties.

De�nition 6. We say that a strong monad (L; �; �; t), on a category C with speci/ed
/nite products, is an equational lifting monad if it is commutative and the diagram
below commutes

(3)

where LA #→LA× LA is the diagonal of the product.

In the previous section we established that every dominical lifting monad is a com-
mutative strong monad. Moreover, diagram (3) commutes because both diagrams below
are pullbacks (the second because � is cartesian).

So, by the uniqueness of characteristic maps, L〈�; id〉= t ◦ #. Thus every dominical
lifting monad, on a category with /nite products, is an equational lifting monad. We
give an example of an equational lifting monad that is not dominical at the end of this
section.
The goal of this paper is twofold: to show that equational lifting monads pos-

sess all the equational properties of dominical lifting monads; and to characterise the
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precise conditions under which the other (non-equational) properties of dominical lift-
ing monads hold also for equational lifting monads.
We start with a simple proposition establishing two basic equational properties.

Proposition 7. For an equational lifting monad (L; �; �; t); the diagrams below com-
mute.

(4)

Proof. The /rst equality follows from Eq. (3) and the strong monad equations, by
expanding  = � ◦ Lt′ ◦ t. For the second equality, using (3) and the naturality of t,
one obtains

id= L� ◦ L� = L� ◦ L�1 ◦ L〈�; id〉

= L�1 ◦ L(�×!) ◦ t ◦ # = L�1 ◦ t ◦ 〈�; L!〉:

The left-hand diagram above expresses that any equational lifting monad is relevant
in the sense of Jacobs [9]. (Not every commutative relevant monad is an equational
lifting monad. A simple counterexample is the (−)2 monad on Set.)
The right-hand diagram has a couple of interesting consequences. One easy conse-

quence is Eq. (7) of [2]: L�1 ◦ t ◦ 〈id; L!〉=L� :LA→L2A, which was used there as
part of a non-equational axiomatization of lifting monads. Another consequence is that

the arrows L1 L!←L2A
�→LA are jointly monic (because 〈�; L!〉 is a split mono).

Our main theorem will state that every equational lifting monad can be suTciently
well “represented” by a dominical lifting monad.

De�nition 8. Let L be a strong monad on C. A dominical representation of L is given
by a category C′ with /nite products and dominical lifting monad L′ together with a
strong-monad-preserving functor F :C→C′.

We refer to a representation as being (Kleisli) full=faithful if the property mentioned
holds of the representing functor F .
Both the commutativity equation and diagram (3) can be viewed as equations be-

tween Kleisli category morphisms. Also, these equations hold in any dominical lifting
monad. It follows that any strong monad with a Kleisli faithful dominical representation
is necessarily an equational lifting monad. Our principal theorem gives a strengthened
converse to this observation.
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Theorem 9. If L is an equational lifting monad then L has a dominical representa-
tion F that is Kleisli full and Kleisli faithful such that FK preserves all limits and
colimits existing in CL.

The proof of Theorem 9 will be given in Section 8, after preparatory work occupying
the remainder of the paper. As an immediate corollary, we obtain precise conditions
for strengthened forms of representation to be possible.

Corollary 10. Let L be an equational lifting monad.
(1) L has a faithful and Kleisli full dominical representation if and only if it satis7es

the mono property.
(2) L has a full and faithful dominical representation if and only if it satis7es the

equaliser property.
(3) L has a full and faithful dominical representation that preserves existing 7nite

limits if and only if L satis7es the equaliser property and preserves existing
pullbacks.

Proof. Given Theorem 9, statements (1) and (2) are immediate from Proposition 1.
Statement (3) follows from Proposition 2, using: the underlying functor of a do-
minical lifting monad preserves and reMects pullbacks (see Section 3); the functor
FK given by Theorem 9 preserves and reMects limits (it reMects them because it is
full and faithful); and, as a dominical representation is assumed to preserve /nite
products, it preserves existing /nite limits if and only if it preserves existing pull-
backs.

It is worth explaining the signi/cance of Theorem 9 and Corollary 10. The notion
of dominical lifting monad corresponds to an accepted categorical notion of partiality,
with the associated category of partial maps obtained as the Kleisli category. Our aim
is to establish that, for equational lifting monads, the Kleisli category also acts just
like a category of partial maps determined by a dominical lifting monad. Theorem 9
states in what sense this is indeed the case. Corollary 10 quanti/es how well the base
category of the equational lifting monad can be related to that of the dominical lifting
monad.
We now give some applications of Theorem 9 and Corollary 10, illustrating how they

can be used to establish non-equational properties of equational lifting monads. Recall
the de/nition of a cartesian natural transformation (see the text before diagram (2)).

Corollary 11. For any equational lifting monad; � is cartesian.

Proof. It suTces to apply the representing functor F to the right-hand diagram of
(2) and note that all arrows involved are actually arrows in the Kleisli category C′

L′ .
So the fullness and faithfulness of FK and the cartesianness of �′ together imply the
result.
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The pullback property of � can be exhibited explicitly. Consider the bottom-right

cospan in the right-hand square of (2), and let LA
g←C h→L2B be a cone for this dia-

gram. The required universal map is L�1 ◦ t ◦ 〈g; h〉 :C→L2A. In fact, in our original
proof that � is cartesian, we directly veri/ed that this map has all the required proper-
ties. We shall not present this direct proof here, as it is extremely long (especially the
veri/cation of the equation � ◦ L�1 ◦ t ◦ 〈g; h〉= g). In contrast, it is pleasing that the
cartesian property of � falls out so easily from our representation theorems. Moreover,
in theory, it is possible to extract a direct veri/cation that L�1 ◦ t ◦ 〈g; h〉 :C→L2A is
the required map, by unwinding the proof of Theorem 9.
Theorem 9 can be used in an analogous way to transfer other pullback properties

of dominical lifting monads to equational lifting monads, for example, to establish
that diagram (1) is also a pullback for any equational lifting monad. However, not all
pullbacks transfer automatically.

Corollary 12. For any equational lifting monad; � is a cartesian natural transforma-
tion if and only if the equaliser property holds.

Proof. The left-to-right implication is easily proved for an arbitrary monad. The right-
to-left implication, follows from Theorem 9 and Corollary 10, as the full and faithful
dominical representation reMects pullbacks.

We end this section with the promised example of a computationally natural term
category with an equational lifting monad that is not dominical.

Example 13. Consider a call-by-value version of PCF with types:

$ ::= unit | int | $× $′ | $→ $′

and with terms as in, for example, [20, Chap. 11], but extended (in the obvious way)
with a “singleton” type, unit. We de/ne a category (PCFv)t whose objects are types.
To de/ne the morphisms, we say that a closed term t : $→ $′ is total if, for all values
(i.e. canonical forms in the terminology of [20, Chap. 11]) c : $, the evaluation of the
application term t(c) terminates (i.e. t(c) ↓e in the notation of [20, Chap. 11]). The
morphisms from $ to $′ are equivalence classes of total closed terms of type $→ $′

modulo operational (contextual) equivalence. The composition of $
[t]→ $′ and $′

[t′]→ $′′ is
given by [�x$ : t′(t(x))]. Identities are obvious.
This category, (PCFv)t, has /nite products given by the product operation on types.

There is also a natural (syntactically de/ned) equational lifting monad. The underlying

functor maps a type $ to the type unit→ $. The action on morphisms maps $
[t]→ $′ to

[�eunit→$ : (�xunit : t(e(x)))]. The unit of the monad is given by [�x$ : �yunit : x] and the
count is given by [�eunit → unit → $ : �xunit : e(x)(x)]. The strength of the monad is given by
[�p$×(unit → $′):(�xunit : 〈 fst(p); snd(p)(x)〉)]. With a bit of work, the commutativity of
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the monad corresponds to the operational equivalence:

(�x : �y : t(x)(y))(t1)(t2) ≡o (�y : �x : t(x)(y))(t2)(t1);

where t; t1 and t2 range over arbitrary terms (such that the expressions above are well-
typed). Finally, the equational lifting monad equation (3) amounts to the operational
equivalence:

�eunit→$ : �xunit : 〈e; e(x)〉 ≡o �eunit→$ : �xunit : (�y$ : 〈�zunit : y; y〉)(e(x)):

Masochistically inclined readers may wish to verify the above claims for themselves.
There are essentially two tasks involved: /rst, translating all the required structure on
the category and properties of the monad to operational equivalences; second, verifying
the operational equivalences.

We shall return to the above example at the end of the next section.

5. Abstract Kleisli categories

In the previous two sections, the category C together with its monad was taken as
primitive, and the notion of equational lifting monad was de/ned in order to capture
the idea of when the Kleisli category is an interesting category of partial maps. On
occasion, however, it is arguably more natural to consider the partial category itself as
the primitive category. For example, in the case of a category with partial functions and
associated product structure, this was the approach adopted by Robinson and Rosolini
with their p-categories [16].
In the next two sections we provide such a direct axiomatization of the Kleisli cat-

egories of equational lifting monads, which are our partial categories of interest. The
axiomatization will be obtained by extending F(uhrmann’s abstract Kleisli categories
[7], which directly axiomatize the structure of Kleisli categories of monads. In this
section we review the de/nitions and results that we shall need from [7], in the spe-
cial case of a commutative precartesian abstract Kleisli category, which is of most
relevance to us. In Section 6 we shall extend the axiomatization with an equation
corresponding to the additional properties of equational lifting monads, to give us the
notion of an abstract Kleisli p-category.

De�nition 14. An abstract Kleisli category is a category K together with:
(1) a functor G :K→K;

(2) a transformation 4 A #A→GA (called thunk);
(3) a natural transformation GA /A→A (called force);

4 By transformation we mean an arbitrary family of arrows indexed by objects.
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such that #G :G→G2 is a natural transformation, and the following diagrams commute:

Given any category C with a monad L, the Kleisli category CL forms an abstract Kleisli
category. The endofunctor GL :CL→CL is obtained as the composite CL

K→C J→CL

around the adjunction determined by the monad. Thus on objects we have GLA=LA.

The thunk morphism A #L→GLA in CL is given by A
�◦�→ L2A in C. The force map

GLA
/L→A in CL is just the counit of the adjunction, which is explicitly given by the

identity LA id→LA in C.
We next show that, conversely, an abstract Kleisli category K determines a category

with monad such that K is isomorphic to the Kleisli category of the monad.

De�nition 15. In an abstract Kleisli category K, a morphism A
f→B is said to be thunk-

able if the diagram below commutes:

The collection of thunkable maps forms a subcategory of K. We write Kt for this
subcategory and J :Kt→K for the inclusion functor. This functor has a right adjoint
given by the natural isomorphism: [−] :K(A; B)∼=Kt(A;GB) de/ned by

[f] = Gf ◦ #

As for any adjunction, the composite determines a monad on Kt . It is shown in [7]
that this monad satis/es the equaliser property and, moreover, its Kleisli category is
isomorphic, as an abstract Kleisli category, to K. To explain this, we must de/ne
functors between abstract Kleisli categories.
Given abstract Kleisli categories (K; G; #; /) and (K′; G′; #′; /′), a functor FK :K→K′

is said to preserve abstract Kleisli structure if it maps thunkable morphisms to thunk-
able morphisms and, in addition, the induced natural transformation [FK/] :FKG⇒
G′FK is an isomorphism. (The general discussion on structure-preserving functors from
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Section 2 applies to this de/nition.) Functors preserving abstract Kleisli structure are
in one-to-one correspondence with monad-preserving functors from Kt to K′

t .
The following result, from [7], summarises the discussion so far.

Proposition 16. Given an abstract Kleisli category K; the inclusion functor J :Kt→K
has a right adjoint; inducing a monad L on Kt such that K is strictly isomorphic; as
an abstract Kleisli category; to (Kt)L. Moreover; L satis7es the equaliser property.

The above constructions map any category and monad (C; L; �; �) to an induced ab-
stract Kleisli category (CL; GL; #L; /L), and map any abstract Kleisli category (K; G; #; /)
to an induced category Kt with a monad satisfying the equaliser property.
Suppose we start with a category C with monad L. We write (CL)t for the category

obtained by extracting the thunkable maps from the Kleisli category construed as an
abstract Kleisli category. There is a monad-preserving functor U :C→ (CL)t , mapping

any morphism A
f→B in C to the thunkable morphism A

�◦f→ B in CL. Moreover, U
is an isomorphism of categories if and only if L satis/es the equaliser property. In
fact U is a component of the unit of an adjunction exhibiting the (large) category of
(small) abstract Kleisli categories (and structure-preserving functors) as a full reMective
subcategory of the (large) category of (small) categories with monads and monad-
preserving functors [7].
The functor U above maps any monad to one satisfying the equaliser property.

To apply this construction to equational lifting monads, we also need to ensure that
strength, commutativity and Eq. (3) are all preserved.
In [7], the notion of precartesian abstract Kleisli category is introduced to ex-

tend the reMection theorem to strong monads. In this paper, we are interested only in
commutative strong monads. This allows some of the complications of general strong
monads to be avoided (in particular, we can work with a monoidal structure rather
than a premonoidal structure).

De�nition 17. A commutative precartesian abstract Kleisli category is given by an
abstract Kleisli category K together with a symmetric monoidal structure such that Kt

has distinguished /nite products whose induced symmetric monoidal structure is strictly
preserved by the inclusion functor J :Kt→K.

A functor FK :K→K′, between commutative precartesian abstract Kleisli categories,
is structure preserving if it preserves both the abstract Kleisli structure and the symmet-
ric monoidal structure. Such functors automatically preserve the /nite product structure
on the subcategories of thunkable maps.
Let �i :A1⊗A2→Ai be the projections given by the /nite products on Kt , let

#A :A→A⊗A be the diagonal, and let !A :A→ I be the unique thunkable arrow. For
arbitrary maps f1 :A→A1 and f2 :A→A2 of K , de/ne 〈f1; f2〉 to be

A #→A⊗ A
f1⊗f2−→ A1 ⊗ A2
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So, in the special case where f1 and f2 are thunkable, 〈f1; f2〉 is the unique thunkable
morphism A h→A1⊗A2 such that �i ◦ h=fi. It is important to note, however, that the
equalities �1 ◦ 〈f; g〉=f and �2 ◦ 〈f; g〉= g do not hold for arbitrary f and g in K.
Nonetheless, each projection is natural in the non-discarded argument:

Lemma 18. In any commutative precartesian abstract Kleisli category; for arbitrary

morphisms A
f→A′ and B

g→B′; we have

�1 ◦ (f ⊗ g) = f ◦ �1 ◦ (id⊗ g);

�2 ◦ (f ⊗ g) = g ◦ �2 ◦ (f ⊗ id):

Given a category C with /nite products and a commutative strong monad L, the
induced abstract Kleisli category CL forms a commutative precartesian abstract Kleisli
category, with ⊗ on CL generated by the product and strength in C (see e.g. [9]).
Conversely, given a commutative precartesian abstract Kleisli category K, the inclusion
J :Kt→K has a right adjoint determining a commutative strong monad on Kt such
that K is the induced commutative precartesian Kleisli category (up to isomorphism).
Once again, the constructions can be combined to obtain, for any category C with
commutative strong monad, a category (CL)t with commutative strong monad satisfying
the equaliser property, and a strong-monad-preserving functor U :C→ (CL)t . Note that
(CL)t and U are constructed exactly as in the case without strength, so Proposition 16
applies mutatis mutandis.
We end this section by returning to Example 13, showing one can obtain an arguably

simpler presentation by /rst presenting the Kleisli category of (PCFv)t directly as an
abstract Kleisli category.

Example 19. We de/ne a category, PCFv, whose objects are the same as those of
(PCFv)t, but whose morphisms from $ to $′ are equivalence classes of arbitrary
closed terms of type $→ $′ modulo operational (contextual) equivalence. Identities and
composition are as before. For the abstract Kleisli structure, the required endofunctor
is de/ned in the same way as the monad functor of Example 13, and thunk is de/ned
in the same way as the unit of the monad (it is no longer natural because of the
inclusion of non-total terms in the category). Force is simply �eunit→$: e(∗) where ∗ is
the unique constant of unit type.
In order to verify the commutative precartesian structure, the following observation

is crucial. A morphism $
[t]→ $′ is thunkable if and only if the following operational

equivalence holds:

�x$: �yunit : t(x) ≡o �x$: (�z$
′
: �yunit : z)(t(x))

Using the “Context Lemma” for call-by-value PCF, one veri/es that the above equiva-
lence holds if and only if t is total. Thus, as the notation suggests, (PCFv)t is indeed
the subcategory of thunkable maps in PCFv.
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6. Abstract Kleisli p-categories

We have now given a direct axiomatization of the Kleisli categories of commutative
strong monads. It remains to deal with the extra Eq. (3) of an equational lifting monad.
This equation can be expressed in terms of the structure of the commutative precartesian
abstract Kleisli category.

De�nition 20. An abstract Kleisli p-category is given by a commutative precartesian
abstract Kleisli category in which the diagram below commutes:

(5)

Proposition 21. Let L be a commutative strong monad on C. Then L is an equational
lifting monad if and only if CL (construed as a commutative precartesian abstract
Kleisli category) is an abstract Kleisli p-category.

Thus, unsurprisingly, PCFv of Example 19 is an abstract Kleisli p-category.
In the remainder of this section, we shall investigate properties of abstract Kleisli

p-categories. In particular, we shall show that abstract Kleisli p-categories all form
p-categories in the sense of [16]—hence the terminology.
Following [7], it is useful to identify classes of maps that enjoy some of the prop-

erties of thunkable maps with respect to the commutative precartesian structure.

De�nition 22. Suppose that K is a commutative precartesian abstract Kleisli category.

A morphism A
f→B of K is called copyable if the left-hand diagram below commutes.

It is called discardable if the right-hand diagram commutes.

(6)

The above notions are used in the following proposition, about abstract Kleisli
p-categories, which contains the crucial fact that all morphisms are copyable, and
provides two very useful ways of proving the equality of morphisms by using joint
monicity.
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Proposition 23. For a commutative precartesian abstract Kleisli category K; the fol-
lowing are equivalent:
(1) K is an abstract Kleisli p-category.
(2) Every morphism of K is copyable; and for each object A; the morphisms GA /→A

and GA !→ I are jointly monic.
(3) For all objects A and B; A⊗B �1→A and A⊗B �2→B are jointly monic; and �1 ◦
〈idA; /A〉=#A ◦ /A.

Proof. For (1)⇒ (2), /rst observe that for every morphism f :A→B we have f= / ◦
[f]. Because [f] is in Kt , it is copyable, so if / is copyable then so is f. To see that
/ is copyable, consider

# ◦ /= (/⊗ id) ◦ 〈#; id〉 ◦ /
= (/⊗ id) ◦ 〈id; /〉 diagram (5)

= (/⊗ /) ◦ #:

To see that /A and !LA are jointly monic, let f; g :A→GB be such that / ◦f= / ◦ g and
! ◦f= ! ◦ g. Because [−] is natural, we have G/ ◦ [g] = [/ ◦ g] = [/ ◦f] =G/ ◦ [f], and
analogously, G! ◦ [f] =G! ◦ [g]. Because [f] and [g] are copyable, we have 〈G/; G!〉 ◦
[f] = 〈G/; G!〉 ◦ [g]. The morphism 〈G/; G!〉 is a split mono because

[�1 ◦ (id⊗ /)] ◦ 〈G/; G!〉= [�1 ◦ (id⊗ /) ◦ 〈G/; G!〉]
= [�1 ◦ ((G/)⊗!) ◦ 〈id; /〉]
= [G/ ◦ �1 ◦ 〈id; /〉]
= [G/ ◦ �1 ◦ 〈#; id〉 ◦ /] diagram (5)

= [G/ ◦ # ◦ /] = [/] = id:

Therefore we have [f] = [g], which implies f= g.
Now for (2)⇒ (3): To see that �1 and �2 are jointly monic, suppose that �1 ◦

f1 = �1 ◦f2 and �2 ◦f1 = �2 ◦f2. Because every morphism is copyable, we have fi=
〈�1 ◦fi; �2 ◦fi〉, and therefore f1 =f2. To prove �1 ◦ 〈idA; /A〉=#A ◦ /A we use that /
and ! are jointly monic. We have / ◦# ◦ /= /= �1 ◦# ◦ /= �1 ◦ 〈/; /〉= / ◦ �1 ◦ 〈id; /〉,
the penultimate step being an application of Lemma 18. And we have ! ◦ �1 ◦ 〈id; /〉=
! ◦ �2 ◦ 〈id; /〉= ! ◦# ◦ /; where the last step follows again from Lemma 18.
For (3)⇒ (1), Diagram (5) follows from the joint monicity of �1 and �2 because:

�1 ◦ 〈id; /〉 = # ◦ / = �1 ◦ 〈#; id〉 ◦ /;
�2 ◦ 〈id; /〉 = / = �2 ◦ 〈#; id〉 ◦ /:

Next, we shall explain why every abstract Kleisli p-category forms a p-category. We
refer to the axiomatization of p-categories in [16, p. 101].
Let K be an abstract Kleisli p-category. This provides the functor ⊗ :K×K→K and

transformations A #→A⊗A and A1⊗A2
�i→Ai required by a p-category. The required
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naturality of # is equivalent to the fact that every morphism is copyable, as given
by Proposition 23. The six equations in the de/nition of p-category involving the
projections and the diagonal hold because these transformations are inherited from the
/nite products on Kt . The associativity and twist maps formed by # and the �i are
natural because the inclusion functor J :Kt→K sends them to the symmetric monoidal
isomorphisms of K. Finally, the naturality of projections in the non-discarded argument
is Lemma 18.
From the above discussion, one sees that a commutative precartesian abstract Kleisli

category K forms a p-category if and only if every morphism in K is copyable. Such
categories are exactly the Kleisli categories of commutative relevant monads in the
sense of [9]—see the discussion after Proposition 7. However, the Kleisli category of
the (−)2 monad on Set forms a p-category (via its induced commutative precartesian
abstract Kleisli structure) but not an abstract Kleisli p-category, as / and ! are not
jointly monic.
To appreciate the need for the joint monicity of / and !, let us see how far we

can get without this property. Suppose then that K is a commutative precartesian ab-
stract Kleisli category in which every map is copyable (i.e. it is a p-category). As in

[16, p. 102], we associate a domain map A
Uf→A to any map A

f→B, by de/ning

Uf = A
〈id;f〉→ A⊗ B �1→A:

The importance of domain maps is apparent throughout [16]. In fact, Cockett and
Lack [3], have recently based their restriction categories, which provide a very general
axiomatization of categories of partial maps, entirely on equational properties of domain
maps. From such properties, we single out the following, which can also be found in
[16, pp. 102–104].

Proposition 24. For any morphism A
f→B in K; f ◦ Uf=f and Uf= UUf.

It follows immediately that every domain map is idempotent.
In any p-category, domain maps determine a notion of total morphism [16, p. 104].

De�nition 25. A morphism A
f→B is said to be p-total if Uf= idA.

The p-total maps form a subcategory Kpt of K. Moreover, a straightforward conse-
quence of Proposition 24 is that every mono in K is p-total. Further, p-totality corre-
sponds to a notion we have already met.

Proposition 26. A morphism is p-total if and only if it is discardable.

Proof. If f is p-total, then

!B ◦ f= !B ◦ �2 ◦ (idA ⊗ f) ◦ # (by Lemma 18)

= !A ◦ �1 ◦ (idA ⊗ f) ◦ # =!A ◦ Uf= !A:
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Conversely, if f is discardable, then

Uf = �1 ◦ (idA⊗!B) ◦ (idA ⊗ f) ◦ # = �1 ◦ (idA⊗!A) ◦ # = idA:

Theorem 29 will identify a property that characterises those abstract Kleisli p-cate-
gories for which the equational lifting monad on the subcategory of thunkable mor-
phisms is dominical. Because we shall obtain a dominion on the subcategory of p-total
maps, the thunkable maps and the p-total maps will have to coincide. This property
does not hold for an arbitrary commutative precartesian abstract Kleisli-categories in
which every morphism is copyable. (for example, it fails in the Kleisli category of the
(−)2 monad). Obtaining the coincidence of these classes of maps is the crucial reason
for requiring the joint monicity of / and !.

Proposition 27. In any abstract Kleisli p-category a morphism is discardable if and
only if it is thunkable.

Proof. Only the left-to-right implication is in question. This holds because, for every
discardable f, the equation # ◦f=Gf ◦# follows immediately from the joint monicity
of / and !.

7. Dominical abstract Kleisli p-categories

The notion of abstract Kleisli p-category captures the Kleisli categories of equational
lifting monads. In this section we characterise the Kleisli categories of dominical lift-
ing monads, and show that every abstract Kleisli p-category fully embeds in such a
dominical abstract Kleisli p-category.

De�nition 28. We say that a commutative precartesian abstract Kleisli category K is
a dominical abstract Kleisli p-category if there exists a category C with speci/ed
/nite products, dominion D and D-partial map classi/ers such that PtlD(C) and K are
isomorphic as commutative precartesian abstract Kleisli categories.

Theorem 29. For a commutative precartesian abstract Kleisli category K; the follow-
ing are equivalent:
(1) K is a dominical abstract Kleisli p-category.
(2) The monad on Kt induced by the abstract Kleisli structure is dominical.
(3) K is an abstract Kleisli p-category and every domain map in K splits.

Proof. The (2)⇒ (1) implication is trivial, as K (qua Kleisli category of the induced
monad) is isomorphic to PtlD(Kt) for the dominion D inducing the dominical monad
by an isomorphism preserving the commutative precartesian abstract Kleisli structure.
For (1)⇒ (3), suppose that K is dominical. In the category of partial maps of any

dominion, the restriction operator (·) sends a partial map A
m←- A′ f→B to A

m←- A′ m→A.

The splitting of this is given by the mono A′ id←- A′ m→A and the epi A
m←- A′ id→A′.
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For (3)⇒ (2), suppose that K is an abstract Kleisli p-category and every domain
map splits. We /rst, identify a dominion D on the category Kpt of p-total maps (see
Section 6). The dominion is de/ned by

D = {A′ m→A | some domain map Uf splits as A→ A′ m→A}:

Note that each such m is mono and hence in Kpt. That this is indeed a dominion
follows from [16, p. 104]. The proof uses only the p-category structure on K. For

example, to construct the required pullbacks, suppose that A
f→B is in Kpt and B′ m→B

is in D. Thus B′ m→B is obtained by splitting some domain map B e→B as B r→B′ m→B.

Let A→ A′ m′
→A be obtained by splitting f ◦ e. Then the square below is the required

pullback of m along f.

We now show that K∼=PtlD(Kpt). Given a partial map A m A′ f→B in PtlD(Kpt),
let A r→A′ m→A be any splitting witnessing that m is in D. Then the associated map

in K is given by A
f◦r→ B (this is independent of the choice of splitting). Conversely,

given any map A
f→B in K, let A → A′ m→A split Uf. Then the associated partial map

in PtlD(Kpt) is given by A m A′ f◦m→ B (it does indeed hold that f ◦ m is in Kpt).
That these constructions are mutually inverse can again be veri/ed using only the
p-category structure on K. The isomorphism H :K∼=PtlD(Kpt) we have constructed
is easily shown to commute with the inclusion functors J ′ :Kpt → PtlD(Kpt) and
J :Kpt → K.
To complete the proof, by Propositions 26 and 27, the categories Kt and Kpt co-

incide. Then J ′=HJ :Kt → PtlD(Kt) has right-adjoint KH−1 (where K : K → Kt is
the right-adjoint to J induced by the abstract Kleisli structure) with unit given by #.
By the discussion in Section 3, the monad induced by the adjunction between Kt and
PtlD(Kt) is indeed dominical. Moreover, by the de/nition of the adjunction, this monad
is exactly that induced on the functor KJ :Kt → Kt by the abstract Kleisli structure
on K .

In the remainder of this section, we use Theorem 29 to show that every abstract
Kleisli p-category has a full and faithful structure-preserving embedding into a do-
minical abstract Kleisli p-category. Given Theorem 29 and the analogous construc-
tions in, e.g., [16, 3], it is no surprise that we obtain this embedding via idempotent
splitting (see Section 2). However, one unexpected element does arise in the veri/ca-
tion of the construction. In general, it appears that abstract Kleisli structure does not
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extend from a category K to the category Split(K). However, in the special case that
K is an abstract Kleisli p-category, Split(K) does inherit all the structure. For ex-
ample, in the proof below, we make use of the joint monicity of / and ! both to
verify that Split(K) is an abstract Kleisli category, and also to derive the precartesian
structure.

Proposition 30. Suppose that K is an abstract Kleisli p-category; and S is a collection
of idempotents in K that contains all identities and is closed under the application
of G and ⊗. Then SplitS(K) also is an abstract Kleisli p-category; and I :K →
SplitS(K) strictly preserves all the commutative precartesian abstract Kleisli category
structure.

Proof. First, we show that SplitS(K) forms an abstract Kleisli category. The required
structure is de/ned as follows:

G′a = Ga (object part of G′);

G′f = Gf (morphism part of G′);

#′
a = Ga ◦ # ◦ a;

/′a = a ◦ / ◦ Ga:

The square in the de/nition of an abstract Kleisli category can be checked using the
joint monicity of / and !. All other equations are straightforward. For the symmetric
monoidal product and unit, de/ne

a⊗′ b = a⊗ b (object part of ⊗′);

f ⊗′ g = f ⊗ g (morphism part of ⊗′);

I ′ = idI :

The structural isomorphisms are de/ned by

�′a;b;c = (a⊗ (b⊗ c)) ◦ � ◦ ((a⊗ b)⊗ c);

�′a;b = (b⊗ a) ◦ � ◦ (a⊗ b);

�′a = a ◦ � ◦ (a⊗ idI );

�′
a= a ◦ � ◦ (idI ⊗ a):

The coherence equations are easily veri/ed from those for K.
Next, we prove that ⊗′ and I ′ form /nite products on (SplitS(K))t with projections

�′
i : a1 ⊗′ a2 → ai given by

ai ◦ �i ◦ (a1 ⊗ a2)

The required equation #′ ◦ �′
i =G�′

i ◦#′ can be proved with the joint monicity of / and
!. (The case for ! also needs Lemma 18.) De/ne !′a : a→ I ′ to be ! ◦ a. To check the
/nite products, we shall repeatedly use the following lemma:
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Lemma 31. For every morphism f∈SplitS(K)(a; b), if #′
b ◦f=G′f ◦#′

G′a then !
′
b ◦

f= !′a.

Lemma 31 holds because the second equation results from postcomposing ! on both
sides of the /rst equation.
The uniqueness of !′a follows directly from Lemma 31 with b= I ′. The equation

stating that !′a is thunkable in SplitS(K) follows from the joint monicity of / and !. To
see that ⊗′ forms a cartesian product in (SplitS(K))t , let f1 : a→ b1 and f2 : a→ b2 be
morphisms of (SplitS(K))t . We claim that the unique thunkable h : a→ b1 ⊗ b2 such
that �′

i ◦ h=fi is given by 〈f1; f2〉 (i.e. the pair formed in K). By Lemma 18, we
have �′

i ◦ h=fi if and only if �i ◦ h=fi. Because �1 and �2 are jointly monic, h is
uniquely determined. Next we check that 〈f1; f2〉 ∈SplitS(K)(a; b1⊗b2). Because every
morphism of K is copyable, we have 〈f1; f2〉 ◦ a= 〈f1 ◦ a; f2 ◦ a〉= 〈f1; f2〉. Obviously,
we have (b1 ⊗ b2) ◦ 〈f1; f2〉= 〈f1; f2〉. To see that �i ◦ 〈f1; f2〉=fi, observe that we
have

�1 ◦ 〈f1; f2〉= �1 ◦ (id⊗!) ◦ 〈f1; f2〉
= �1 ◦ 〈f1; ! ◦ f2〉
= �1 ◦ 〈f1; ! ◦ a〉 Lemma 31

= �1 ◦ 〈f1 ◦ a; ! ◦ a〉
= �1 ◦ 〈f1; !〉 ◦ a because every morphism of K is copyable

=f1 ◦ �1 ◦ 〈id; !〉 ◦ a Lemma 18

=f1 ◦ a=f1:

Analogously, we get �2 ◦ 〈f1; f2〉=f2. The required equation #′
b1⊗b2 ◦ 〈f1; f2〉=

G′〈f1; f2〉 ◦#′
a is proved with the joint monicity of / and !: That both sides followed

by / are the same is straightforward. For postcomposition with !, consider

! ◦ #′
b1⊗b2 ◦ 〈f1; f2〉=! ◦〈f1; f2〉 =! ◦ 〈! ◦ f1; ! ◦ f2〉

=! ◦〈! ◦ a; ! ◦ a〉 Lemma 31

=! ◦〈a; a〉 =! ◦ 〈id; id〉 ◦ a
=! ◦a =! ◦ G′〈f1; f2〉 ◦ #′

a:

Although we know now that a⊗′ b is the cartesian product of a and b in (SplitS(K))t ,
we still have to check that the morphism part of the induced cartesian-product functor
agrees with the functor ⊗′ we de/ned earlier. This is so because

〈f1 ◦ �′
1; f2 ◦ �′

2〉 = (f1 ⊗ f2) ◦ 〈�′
1; �′

2〉 = f1 ⊗ f2 = f1 ⊗′ f2

It remains to prove that �′; �′; �′, and �′ coincide with the corresponding maps induced
by the /nite-product structure on (SplitS(K))t . Letting (ab)c abbreviate (a ⊗ b) ⊗ c,
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we have

〈�′
1 ◦ �′

1; 〈�′
2 ◦ �′

1; �′
2〉〉

= 〈�1 ◦ �1 ◦ ((ab)c); 〈�2 ◦ �1 ◦ ((ab)c); �2 ◦ ((ab)c)〉〉 Lemma 18

= 〈�1 ◦ �1; 〈�2 ◦ �1; �2〉〉 ◦ ((ab)c) copyability in K

= � ◦ ((ab)c) = � ◦ ((ab)c) ◦ ((ab)c)
= �′ naturality of �:

A similar calculation works for �′, and the cases for �′ and �′ are trivial.
To see that SplitS(K) is an abstract Kleisli p-category, it suTces to verify diagram

(5), but this follows easily from (5) in K.
It remains to verify that the functor I :K→SplitS(K) strictly preserves all the com-

mutative precartesian abstract Kleisli p-category structure. But this is immediate from
the de/nition of the structure on SplitS(K). This completes the proof of Proposition 30.

Corollary 32. Suppose K is an abstract Kleisli p-category. Let S be the collection
of all idempotents in S. Then SplitS(K) is a dominical abstract Kleisli p-category;
and I :K→ SplitS(K) is a full and faithful functor that preserves existing limits and
colimits and strictly preserves the commutative precartesian abstract Kleisli category
structure.

Proof. By Proposition 30, SplitS(K) is an abstract Kleisli p-category, and the functor
I :K → SplitS(K) is a full, faithful and structure-preserving (including limits and col-
imits). That SplitS(K) is a dominical follows from Theorem 29, as all idempotents in
SplitS(K) split (not just the domain maps).

We end the section with a remark about the above proof. In order to expand an
abstract Kleisli p-category K to a dominical abstract Kleisli p-category, it is not really
necessary to split all idempotents in K. However, in spite of Theorem 29, it does not
suTce to split only the domain maps, as these do not satisfy the closure conditions
required by Proposition 30. What is possible is to de/ne S0 to be the least collection
of maps containing all identities and closed under G; ⊗ and the following rule: if
a∈ S0, and f ◦ a=f, then Uf ◦ a∈ S0. (It follows that all maps in S0 are idempotents.)
The dominical abstract Kleisli p-category obtained as SplitS0 (K) has a universal prop-
erty as the free dominical abstract Kleisli p-category over K. This universal property
can be expressed in terms of a 2-adjunction between the 2-category of abstract Kleisli
p-categories and its dominical subcategory, along the lines of the 2-adjunctions exhib-
ited in [3].

8. Equational lifting monads revisited

Having taken a thorough look at the abstract Kleisli category account of lifting,
we now return to our initial viewpoint, in which the category with monad is taken
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as primitive. We begin by piecing together the various results we have proved about
abstract Kleisli p-categories to obtain a swift proof of Theorem 9.

Proof of Theorem 9. Let L be an equational lifting monad on C. By Proposition 21,
the Kleisli category CL is an abstract Kleisli p-category. Moreover, as in Section 5,
there is a strong-monad-preserving functor U :C→ (CL)t (the thunkable subcategory)
that is (trivially) Kleisli full and Kleisli faithful (there is an isomorphism of Kleisli
categories).
Let S be the collection of all idempotents in CL. By Corollary 32, SplitS(CL) is a

dominical abstract Kleisli p-category, and there is a full and faithful structure-preserving
functor I :CL → SplitS(CL), which also preserves all existing limits and colimits in CL.
The functor I restricts to a strong-monad-preserving functor It : (CL)t→ (SplitS(CL))t
which is (Kleisli) full and (Kleisli) faithful. Moreover, by Theorem 29, the induced
monad L′ on (SplitS(CL))t is dominical.
Thus ItU :C→ (SplitS(CL))t is the required Kleisli full and Kleisli faithful domini-

cal representation of L.

It is worth commenting on the extent to which our extensive detour through abstract
Kleisli p-categories facilitated the proof of Theorem 9.
One can view the proof as dividing into two stages. The /rst, the construction

of (CL)t , provides a representation of L into an induced monad (that on (CL)t) sat-
isfying the equaliser property. This representation is Kleisli full and Kleisli faithful
because (CL)t is de/ned as the thunkable maps within the original Kleisli category.
The construction of (CL)t already makes use of abstract Kleisli categories, applying
the reMection theorem of [7] to equational lifting monads. However, it would be quite
feasible to reformulate this part of the proof entirely in terms of the equational lifting
monad structure, by verifying directly that (CL)t carries a suitable equational lifting
monad (although this is not entirely trivial as one must verify, e.g., that (CL)t has
products).
The second stage of the proof constructs a full and faithful dominical representa-

tion of the monad on (CL)t . By Theorem 29, it is necessary to split domain maps in
CL while retaining the property of being the Kleisli category of an equational lifting
monad. In order to verify such a property, it is indispensable to have a direct axiom-
atization of such Kleisli categories so that the structure that must be preserved under
idempotent splitting is identi/ed. The notion of abstract Kleisli p-category provides
exactly this.
We now have all the ingredients to characterise when an equational lifting monad

is itself a dominical lifting monad.

Theorem 33. For a monad L on a category C with 7nite products; the following are
equivalent:
(1) L is a dominical lifting monad.
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(2) L is an equational lifting monad satisfying the equaliser property and all domain
maps split in the Kleisli category CL.

(3) L is an equational lifting monad satisfying the equaliser property; all pullbacks
of the unit � exist in C; and L preserves existing pullbacks.

Proof. From Section 3, we have that any dominical lifting monad on a category with
/nite products has a unique strength that makes it an equational lifting monad satisfying
the properties in (3). Thus (1) implies (3). Also, it is immediate from Theorem 29
that (1) is equivalent to (2). We complete the proof by showing that (3) implies (2).

Let A
f→LA in C be a domain map in CL(A; A). We have to show that it splits. By

assumption, the pullback below exists in C.

We /rst show that � ◦ h= � ◦m hence h=m.

� ◦ h = f ◦ m
= L�1 ◦ t ◦ 〈idA; f〉 ◦ m because f is a domain map

= L�1 ◦ t ◦ 〈m;f ◦ m〉
= L�1 ◦ t ◦ 〈m; � ◦ h〉
= L�1 ◦ � ◦ 〈m; h〉
= � ◦ m:

As L preserves the above pullback, we have a pullback:

But f is a domain map in CL, hence idempotent, so � ◦Lf ◦f=f= � ◦L� ◦f.
Also, L! ◦Lf ◦f=L! ◦L� ◦f (obviously). So, by the joint monicity of � and L!,
we have Lf ◦f=L� ◦f. Therefore, the pullback above gives a unique A r→LA′ such
that Lm ◦ r=f.
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We now see that � ◦m and r provide the required splitting in CL. That Lm ◦ r=f
already provides one equality. For the other, we must show that r ◦m= �. But:

Lm ◦ r ◦ m=f ◦ m= � ◦ h= � ◦ m=Lm ◦ �
As Lm is mono, the required equality follows.

It is instructive to see that the requirement that L preserve pullbacks in statement (3)
of the theorem cannot be dropped. Indeed there is a very simple counterexample in
Set. De/ne L to be the evident strong monad with underlying functor:

LX =
{ ∅ if X is empty;
1 + X otherwise:

Then L is an equational lifting monad satisfying the equaliser requirement. Obviously
all pullbacks of the unit � exist. However, by exhibiting ∅ as a pullback of non-empty
objects, it is easy to see that L does not preserve pullbacks.
To verify explicitly that L is not dominical, observe that pullbacks of � form the

dominion Inj of all injective functions. The Inj-partial maps are exactly the set-theoretic
partial functions. The unde/ned partial function from 1 to ∅ is thus an Inj-partial map,
but it is not represented by a point of L∅.
We end this section with a curious fact that arose in discussion with Paul Taylor.

Proposition 34. For an equational lifting monad (C; L); the following are equivalent:
(1) L satis7es the equaliser property.
(2) The functor J :C→CL is comonadic.

Proof. We work with the abstract Kleisli p-category structure on CL. There is an
evident full and faithful functor (CL)t→G-Coalg(CL), which maps an object A to

the comonad coalgebra A #→GA in CL. The comparison functor from C to G-Coalg
(CL) is given by the composite C→ (CL)t→G-Coalg(CL). We must show that this
is an isomorphism if and only if the equaliser property holds. But, as remarked in
Section 5, the functor C→ (CL)t is an isomorphism if and only if the equaliser property
holds. Thus, it suTces to show that the functor (CL)t→G-Coalg(CL) is always an
isomorphism. Accordingly, let A a→GA be any comonad coalgebra for G. We show
that a=#A. As a is a comonad coalgebra, / ◦ a= idA, thus a is mono and hence, by
Propositions 26 and 27, thunkable. But then a= [/ ◦ a] so a= [idA] =#A as required.

9. Discussion

The work presented in this paper grew out of earlier work by the /rst author with
Pino Rosolini. Their paper, [2], had a similar motivation to ours, but its development
was diGerent in detail. In [2], a general notion of lifting was de/ned for categories
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with terminal object. In the special case that the category has /nite products, as we
assume in this paper, the notion of lifting in [2] corresponds to that of an equa-
tional lifting monad satisfying the equaliser property whose underlying functor pre-
serves existing pullbacks. So, although, by not assuming /nite products, the scope of
[2] is more general than ours, the notion of lifting adopted in [2] is strictly stronger
than that of an equational lifting monad. In [2], given a category C with /nite prod-
ucts and a lifting (in their stronger sense) L, a category Ct is constructed, which
is the free category with dominion such that CL fully embeds in Ptl(Ct). Also, the
functor C→Ct is shown to preserve all existing limits in C that are preserved by
L. This embedding result is similar in spirit to our Theorem 9 and Corollary 10.
However, a major diGerence with the present paper is that the category Ct of [2]
does not itself have a lifting monad acting on it. So, in the present paper, we ob-
tain a stronger representation theorem under weaker conditions. We also separate out
precisely the equational properties of lifting monads from the non-equational prop-
erties, and establish new non-trivial consequences of the equational properties (e.g.
Corollary 11).
At /rst sight, our Eq. (3) may seem rather curious. There are many intriguing

connections. For example, it seems likely that the cuboidal category, introduced
in [6], is the free category with equational lifting monad over the empty set of
generating objects. Also, although we do not have a precise connection, it is
worth remarking that Eq. (3) is reminiscent of the Euclidean principle, recently
introduced by Taylor as part of a characterisation of dominances [19]. It is also illumi-
nating to consider the signi/cance of (3) within Moggi’s computational lambda-calculus
[13]. It appears that Eq. (3) corresponds to the intersubstitutivity of e with x in the
body M of let x= e inM . It would be interesting to see if the completeness of such
a formulation might lead to a simpli/ed meta-theory for the partial �-calculus [12].
Such an investigation would require extending the results in this paper to cover partial
function spaces, which is itself a (probably straightforward) programme of independent
interest.
One of the applications we have of the work in this paper is to establish properties

of recursion in axiomatic domain theory. A general axiomatic analysis of recursion has
been carried out in [18], establishing equational completeness assuming the existence
of suTciently many /nal coalgebras. In the presence of an equational lifting monad,
Kleisli exponentials and a (parameterized) natural numbers object N, all the necessary
/nal coalgebras can be constructed by splitting idempotents on N-fold powers of lifted
objects [18].
The work in this paper constitutes an equational analysis of partial map classi/ers.

There are many other similar projects possible that might be worth investigating. One
question is whether there is an equational characterisation of those (subpowerset) mon-
ads whose Kleisli categories can be viewed as categories of relations. Such monads
would include all lifting monads, but also powerobject monads and various other related
notions of free lattice. A natural setting would be to obtain representation theorems
with respect to regular categories.
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Another possible direction for generalising the work in this paper is dropping the
commutativity requirement on equational lifting monads. Many of the calculations in
this paper do not make use of commutativity, and thus apply to the more general
class of strong monads satisfying Eq. (3). One reason for being interested in such
a generalisation is that this class also includes “exception” monads of the form (−)
+ E [14].
Finally, we mention related work by Robin Cockett and Stephen Lack. Building on

their still unpublished restriction categories [3], they have recently extended their ax-
iomatization to lifting monads [4]. Their work nicely complements ours. We assume
/nite products in the underlying category, and emphasise equational properties, repre-
sentation theorems and transference results. They characterise lifting monads without
assuming /nite products, and provide 2-categorical reMection theorems diGerent relating
classes of lifting monad.
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