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ABSTRACT  

Concrete-filled steel hollow structural (CFS) sections are an increasingly popular means of 

supporting large compressive loads in structures (i.e. in columns). Efficient in their load 

carrying capacity, they are architecturally appealing and offer numerous advantages in design 

and construction. Whilst the design of CFS sections at ambient temperatures is reasonably 

well understood, and models to predict the strength and failure modes of these elements at 

ambient temperatures correlate well with observations from tests, this appears not to be true in 

the case of fire resistant design. The limited understanding is owed to number of knowledge 

gaps that continue to surround their thermal response and structural behaviour in fire. This 

paper focuses on a potentially important knowledge gap: the significance on heat transfer of 

the air gap that typically forms at the interface between the steel tube and concrete core when 

a CFS section is exposed to fire. The purpose of the research is to investigate the impact that 

the width of the air gap may have on the heat transfer within the section. To achieve this, a 

one-dimensional finite difference model of the heat transfer through a CFS section was 

developed and validated against the results of an experimental programme consisting of 

approximately 1-D thermal loading of specimens consisting of a steel plate and concrete 

mass, separated by air gaps of various known widths. The model is shown to reasonably 

predict the temperature evolution in the concrete mass and is thus deemed to account for the 

heat transfer physics occurring in the air gap and the resulting insulating effects on the 

concrete core. The model is subsequently used to propose a correlation between air gap width 

and rate of heat transfer between steel and concrete. The rate of heat transfer is shown to be 

considerably reduced for larger air gap widths, highlighting the importance of including air 

gap formation and development during heat transfer analyses of CFS sections. 

INTRODUCTION 

Concrete-filled steel hollow structural (CFS) sections are an economical and aesthetically 

appealing means of supporting large compressive loads and they are increasingly popular in 

design and construction (Rush et al., 2010). Consisting of hollow steel tubular sections which 

are filled with concrete, CFS columns have superior load carrying capacity and structural 

resistance to fire when compared with unfilled hollow steel sections or reinforced concrete 

columns. Structurally, the two components of a CFS column work together, in that the steel 

casing offers lateral restraint to the concrete core, allowing it to attain its maximum 

compressive strength, while the concrete improves the resistance to elastic local buckling of 

the steel (Kodur, 2007). There are many other advantages associated with CFS columns, 

including reduced cross-sectional area when compared with conventional concrete columns, 

corrosion protection provided to the concrete by the steel tube, and considerable appeal to 

architects owing to their attractive surface finish. CFS sections also allow for rapid 

construction, since phased assembly can be implemented with the pre-fabricated steel tubes 
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acting as permanent, weather-proof formwork for the concrete pouring operations that follow; 

thus reducing forming and stripping costs (Leon and Griffis, 2005). The benefit of CFS 

columns which is of most relevance to the current study is that the combination of steel tube 

and concrete core serves to enhance the load carrying capacity of the column during fire. The 

concrete can act as a thermal sink as well as accommodating a portion of the steel’s axial 

loading when the column is heated during a fire (Leon and Griffis, 2005). This improved 

structural performance in fire means that, in some cases, the required fire resistance time for a 

CFS column can be achieved without the need for supplemental fire protection (Kodur, 2005). 

CFS columns thus provide economical structural fire design solutions while imposing 

minimal impact on the aesthetics and usable space within a building.  

For the fire resistance design of most common types and sizes of CFS columns, official 

prescriptive guidance documents (CEN, 2005; CEN, 2008) are available, as well as several 

guidance publications produced by researchers (Kodur, 2007; Lennon et al., 2007; Wang and 

Orton, 2008; Aribert et al., 2008; Park et al., 2008). Much of the available guidance was 

developed for conventional applications based on large-scale standard furnace tests and 

computer modelling of short, concentrically loaded, small-diameter columns envisioned for 

use in braced frames using normal strength concrete (Rush et al., 2010). Increasingly 

however, high-performance CFS columns incorporating high-strength concrete and/or very 

large cross-sections are being specified in the design and construction of large multi-storey 

structures. The structural performance of modern CFS columns in realistic fire and loading 

conditions is not well established and their design often falls outside the scope of the available 

guidance. Current design approaches are limited in scope, and this makes structural fire 

design of CFS columns using performance-based approaches difficult to defend to approving 

authorities. 

During heating of a CFS column, many thermal and structural response phenomena occur that 

affect structural failure but which cannot currently be predicted with confidence (Wang and 

Orton, 2008). Several knowledge gaps exist that are currently limiting the formulation of 

comprehensive guidance for the fire resistance design of such columns. One area of 

uncertainty is the effects of the development of air gaps which form at the steel-concrete 

interface when CFS columns are exposed to fire. During heating, the variation in thermal 

expansion between the steel tube and concrete core can cause separation of the steel tube from 

the concrete and the development and growth of an air gap. While ignoring the development 

of an air gap in analysis of CFS sections is generally thought to be conservative for 

unprotected CFS columns (Rush et al., 2010), accounting for the presence of the gap 

considerably improves the accuracy of prediction of temperature distribution within a CFS 

column during fire; this has been demonstrated by Ding & Wang (2008) and Renaud (2004) 

where the presence of an air gap was explicitly incorporated into computational analyses – 

albeit by adopting a gap of constant thickness with an assumed associated thermal resistance 

imposed (so as to match test data.) The influence of an air gap on the thermal response, and 

thus the structural performance, of CFS sections remains poorly understood and has yet to be 

quantified.  

To date, the majority of researchers have chosen not to consider the formation of an air gap in 

their analyses, instead assuming perfect thermal contact between the concrete core and steel 

tube. In reality, the formation, development, and heat transfer physics which are at play are 

highly complex; they vary with time and depend on a range of factors such as the type of 

concrete being used, the thickness of steel tube, the interface mechanical properties, and the 

rate of heating. The current study investigates, in a controlled manner, the impact that the air 
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gap might have on the thermal response of CFS columns exposed to fire conditions. A one-

dimensional heat transfer model has been developed and is validated against tests involving a 

series of idealised 1-D experiments. This allows advancement of the simplified means 

employed in previous research and realistic accounting for the heat transfer physics in the air 

gap. The numerical predictions and can then be used to examine the impact of an evolving air 

gap on the heat transfer through a real section. The insights gained help to better understand 

and define the thermal response of CFS columns in fire, aid the development of robust heat 

transfer models for these sections, and contribute to the advancement of performance based 

structural fire design procedures. 

EXPERIMENTAL PROGRAMME 

The experimental programme was intended to investigate the heat transfer and cross-sectional 

temperature profile evolution in a vertical segment of a CFS section exposed to fire. The 

specimens tested were based on an assumed infinitely large CFS section, where the steel plate 

facing the fire can be considered to be flat, thus allowing a simplified 1-D heat transfer 

experiment.  During the heating of a real CFS column, differential thermal expansion occurs 

between the steel and concrete of the composite column due to their different rates of heating, 

thermal gradients arising in the section, and the materials’ respective coefficients of thermal 

expansion. This differential thermal expansion promotes the formation of the air gap, the size 

of which is dependent on several factors. The experiments were designed not to assess the 

external factors that influence the evolution of the air gap, but to look specifically at the air 

gap’s influence on the thermal response of the section. This was achieved by explicitly  

separating the steel and concrete elements of the specimens by a constant distance (set at 

0mm, 1mm, 3mm, or 5mm) and then recording the temperature evolution at specific points 

within the specimen when heated using a radiant panel with a well characterised incident heat 

flux. The experimental program thus allowed observation of the influence of the air gap on 

the heat transfer through the section and provided data for model validation. 

Specimen Preparation 

The specimens are shown schematically in Fig. 1 and were 300 x 300 x 125 mm concrete 

blocks faced with 250 x 250 x 8 mm steel plates. The steel plates were made from mild 

structural steel and the concrete was a high strength, self-compacting hybrid steel and 

polypropylene fibre (45 kg/m
3
 and 2 kg/m

3
 respectively) reinforced concrete mix. The mix 

design was chosen based on a companion project which is interested in supporting the use of 

fibre reinforced concrete infill materials as replacement for traditional reinforcing steel cages. 

The concrete had a moisture content of between 5.0 and 5.8 % by mass and a compressive 

cylinder strength of 58MPa at the time of testing. The concrete was cast directly onto the steel 

plates so as to precisely match any imperfections on the steel plates so that when the air gap 

was artificially created (using a series of steel spacers around the perimeter of the steel plate) 

a consistent air gap was assured. The perimeter of the air gap was sealed using high 

temperature ceramic sealant to prevent convective heat loss from the gap and ensure that the 

heat transfer across the gap was as realistic as possible (Fig. 1). The dimensions and materials 

used for the specimens are representative of realistic CFS columns and allowed the influence 

of the air gap to be studied in a controlled manner. Eight Type K thermocouples were used in 

each test and were placed as shown in Fig. 1; all data were acquired at 10 Hz. 
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Fig. 1. Test specimen details 

 

 

Fig. 2. Test setup 

Test setup 

The test setup, shown in Fig. 2, had the test specimen vertically positioned behind a ceramic 

insulation board containing a 200 x 200 mm opening through which heating was applied 

centrally on the steel plate.  A layer of fibre-glass wool was wrapped around the top and sides 

of the specimen to prevent lateral thermal losses, thus promoting a 1-D heat transfer regime. 

At the outset of the experimental programme, the average heat flux produced by the radiant 
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heating panel over the centralised 200 x 200 mm exposed area was measured at various 

distances from the front face of the radiant panel which was used to heat the samples (Fig. 2). 

The heat fluxes given in Fig. 2, and the corresponding separation distances between the 

radiant heating panel and the front face of the steel plate, were selected to represent values for 

heating effects roughly equivalent to the ISO 834 Standard Fire (Babrauskas, 1995). It should 

be noted that the heat fluxes varied by ±10% over the heated area. 

Testing Procedure 

Prior to subjecting the specimens to thermal loading, the radiant heating panel was ignited and 

allowed to stabilize at a constant heat flux while a temporary fire-insulation board was 

positioned to shield the 200 x 200 mm opening through which the specimens were heated 

(Fig. 2). The rate of combustible gas flow supplied to the radiant heating panel was 

maintained at a pre-defined value by an automatic flow control meter. Once the front face of 

the steel plate reached 35° C (due to heat transfer through and around the fire-insulation 

board) as recorded by TC 1 (Fig. 2), the temporary fire-insulation board was removed and 

rapid heating of the specimens commenced. The heating continued for 60 minutes, after 

which the combustible gas supply to the radiant panel was turned off and the fire-board was 

repositioned in front of the steel plate, allowing the specimen to cool slowly for a further 60 

minutes during which time temperature measurements were recorded. 

Testing Programme 

The experimental program, shown in Table 1, was divided into two phases; Phase 1 consisted 

of eight tests in which the air gap was varied from 0 to 5 mm (with repeat tests at each air gap 

width); this was immediately followed by Phase 2, consisting of seven tests in which 

additional repeat tests were performed and the incident heat flux was investigated. A 

breakdown of the individual experiments that were conducted and a summary of the specifics 

of each test are given in Table 1. During Phase 1, two tests were carried out using each of the 

following imposed air gap widths: 0, 1, 3 and 5 mm; these were chosen to cover the range of 

gap widths assumed to be present in experimental full scale tests based on a review of the 

available literature (Kodur, 2007; Ding and Wang, 2008; Rush et al., 2010). After the initial 

eight tests had been carried out and their results had been observed and assessed, the 

particulars of Phase 2 were established. The purpose of Phase 2 was to allow for additional 

test variations of possible interest to be explored and for repeat tests if necessary. Due to a 

mechanical failure in the test apparatus’ gas supply, the number of tests remaining used 

explore different variables was diminished, so a reduction in the level of initial imposed heat 

flux was used, from the intended 50 kW/m
2 

in Phase 1 to 35 kW/m
2
 in Phase 2. As shown in 

Table 1, test repeats were carried out for a heat flux of 50 kW/m
2
 using air gaps of 0 mm and 

1 mm. The 35 kW/m
2
 heat flux test with 1 mm air gap was also repeated, in this case as a 

result of the heating panel gas supply running out during testing. The data obtained from Tests 

3, 4 and 13 all suffered some kind of testing failure and are thus not considered in any of the 

analysis or discussion.  

RESULTS AND DISCUSSION 

Figures 3 and 4 show typical samples of temperature data acquired during testing for each of 

the thermocouples. These plots allow initial qualitative assessment of the heat transfer across 

the air gap. Comparing the results of the different tests, it can be seen that as the air gap width 

increases, the steel temperatures increase and concrete temperatures decrease. This is 

expected and is due to the air gap acting as an insulator. 
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Table 1. Details of the experimental programme 

Test 
Heat 

Flux 

Air 

Gap 

Concrete 

Batch 
Comments 

Temperatures after 60 minutes of heating (° C) 

Steel Concrete 

 

(kW/m
2
) (mm) 

  TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 

   
Front 

face 

Back 

face 

Front 

face 

5 mm 

depth 

10 mm 

depth 

15 mm 

depth 

25 mm 

depth 

50 mm 

depth 

Phase 1  

1 50 0 1 -- 550 518 445 372 314 275 219 144 

2 50 0 1 -- 561 515 424 345 294 286 209 147 

3 50 1 1 

Fan 

malfunction at 

~ 40 min 

531 494 380 322 248 243 204 139 

4 50 1 1 

Fan 

malfunction at 

~ 30 min 

185 192 184 180 167 164 156 126 

5 50 3 1 

TC 5 

malfunction 

throughout 

590 564 407 318 (340) 247 196 128 

6 50 3 2 

TC 3 

malfunction 

until ~ 25 min 

590 549 405 308 270 239 191 129 

7 50 5 2 

Data logger 

malfunction at 

60 min 

589 566 405 341 283 244 201 133 

8 50 5 2 -- 590 568 400 332 266 261 206 129 

Phase 2  

9 50 0 2 -- 572 547 485 400 351 270 255 140 

10 50 1 2 -- 578 553 433 358 299 263 208 133 

11 50 1 3 -- 585 569 460 391 332 254 234 132 

12 35 0 3 -- 433 385 313 268 218 203 164 120 

13 35 1 3 
Gas supply ran 

out at ~ 25 min 
385 373 262 214 203 172 152 109 

14 35 5 3 -- 462 428 251 222 175 157 134 106 

15 35 1 3 

TC 7 

malfunction 

throughout 

423 398 251 209 196 158 (113) 82 

 

The response of the steel plates is characterised by two ‘phases’. The first phase is 

characterised by an immediate, steep increase in temperature. The temperature continues to 

rise at a relatively rapid rate for 10-15 minutes after the start of the heating. The second phase 

is characterised by a relatively constant reduced rate of temperature increase in the steel from 

about 15 minutes to the end of the tests. 
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Fig. 3.Examples of temperature profiles in specimens with a) 0 mm; b) 1 mm; and c) 5 mm air 

gaps, exposed to a 50 kW/m
2
 heat flux, and in specimens with d) 0 mm; e) 1 mm; and f) 5 

mm air gaps, exposed to a 35 kW/m
2
 heat flux. 

The temperatures experienced by the concrete were significantly lower than those in the steel, 

with a more gradual and less variable rate of temperature increase. The difference in the rate 

of heating between the two components is highlighted by the fact that the greatest temperature 

difference between the back face of the steel and the front face of the concrete was observed 
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early in the heating, at approximately 10-15 minutes. This is also seen during the cooling 

phase (Figs. 3(a) and 3(d)), where after the thermal load was removed, the steel temperatures 

dropped off relatively rapidly whereas temperatures continued to increase for a short period in 

the concrete before beginning to decrease. The peak temperatures in the concrete 50mm from 

the concrete surface were observed 15-20 minutes after the heating was removed.  

As expected, the air gap is shown to act as an insulator, and the influence that the size of air 

gap had on the thermal behaviour of the specimens is considerable. The general trend is that a 

larger air gap results in higher steel temperatures and lower concrete temperatures. The test 

results indicate that as the air gap width increases the heat transfer between the steel and the 

concrete decreases, however the trend is not linear. Figure 4 shows a comparison of the 

temperatures on the back face of the steel plate and the front face of the concrete block with 

differing air gap widths. The temperature difference between the two faces increases 

considerably when a 1 mm air gap is introduced. However, as the air gap increases to 3 mm in 

width, and further to 5 mm, the degree to which the temperature difference increases is 

reduced.  

The tests have clearly shown that an air gap has a substantial influence on heat transfer within 

CFS sections. The omission of the air gap during design could lead (in terms of a thermo-

mechanical analysis) to (a) an under-prediction of steel temperatures, resulting in an over-

prediction of the time to failure for CFS sections in which the structural fire performance of 

the steel tube is more critical; or (b) an over-prediction of concrete temperatures resulting in 

inefficient design of CFS sections where the performance of the concrete core is more critical. 

 

Fig. 4: Variation in maximum temperatures with air gap width 

 

MODELLING 

A simple 1-D heat transfer model was developed to simulate the heat transfer from a radiant 

panel into a vertical steel plate, across an air gap, and into and a concrete mass. The model 

was developed within a spreadsheet using an explicit finite difference formulation based upon 

an elemental conservation of energy and driven by a heat flux incident upon the front face of 

the steel. Using fundamental heat transfer physics, a series of analytical equations were 



 15
th
 International Conference on Experimental Mechanics 

ICEM15  9 

established upon which the finite difference heat transfer algorithm operated. The heat 

transfer equations formulated are similar to those used in previous research on modelling the 

structural fire behaviour of CFS sections (e.g. Lie and Kodur, 1996; Lie and Irwin, 1996). 

From these finite difference formulations it was possible to compute the temperature of any 

element at any time step and thus predict the temperature evolution within the sections.  

Applying the principle of conservation of energy to each layer element, the energy stored, 

ΔQst, by an element in a particular time period is given by the difference between the energy 

transferred into the element, Qin, and the energy transferred out of the element, Qout. 

                (1) 

For each element, Qin and Qout were determined by considering how the conductive, 

convective and radiative modes of heat transfer applied and then calculating their respective 

contributions.  

Conduction 

Using Fourier's law (Eq. 2), the rate of heat transfer through a material is proportional to the 

negative gradient in the temperature and to the area, at right angles to that gradient, through 

which the heat is flowing. Fourier’s Law is: 

 ̇ 
       

  

  
 

(2) 

where  ̇ 
    is the heat transfer rate in the positive n direction per unit area, kn is the thermal 

conductivity coefficient of the transfer medium in the direction n, and δT/δn is the 

temperature gradient in the direction n. This law is based on the assumption that the substance 

through which the transfer is taking place is a solid or incompressible and motionless liquid 

or gas.  

Combining this relationship with the second law of thermodynamics, which dictates that  ̇ 
   

must always flow towards regions of lower temperature, the conduction equation for the 

temperature function T(x,y,z,t) within a differential volume in Cartesian coordinates can be 

expressed by the heat diffusion differential equation (Incropera and Dewitt 2002): 

 

  
( 

  

  
)   

 

  
( 

  

  
)   

 

  
( 

  

  
)     ̇      

  

  
 

(3) 

where  ̇   represents heat generation within the material, ρ and Cp are the density and the 

specific heat of the material respectively and t is time.  

If the heat transfer is assumed to occur in one dimension only, as is the case in this model, the 

heat transfer via conduction in the x-direction is given by: 

 

  
( 

  

  
)     ̇      

  

  
 

(4) 

The physical significance of the various terms in Equation 4 demonstrates that it is simply a 

mathematical description of the principle of conservation of energy. The first term represents 

heat transfer into or out of the differential volume due to heat conduction, the second term 
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accounts for heat generation in the differential volume and the term on the right hand side 

represents the heat stored in the differential volume per unit time. 

The above differential equation has been used in this study, with appropriate simplifications, 

(for example assuming that the temperature of the air in the gap is equal to the average 

temperature of the back face of the steel and the front face of the concrete, and that there was 

no mass transfer in terms of water vapour in the analysis), and boundary conditions, to arrive 

at the equations employed in the numerical model for the heat transfer through the solids, i.e. 

the steel and concrete. However, in representing the heat transfer across the air gap, the 

assumption that the transferring medium is a solid or incompressible and motionless liquid or 

gas is not valid and thus Fourier’s Law of heat conduction does not apply. Instead, the effects 

of convection between the back face of steel and front face of the concrete had to be 

considered in conjunction with conduction, while the radiative heat transfer between the two 

surfaces also had to be evaluated.  

Convection 

Convective heat transfer from a vertical surface may be expressed in terms of Newton’s law 

of cooling, which presents the relationship between the rate of heat transfer per unit area  ̇   

and the temperature difference between the surface and ambient as (Bejan, 1993): 

 ̇     ̅(      ) (5) 

where  ̅ is the average convective heat transfer coefficient integrated over the entire surface 

and Tw and T∞ are the vertical wall surface temperature and the ambient temperature, 

respectively. The heat transfer coefficient  ̅ depends on the flow configuration, fluid 

properties, dimensions of the heated surface and also on the temperature difference between 

the heated surface and the surrounding medium. The association given by Equation 5 is 

therefore non–linear, with  ̅ being generally expressed in terms of the Nusselt number, Nu, a 

non-dimensional parameter defined as: 

  ̅̅ ̅̅   
 ̅ 

 
 

(6) 

where L is the height of the vertical surface and is as such a characteristic dimension 

particular to the surface. The Nusselt number, Nu, is determined from a variety of 

relationships with dimensionless numbers based upon the geometry of the heat transfer 

system, the temperature gradient across the system, the properties of the fluid, and the flow 

regime. The non-dimensional quantities are namely the Prandtl number, Pr (≈ 0.72 and 

constant for air), the Rayleigh number, Ray (based on local altitude, y), and the Grashoff 

number, Gr: 

     
  (       )  

  
 

(7) 

     
    (       )  

  
 

(8) 

in which g is acceleration due to gravity, β is the coefficient of thermal expansion of the fluid, 

α is the thermal diffusivity of the surface, ρ, ν and μ are the density, kinematic viscosity, and 
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dynamic viscosity of the fluid, respectively, Tw and T∞ are the temperatures of the surface and 

of ambient, respectively. 

In the context of the heat transfer across the air gap between steel and concrete in a CFS 

column, the applicable convective regime is that of natural convection within a thin vertical 

enclosure. De Graff and Van Der Held (1952) showed that the overall heat transfer this 

scenario can be represented using a single “conductance” term that considers the coupled 

effects of both conduction and convection. The conductance, hgap, is obtained by substitution 

for  ̅ in Equation 6, wherein for vertical air layers such as the one in question the air gap 

Nusselt number, Nugap, is given by (De Graff and Van Der Held, 1952) as: 

 1 Grw< 7 x 10
3 

 

Nugap = 0.0384    
     

 
10

4
<Grw< 8 x 10

4 
(9) 

 0.0317    
     Grw> 2 x 10

5 
 

where Grw is the dimensionless Grashof number for the air gap (based on the air gap width, 

w). For the tests outlined in the current paper, the Grashof number, Grw, did not exceed 7 x 

10
3
 and therefore the Nusselt number, Nugap, can be assumed as equal to 1.  

Convective heat transfer at both the front surface of the steel and back surface of the concrete 

were greatly simplified in the model. At the back face of the concrete, the temperature 

difference between the concrete and ambient was deemed to remain sufficiently small 

throughout testing that the amount of heat loss to the surroundings was negligible and need 

not be considered. At the front face of the steel, heat transfer via convection from the steel to 

the environment was accounted for through the use of a single convective heat loss 

coefficient, hc. Due to the complex physics involved in such heat transfer problems and the 

case-specific nature of the heat loss coefficients, hc was used as a user-defined term that could 

be altered to manually produce temperature evolution predictions for the steel front face 

elements that correlated well with the experimental data. While this is not ideal, the focus of 

the current study is on the heat transfer across the air gap, so that the heat transfer to the steel 

front face is not of central importance (however important for calculations in practice). 

Radiation 

To incorporate radiative heat transfer across the air gap in the numerical model, the well-

known equation for radiative heat transfer between two infinite parallel plates of area A1 = A2 

= A was employed: 

         (  
     

 ) (10) 

where q1-2 is the net radiation between bodies 1 and 2, σ is the Stefan-Boltzmann constant (= 

5.669 x 10
-8

 W/m
2
K

4
), T1 and T2denote the temperatures of surfaces 1 and 2, respectively, and 

ε is the relative emissivity between the two surfaces, where ε = ε1ε2.  Emissivity values are 

specific for given surfaces and are dependent on many factors such as smoothness, 

cleanliness, and colour. For simplicity, uniform values were used in the numerical model, 

with steel emissivity, εs and concrete emissivity, εc taken as 0.32 and 0.97 respectively after 

Bejan (1993).  
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Finite Difference equations 

Manipulating the above heat transfer equations and employing them in the energy balance 

approach outlined, finite difference formulations have been developed through which the 

temperature at any time-step in any element can be calculated (Equations 17-22 in Table 2). 

With an incident heat flux, Qin, of either 50 kW/m
2
 or 35 kW/m

2
 acting upon the steel front 

face element as the driving force for the analytical algorithm, the model can be used to create 

predictions for the temperature profile evolution within representations of the specimens in 

the experimental program. Standard values for material properties, and expressions for the 

variation of material properties with temperature, were used in the application of the heat 

transfer equations (CEN, 2005; CEN, 2008). 

Table 2. Details of the numerical modelling approach  

Element 
Energy Balance 

Equations: ΔQst = 

Finite Difference Equations: Element temperatures (time increment = 

Δt) 

Steel     

Front 

face 
s,0 

          
     

      
      

(11) 

    
       

     
  

       

[      (    
       )

  (
    

         
   

 
) (

    
         

   

   

)] 

(17) 

Internal s,m    
           

      (12) 
    

       
     

  

        
 
[(      

         
   )(      

         
   )

  (    
           

   )(    
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Validation & Calibration 

To justify the applicability of the analytical formulations to the heat transfer scenario in 

question, it was necessary to validate the numerical solutions. The validation process involved 

comparing the predictions of the numerical model against the results of the experiments. It was 

found initially that the heat transfer across the gap was not properly accounted for in the 

model when the test results were compared to those of the model. To account for this and to 

improve the accuracy of the predictions an empirical factor, n, was introduced to the 

formulation of hgap as shown in Eq. 23, where the air gap conductance coefficient, hgap, used 

in Equations 19 and 20 is given by a variation of Equation 6: 

        (
 

 
     ) 

(23) 

It was found also that the size of the parameter, n, increased as the size of the air gap 

increased and was also dependant on the heat flux applied to the steel face and so an n – w 

relationship can be established.  

The initial aim of the modelling was to develop a valid numerical heat transfer model that 

would be driven by an imposed heat flux of user-defined magnitude. This purely analytical 

model was created by applying the analytical formulations described above and using 

standard relationships for material property variations with temperature (CEN, 2005; CEN, 

2008). In conducting this numerical analysis however, it became apparent that the temperature 

evolution of the steel plate could not be validly represented using purely analytical means. For 

the solutions to correlate with the test results, it was necessary to impose an unrealistically 

large convective heat loss coefficient, hc, in Equation 17. Reasons for this could include 

misuse of heat transfer theory in the finite difference formulations, errors in applying the 

formulations in the numerical model, the use of incorrect material property values (such as 

emissivity) or an over-prediction of the heat flux applied during testing.   

To be able to rely on the input heat to the system it was decided to impose the steel 

temperatures recorded on the back face of the steel in the experimental programme upon the 

steel elements in the analytical representation. It was deemed that this approach would allow 

for accurate and valid numerical solutions to be attained, without compromising the primary 

objective of examining the impact that the size of the air gap may have on the heat transfer. A 

hybrid model was thus created to analyse the heat transfer across the gap with  the analytical 

formulation beginning with the heat transfer from the back face of the steel plate to the front 

face of the concrete mass (Equation 20). The remaining finite difference equations through 

the concrete mass (Equations 21 and 22) remained the same as for the purely analytical 

model.  

The accuracy of the model’s representation of the concrete’s thermal response was 

investigated by imposing the test-recorded temperatures at the front face of the concrete and 

observing the predictions of temperature profile through the rest of the section. In general, the 

predictions are quite accurate. Although the model over-predicts the temperatures from ~100 

°C upwards as a result of ignoring the effects of moisture evaporation, the actual rate of 

temperature rise (i.e. the curvature of the profiles) matches the test results very well. This 

suggests that the concrete properties are appropriate and also that the differential formulations 

are valid. 
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The predictions produced by the hybrid model for the temperature difference across the air 

gap are presented and compared with corresponding experimental data in Fig. 5. In the main, 

the plots demonstrate a satisfactory correlation between theoretical and experimental results. 

The predictions are accurate over the first 15 minutes of heating for both the 50 kW/m
2
 and 

35 kW/m
2
 heat fluxes. The model does however tend to produce slightly un-conservative 

solutions for the concrete temperatures after this period, particularly when compared with the 

50 kW/m
2
 test results, as evident from the over-estimation of the temperature difference 

between the back face of the steel and the front face of the concrete (i.e. the concrete is 

predicted to be cooler than observed in tests and would therefore resist load for longer if 

structural predictions were subsequently made). This could be due to the convection within 

the gap and the emissivity of the two surfaces not remaining constant and this not being 

accounted for in the analysis, although for a typical heat transfer analysis the model performs 

very well. 

 

   (a)          (b)  

Fig. 5. Comparison of predictions from hybrid model with experimental data for the 

temperature difference across the air gap, in specimens exposed to (a) 50 kW/m
2
 heat flux; (b) 

35 kW/m
2
 heat flux. 

Each of the solutions shown in Fig. 5 employed a specific empirical parameter, n, and these 

values are presented in Fig. 6. It is shown that as w→0, so too n→0, which is to be expected 

as the range of air gaps approaching 0 mm the convective effects which contribute to the 

conductance hgap diminish and the heat transfer tends towards pure conduction. Fig. 6 

indicates that n may also increase with increasing levels of incident heat flux, although no 

conclusions can be made from the results of this study as only two different heat fluxes were 

applied.  

This study does suggest however, that an empirical function, n(w,  ̇  ), taking into account the 

variation of n with incident heat flux and air gap width, could be established for the heat 

transfer across an air gap between a steel plate and concrete mass. Clearly more extensive 

research, over greater ranges of heat flux and air gap widths, is required before a valid 

function for n can be defined. Such an empirical function could be employed to predict the 1-
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D temperature profile evolution in a CFS section exposed to fire by incorporating it in the air 

gap conductance term, hgap: 

        (   ̇  ) (
 

 
  ) 

(24) 

 

Ultimately, by incorporating a function of this type in heat transfer analyses, and indeed 

thermo-mechanical analyses, of CFS sections exposed to fire conditions, it may be possible to 

legitimately consider the development of an air gap in their structural fire design. 

 

Fig.6: Variation of empirical constant, n, with air gap width, w 

 

CONCLUSIONS AND RECOMMENDATIONS 

This paper has presented a series of 15 experiments and an analytical 1-D model of an 

idealised infinitely large concrete filled steel hollow section (CFS). An air gap of constant 

width has been introduced between the steel and the concrete so that a quantified assessment 

of the impact of the air gap width on the heat transfer through a CFS section can be 

established. The significance of the air gap is of interest for the structural fire design of CFS 

sections. The omission of the air gap and its effects on the heat transfer within the section can 

lead to under-predictions of steel temperatures and over-prediction of concrete temperatures, 

resulting in inefficient or potentially unsafe design of CFS sections. The findings presented 

within this paper clearly show that: 

 the formation of an air gap between steel tube and concrete core has a significant 

insulating influence on the heat transfer through the section; the insulating effects increase 

as the air gap width is increased;  

 the numerical model developed was able to accurately predict the thermal response of the 

concrete mass as a result of an imposed temperature evolution in the steel plate; thus, a 
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valid 1-D heat transfer model representing the heat transfer across an air gap between steel 

and concrete; and 

 from a comparative study of the numerical model with the results of the experimental 

programme, an empirical correlation parameter, n, was established between the heat 

transfer across the air gap and the width of the gap. It is anticipated that further 

investigation of this correlation could lead to more advanced heat transfer models of CFS 

columns which account for the impact of an evolving air gap at the steel-concrete 

boundary.  

The findings of this study have highlighted that the air gap needs to be considered if accurate 

design of CFS sections exposed to fire are to be carried. In order to further progress from the 

research presented in this paper to a more practical level, it is recommended that future study 

focus on:  

 developing a purely analytical 1-D heat transfer model so that experimentally measured 

steel temperature data is not required to predict the temperature profile evolution within 

the concrete; 

 expanding the experimental programme to validate the analytical model over greater 

ranges of both air gap width and heat flux; in this manner, the correlation between air gap 

size and heat transfer across the gap could be established with greater certainty; and 

 finally, research involving full-scale thermal and structural tests, in conjunction with 

numerical analyses that account for the formation and development of an air gap, of the 

complete thermo-mechanical response of loaded CFS columns. 
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