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Abstract

The default approach for tuning the parameters of a Support Vector Machine (SVM) is

a grid search in the parameter space. Different metaheuristics have been recently proposed

as a more efficient alternative, but they have only shown to be useful in models with a

low number of parameters. Complex models, involving many parameters, can be seen as

extensions of simpler and easy-to-tune models, yielding a nested sequence of models of

increasing complexity. In this paper we propose an algorithm which successfully exploits

this nested property, with two main advantages versus the state of the art. First, our

framework is general enough to allow one to address, with the very same method, several

popular SVM parameter models encountered in the literature. Second, as algorithmic

requirements we only need either an SVM library or any routine for the minimization

of convex quadratic functions under linear constraints. In the computational study, we

address Multiple Kernel Learning tuning problems for which grid search clearly would

be infeasible, while our classification accuracy is comparable to that of ad-hoc model-

dependent benchmark tuning methods.

Keywords: supervised classification, Support Vector Machines, parameter tuning, nested

heuristic, Variable Neighborhood Search, Multiple Kernel Learning.
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1 Introduction

Support Vector Machines (SVM) [4, 9, 15, 46, 47] is a Supervised Classification technique

rooted in Statistical Learning Theory [46, 47], whose success is based on the ability of building

nonlinear classifiers.

Let Ω denote a data set of n records, each associated with a pair (xi, yi), with xi ∈ IRd (the

predictor vector of record i) and yi ∈ {−1, 1} (the label of record i). The SVM classifier will

classify records with predictor vectors x ∈ IRd by means of a score s(x) of the form

s(x) =
n∑
i=1

αiyiK(x, xi), (1)

where K : IRd × IRd → IR is the so-called SVM kernel, see [15, 26, 27] and references therein,

and the coefficients αi are obtained by solving the following concave quadratic maximization

problem with box constraints plus one linear constraint:

max
∑n

i=1 α
i − 1

2

∑n
i=1

∑n
j=1 α

iαjyiyjK(xi, xj)

s.t.
∑n

i=1 α
iyi = 0

α ∈ [0, C]n.

(2)

Here C > 0 is the so-called regularization parameter which bounds the influence of each record

i in the score function s. It is well-known that the choice of both the kernel K and the regular-

ization parameter C is crucial to the SVM classification accuracy, [32]. For this reason, tuning

(i.e., choosing) the SVM parameters becomes a fundamental yet nontrivial issue. Designing

simple and effective tuning procedures will be useful for the wide variety of practitioners using

SVM.

In order to formulate the SVM parameter tuning problem, note that, setting ϑi = αi

C
in (2), we

obtain the equivalent problem

max
∑n

i=1 ϑ
i − 1

2

∑n
i=1

∑n
j=1 ϑ

iϑjyiyjCK(xi, xj)

s.t.
∑n

i=1 ϑ
iyi = 0

ϑ ∈ [0, 1]n.

(3)

From this formulation it is clear that the classifier obtained using either (2) or (3) depends

on C and K through its product CK. Tuning C > 0 and K in a given class of kernels K0 is

therefore equivalent to selecting K in the conic hull of K0, K = {CK : C > 0, K ∈ K0}.
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Ideally, K should be chosen by maximizing a(K), the probability of correct classification of

incoming records if one classifies following the classifier obtained from (1). Since the SVM

theory makes no distributional assumptions on the incoming data, a(·) cannot be evaluated,

and, instead, an estimate â(·) based on the training data set Ω, such as k-fold crossvalidation

accuracy [30], is used to guide the choice of K. Now the SVM parameter tuning problem can

be formulated as the optimization problem

max â(K)

s.t. K ∈ K.
(4)

Many classes of kernels have been proposed in the literature. The simplest model for K is the

one in which the kernel is assumed to be proportional to a fixed base kernel K0, namely

K = {CK0 : C > 0}. (5)

As K0 one can take, for instance, the so-called linear kernel,

K lin(x, z) = x>z,

yielding the standard SVM model, [9, 15, 27, 46, 47]. A very simple yet extremely powerful is

the class of Radial Basis Function (RBF) kernels [15, 29],

K = {CKRBF
σ : C > 0, σ > 0},

KRBF
σ (x, z) = exp(−

∑d
i=1(xi − zi)2/σ),

(6)

which has been extended by considering the scaling factor σ to be variable-dependent, yielding

the anisotropic RBF model, see e.g. [12]. An alternative model studied, among others, in

[1, 12, 22, 38, 37, 31, 39, 45], is the Multiple Kernel Learning (MKL) model. MKL is especially

suitable when the data set has variables of different nature, calling for the use of different

kernel models for the different types of variables involved. In its simplest version, R base

kernels, K1, . . . , KR, are given, and a conic combination is sought:

K = {
∑R

j=1 µjKj : µj ≥ 0 ∀j = 1, 2, . . . , R}. (7)

Such base kernels Kj may be, for instance, RBF kernels with different (but fixed) scaling factors

σj for each j. While it is frequently claimed that the most relevant parameters to be tuned are
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the weights in the conic combination of kernels, [22], one may also consider to tune the kernels

Kj, choosing them from different kernel sets Kj, [22], yielding

K = {
∑R

j=1 µjKj : µj ≥ 0, Kj ∈ Kj ∀j = 1, . . . , R}. (8)

This ends our review of the most popular kernel models in the literature. At this point, it is

important to stress that, the richer the kernel class, the higher the value of the estimate â,

but this does not necessarily imply that the actual classification rate a also improves when the

kernel class is enriched, due to the so-called overfitting phenomenon. This explains the variety

of models, with different levels of generality, that can be found in the literature, and the need

for a tuning method to be able to adapt to them.

To end with the structure of the tuning problem (4), we now discuss its objective function

and the challenges when optimizing it. Some papers take as surrogate â(·) of the accuracy

a(·) a distribution-free, but kernel-specific, bound on the probability of misclassification, see

[12, 18, 48]. While such functions â are usually smooth in the parameters, allowing for the use

of high-order local search methods, other surrogates, not necessarily differentiable, have also

been proposed, [3, 21, 50]. Most of the papers take as â the k-fold crossvalidation accuracy

estimate, see [30]. This is also the approach taken in this paper. Note that in this case the

cost of evaluating â is high. Indeed, evaluating â at a given set of parameter values amounts to

solving k quadratic problems of the form (3). Also, local-search optimization methods might

be not effective because the problem is multimodal, and these methods are challenged by the

fact that the objective function is piecewise constant, and hence gradient-type information may

be useless.

In this second part of the introduction, we review proposals to solve the resulting optimization

problem. For simple kernel models, such as (5) with one single parameter C, the tuning is

usually done by a grid search on a sufficiently big interval, say [2−12, 212]. However, and due to

the cost of evaluating the objective function, grid search is quite inefficient, becoming infeasible

if the dimension of the parameter space is not too small, even if the grid is not too fine. Several

heuristic algorithms have been proposed in the literature. Some are ad-hoc for a particular

kernel model, such as [29], while others are metaheuristics.

An early reference on metaheuristics is [43], where a Pattern Search approach is introduced. An
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improvement is proposed in [2], where Simulated Annealing is used to screen the neighborhoods

in [2].

Since [43], many other metaheuristics have been proposed in the literature. In [13], a genetic

algorithm is used for parameter tuning within the RBF kernel model. Since the parameters are

real-valued, a 0–1 encoding, of a given precision, is used. Alternative mutation and crossover

operators for real-valued parameters are proposed in [36]. In [19], an evolutionary algorithm

based on the so-called Covariance Matrix Adaptation Evolution Strategy, [24], is proposed.

In [20], the so-called Efficient Parameter Selection via Global Optimization algorithm is pro-

posed. It is an iterative method based on estimating the objective function given its value

in a collection of inspected solutions. This is done using an online gaussian process, whose

parameters are chosen by maximum likelihood. As the authors point out, this method is only

competitive when the dimension of the parameter space is low.

Other popular metaheuristic strategies such as Variable Neighborhood Search and Ant Colony

Optimization have received perhaps less attention when tuning SVM parameters, [10, 51].

Most of existing approaches in the literature show their performance in the RBF kernel model

(6), where only two parameters, C and σ, are to be tuned. An exception is [2], where the

anisotropic RBF kernel model [12] is considered. This is a generalization of the RBF kernel

model in which parameters C and σi (i = 1, . . . , d) need to be tuned. As is the case for the

anisotropic RBF kernel, complex models, involving many parameters, can be seen as exten-

sions of simpler and easy-to-tune models, yielding a nested sequence of models of increasing

complexity.

In this paper we propose an algorithm which successfully exploits this nested property of com-

plex methods, i.e., the ability to define a sequence of nested subproblems, with two main

advantages. First, our framework is general enough to allow one to address, with the very

same method, several popular SVM parameter models encountered in the literature. Indeed,

to illustrate the versatility of our algorithm, we present experiments for an array of MKL mod-

els. MKL models have attracted a lot of attention and many ad-hoc approaches exist, see

[22] for a through review on the most successful of these approaches. Second, as algorithmic

requirements we only need a black box to train SVMs. In other words, as soon as an SVM
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package, such as LIBSVM [11], SVMTorch [14] or SVMlight [28], a general-purpose scientific

computing, Statistics or Machine Learning package such as MATLAB, R, SAS or WEKA [49],

or any routine for the minimization of convex quadratic functions under linear constraints is at

hand, our approach is readily applicable. In contrast, some of the specialized MKL techniques

we compare with require, for instance, Second-Order Cone Programming (SOCP) solvers, as in

[1].

The remainder of the paper is structured as follows. In Section 2, we propose our nested

heuristic, which is tested in Section 3 against benchmark methods for different kernel models.

Concluding remarks and lines of future research are outlined in Section 4.

2 The nested heuristic

In this section we propose a nested heuristic for SVM parameter tuning, where we assume that

a nested structure for the kernel model to be tuned and a metaheuristic are at hand. Below we

discuss these two ingredients before presenting the algorithm.

2.1 Preliminaries

Complex models, involving many parameters, can be seen as extensions of simpler and easy-to-

tune models, and therefore they can be considered as nested within another model. Throughout

this section, we will assume that we have a series of nested kernel models, K(1) ⊂ K(2) ⊂ . . . ⊂

K(H) = K. For example, kernel model (8) can be embedded in a nested sequence K = K(3) ⊃

K(2) ⊃ K(1). Here, K(2) corresponds to model (7), where all the individual kernels Kj have been

fixed in advance, while K(1) corresponds to model (5), with K0 =
∑R

j=1Kj, where in addition

all weights µj are assumed to be equal to a common weight C. When solving the tuning problem

(4) for K, we will use a sequential approach where the (suboptimal) solution found for kernel

model K(h) becomes an initial solution to the tuning problem (4) for K(h+1). Note that the

optimization model associated with K(h) is obtained by adding a set of constraints to (4).

In terms of metaheuristics, we have chosen the well-known Variable Neighborhood Search

(VNS), but other metaheuristics can be used too. VNS [25, 41] sequentially moves through the
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feasible region by searching solutions in a neighborhood of the current best solution while, at the

same time, systematically changes the size of the neighborhood to avoid getting trapped at local

optima. It has been mainly applied to combinatorial optimization problems, see e.g. [25, 40], or

continuous problems with a combinatorial structure [6, 5, 25], though it has also been recently

proposed for continuous optimization problems, [8, 16, 17, 33, 42, 40]. In [10], a basic version

of VNS for SVM parameter tuning can be found, together with the task of gene selection.

2.2 The algorithm

We now present a basic VNS, Algorithm 1, suitable for low dimension parameter space, see

Figure 1. Algorithm 1 will be sequentially used in our nested heuristic, Algorithm 2, see

Figure 2. In the following, and without loss of generality, we assume that the kernel model is

parametrized by a p-dimensional parameter θ, i.e., K can be expressed as K = {K(θ) : θ ∈ Θ},

and the tuning problem can be formulated as maximizing â(K(θ)) over θ in Θ. For instance,

in model (8), where the kernel classes Kj follow the RBF model (6), K is parametrized by

θ = (µ1, . . . , µR, σ1, . . . , σR).

Apart from the maximum on the number iterations m, Algorithm 1 requires a norm ‖ · ‖ and

thresholds {rκ} to define the neighborhood structure, and the maximum number of steps κmax

that should be performed without improvement on the objective function. In our computational

section, we show that with straightforward choices, we obtain comparable accuracies to those

reported by the well-known ad-hoc method by Keerthi and Lin [29] for the tuning of the RBF

model.

When p is high, as it is usually the case when K is given by (8), there is little hope that this basic

version of VNS, or any other metaheuristic, will reach the regions of good solutions, since the

dimension of the search space is too large. In this case, we propose to use Algorithm 2, where the

nested sequence K = K(H) ⊃ . . .K(2) ⊃ K(1) at hand is exploited. In our computational section,

we show that a straightforward implementation of Algorithm 2 yields comparable accuracies to

those reported by ad-hoc methods for the tuning of an array of MKL models.

The idea of embedding the optimization problem into a nest of simpler optimization problems

is not new in the literature. For instance, [34, 35] propose a two-phase method for the molecular
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Algorithm 1: Basic VNS algorithm for parameter tuning

INPUT: Kernel set K = {K(θ) : θ ∈ Θ}. Maximum number of iterations m. Neighborhood

structure {N1, N2, . . . , Nκmax}, with Nκ(θ̃) =
{
θ ∈ Θ : ‖θ̃ − θ‖ ≤ rκ

}
and 0 < r1 <

r2 < . . . < rκmax .

Initialization: Select an initial solution θ̃ ∈ Θ; set κ← 1; set iter← 0.

Step 1. Repeat until iter = m or κ = κmax :

Step 1.1. Shaking. Generate a random solution θ′ in the κ-neighborhood of the

incumbent solution θ̃, θ′ ∈ Nκ(θ̃).

Step 1.2. Neighborhood change. If â(θ′) > â(θ̃), then move (θ̃ ← θ′) and reset

the neighborhood (κ← 1); otherwise, set κ← κ+ 1.

Step 1.3. Set iter← iter + 1.

Step 2. If iter = m, STOP with solution θ̃; otherwise, reset κ← 1 and go to Step 1.

Figure 1: Pseudocode for Algorithm 1

shape optimization problem. The initial solution of the second phase is found using a modified

objective function, a challenging task itself [23], which is based on prior knowledge of the

properties of the global optima. The parameter tuning problem addressed in this paper lacks

of this kind of prior knowledge, since the objective function is not known in a closed form.

Hence, the approach in [34, 35] is not applicable here. Instead, our solution approach modifies

(enlarges) the feasible set: we solve, by means of a heuristic, the tuning problem on the smaller

kernel model K(h), and use the (suboptimal) solution obtained as initial solution for K(h+1), of

higher dimension using the same heuristic.

3 Computational results

In this section we study the performance of our approach for the RBF kernel model (6) and

the variants of the MKL kernel model (7) and (8) discussed in the introduction. For kernel
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Algorithm 2: Nested VNS algorithm for parameter tuning

INPUT: Nested kernel models K(1) ⊂ K(2) ⊂ . . . ⊂ K(H) = K. Maximum number of iterations

for each kernel model: m1, . . . ,mH .

Initialization: Set h← 1. Randomly choose an initial solution θ̃ ∈ K(1).

Step 1. Repeat while h ≤ H.

Step 1.1. Set the initial solution to θ ← θ̃.

Step 1.2. Run Algorithm 1 for model K(h) for a number of iterations mh, yielding

as output θh.

Step 1.3. Set θ̃ ← θh and h = h+ 1.

Figure 2: Pseudocode for Algorithm 2

model (6), the performance of our algorithm is tested against the benchmark procedure by

Keerthi and Lin [29]. For the MKL tests, we will use [22], which reviews the state-of-the-art in

MKL and provides a very comprehensive computational experience including a wide variety of

methods. Some of the ad-hoc methods for MKL reviewed and tested in [22] have high software

requirements, including Second-Order Cone Programming (SOCP) solvers, [1]. In the following

section we describe the data sets used in our experiments. The numerical results are presented

in Sections 3.2 and 3.3.

The implementation of Algorithm 1 uses ‖ · ‖ = ‖ · ‖∞, rκ = κ and κmax = 25. The choice of rκ

and κmax is inspired in the grid approach which searches among the 25 values −12,−11, . . . , 12.

We use the publicly available package LIBSVM [11] to train SVM.

3.1 Data sets

In order to show results on the RBF kernel model, we use the 13 data sets in [44]1, which are

widely used in the classification literature. Table 1 shows details on these data sets, including

1Available at http://www.raetschlab.org/Members/raetsch/benchmark
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their name, the size of the training sample tr, the size of the testing sample test, and the

number of predictor variables d. Rästch et al. [44] give 100 partitions of each data set into a

training sample and a testing sample. In order to make a fair comparison, we use the same

setup as in [29]. In particular, we only consider the first of those 100 partitions to compute the

reported test error, and use 5–fold crossvalidation to compute the estimate â.

name tr test d

banana 400 4900 2
diabetis 468 300 8

image 1300 1010 18
splice 1000 2175 60

ringnorm 400 7000 20
twonorm 400 7000 20

waveform 400 4600 21
german 700 300 20

heart 170 100 13
thyroid 140 75 5
titanic 150 2051 3

flare-solar 666 400 9
breast-cancer 200 77 9

Table 1: Data sets for the RBF kernel tests

Table 2 shows details on the large data sets used in [22]2 for MKL kernel models, with similar

information to the one found in Table 1. In these data sets, predictor variables are split

into T clusters, B1, B2, . . . , BT ; the last eight columns in Table 2 report on the sizes of the

different clusters T , the total number of predictor variables d and the number of predictor

variables in each cluster dt, for t = 1, 2, . . . , T. As already mentioned in the introduction, MKL

is particularly appealing when such a clustering is known because models (7)-(8) can be used

for a set of base kernels, where each kernel uses only predictor variables from one cluster.

Since we will benchmark our VNS against those methods surveyed in [22], we will use the same

setup as in [22]. In particular, the test error was computed either using either (a) the testing

set provided, or (b) one third of the data set, randomly chosen, the remaining two thirds being

used as training set. A 5× 2–fold is applied to compute the estimates â.

2Available at http://mkl.ucsd.edu/dataset/pendigits, http://archive.ics.uci.edu/ml/datasets/

Multiple+Features and http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
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name tr test T d dt size of cluster t

pendigitEO 7494 3498 4 352 16 16 64 256
pendigitSL 7494 3498 4 352 16 16 64 256
mfeatEO4 1333 667 4 427 76 64 240 47
mfeatEO6 1333 667 6 649 76 64 240 47 216 6
mfeatSL4 1333 667 4 427 76 64 240 47
mfeatSL6 1333 667 6 649 76 64 240 47 216 6

addata 2186 1093 5 1554 457 495 472 111 19

Table 2: Data sets for the MKL tests

3.2 Results on the RBF model

In this section we present results on the tuning problem when the kernel class is the KRBF, as

defined by (6). We have benchmarked our VNS algorithm against the procedure in Keerthi and

Lin [29], called hereafter the KL method. In order to make a fair comparison with KL, and as

in [29], a logarithmic scale is used, the search is restricted to the box Θ = [−8, 2]× [−8, 8], the

grid step size is 0.5, thus the total number of iterations is 54, i.e., m = 54 in Algorithm 1, and

the initial solution is (−3, 0). Note that an iteration has the same computational requirements

in both methods. Since the dimension p of the parameter space Θ is low, namely, p = 2, we

use the basic VNS given in Algorithm 1 for this experiment.

Table 3 shows results for KL and the basic VNS. For each method, we report its test error as a

percentage, and the returned parameter θ. The errors are very similar, sometimes even equal.

VNS obtains better results in 5 data sets, where the difference in errors ranges from 0.60%

to 3.46%. KL is the best in 4 cases, where the difference in errors never exceeds 0.70%. In

the remaining 4 data sets the error is exactly the same. In conclusion, the VNS error is never

worse than that of KL by more than 0.70 percentage points, and therefore both methods yield

comparable results.

3.3 Results on the Multiple Kernel Learning models

The data sets in [22] have a particular structure: the predictor variables are clustered into T

groups B1, B2, . . . , BT ; a kernel model is defined for each cluster, and the kernel is defined as

a function of the T kernels involved. In this section, we consider MKL kernel models (7) and

(8), in which the base kernels are either a linear or a RBF kernel applied to each cluster of

12



KL VNS

name error log(C) log(σ) error log(C) log(σ)

banana 11.59 -2.00 -1.00 11.61 -2.07 -0.87
diabetis 24.00 4.00 6.00 24.67 -0.94 4.02

image 5.84 -0.50 3.00 2.38 1.26 0.80
splice 10.53 -0.50 6.00 9.93 1.90 6.62

ringnorm 1.44 -3.00 4.00 1.70 1.89 3.10
twonorm 2.47 -2.50 5.50 2.77 1.01 6.08

waveform 11.39 0.00 6.00 10.46 0.90 4.57
german 21.33 3.00 6.00 21.33 0.19 4.09

heart 21.00 -3.00 4.50 20.00 0.16 7.38
thyroid 5.33 0.00 -1.00 5.33 -0.55 -1.12
titanic 22.92 -2.00 3.50 22.92 -1.39 2.23

flare-solar 34.50 -0.50 3.50 34.50 0.04 3.32
breast-cancer 29.87 3.50 7.00 28.57 1.75 5.83

Table 3: Test errors and tuned parameters for the RBF kernel

variables Bt. We benchmark our VNS against the 12 linear combination methods reported in

Gönen and Alpaydın [22].

The contribution of this section is two-fold. First, we show that the nested VNS is competitive

for existing, in general more sophisticated and ad-hoc, methods in the literature for the same

kernel models. To show this, we consider, as in [22], the kernel class defined in (7), taking as

base kernels Kt the linear kernels (Section 3.3.1) and also the RBF kernels with fixed scaling

factors σt for each t (Section 3.3.2). Second, we show that nested VNS can be also directly

applied to more general models, such as (8), giving even better results in terms of accuracy.

These results will be presented in Section 3.3.3. Note that the kernel class defined in model (8)

cannot be addressed by the algorithms reviewed in [22], which are specific for (7). In contrast,

nested VNS is a general approach that can handle many different models. The purpose of

Section 3.3.3 is to illustrate the potential of this advantage in terms of classification accuracy.

3.3.1 Tuning the linear combination of fixed linear kernels

This section is devoted to tune a linear combination of T linear kernels of the form

K lin
Bt

(x, z) =
∑
i∈Bt

xizi, (9)
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i.e.,

K = {
∑T

t=1 µtK
lin
Bt

: µt ≥ 0 ∀t = 1, 2, . . . , T}. (10)

We use a nested sequence of models K(1) ⊂ K(2) = K, where K(1) is the one-dimensional model,

K(1) = {µ
∑T

t=1K
lin
Bt

: µ ≥ 0}. (11)

We run the nested VNS given in Algorithm 2, with a maximum number of iterations respectively

of m1 = 100 and m2 = 500. The parametrization for K(1) and K(2) uses a logarithmic scale, as

done in Section 3.2.

The results can be found in Table 4. The first column contains the name of the data set;

the second column gives the dimension p of the parameter space Θ (in this case, p = T ); the

next three columns are devoted to the 12 benchmarking methods reviewed and tested in [22],

which we will denote by ‘InGonAlp’, reporting the best, the median and the worst test error

across them. The remaining columns show the results obtained with our nested VNS. The sixth

column reports the test error of the nested VNS. The seventh column gives the ranking of the

nested VNS among the 13 MKL methods at hand.

Although our nested VNS is not systematically the best, it beats the 12 benchmarking methods

in two data sets and it behaves as second-best in another data set. In the remaining data sets

VNS has always an accuracy within the range of the state-of-the-art methods and very close to

the median.

InGonAlp Nested VNS

name p best median worst error rank

pendigitEO 5 6.47 6.66 11.07 7.25 11/13
pendigitSL 5 8.88 9.06 15.56 10.45 11/13
mfeatEO4 5 1.99 2.15 4.22 2.34 10/13
mfeatEO6 7 1.61 1.76 3.10 1.46 1/13
mfeatSL4 5 4.82 5.11 9.46 6.19 12/13
mfeatSL6 7 2.19 2.54 10.82 2.30 2/13
addata 6 3.41 3.72 4.90 3.22 1/13

Table 4: Test errors for MKL with lineal kernels
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3.3.2 Tuning the linear combination of fixed RBF kernels

In this section we analyze the results obtained when we tune a linear combination of 3T RBF

base kernels of the form

KRBF
Bt,σ (x, z) = exp(−

∑
i∈Bt

(xi − zi)2/σ), (12)

where the scaling factor σ of each RBF kernel is fixed in advance. More precisely, the kernel

model considered corresponds to the kernel class (7),

K = {
∑T

t=1 µ1tK
RBF

Bt,
dt
4

+ µ2tK
RBF
Bt,dt

+ µ3tK
RBF
Bt,4dt

: µjt ≥ 0 ∀t = 1, 2, . . . , T, j = 1, 2, 3},

(13)

where each base kernelKRBF
Bt,σ

has the form (12) for fixed scaling factor σ, namely, σ ∈ {dt
4
, dt, 4dt},

with dt being the number of predictor variables in Bt.

The strategy to design a nested VNS is similar to the one used in Section 3.3.1. A nested

sequence of models K(1) ⊂ K(2) = K is defined, where K(1) is a one-dimensional model,

K(1) = {µ
∑T

t=1

(
KRBF

Bt,
dt
4

+KRBF
Bt,dt

+KRBF
Bt,4dt

)
: µ ≥ 0}, (14)

With this model structure, we run the nested VNS given in Algorithm 2, where the maximum

number of iterations considered for each model are again m1 = 100 and m2 = 500.

As for the experiments in Section 3.2, the parameterization of K(1) and K(2) also use the

logarithmic scale.

The results are presented in the first seven columns of Table 53. The first column contains the

name of the data set. Then there are six columns devoted to model (7). The first of these

columns contains the dimension of the parameter space Θ (in this case, p = 3T ). The next

three columns report the best, the median and the worst test error across the 12 benchmarking

methods. The next two columns report the test error and the ranking of our nested VNS.

Nested VNS accuracies are above the median on all five cases analyzed. In one data set, it even

beats all benchmark methods, whereas in the others it performs very close to the best, being

0.15% the maximum difference with the best benchmark.

3Data sets pendigitEO and pendigitSL are not considered with RBF kernels, as is the case in [22]
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Model (7) Model (8)

p InGonAlp Nested VNS p Nested VNS

name best median worst error rank error rank

mfeatEO4 12 0.67 0.96 2.18 0.74 4/13 8 0.72 4/13
mfeatEO6 18 0.58 0.67 7.22 0.65 3/13 12 0.53 1/13
mfeatSL4 12 1.43 1.63 4.60 1.58 5/13 8 1.40 1/13
mfeatSL6 18 0.97 1.25 7.25 0.99 3/13 12 0.95 1/13

addata 15 3.81 4.34 11.88 3.24 1/13 10 3.39 1/13

Table 5: Test errors for MKL with RBF kernels

Note that, throughout the rest of this section, the values of the scaling factors σt were chosen as

in [22]. Our preliminary results using different values suggest that this choice is crucial to the

accuracy of the resulting classifier. This suggests that a more general model, where the scaling

factors σt are not fixed, but tuned by the algorithm (together with the rest of the parameters)

may be a more suitable kernel model. The behavior of this model is studied in the next section.

3.3.3 Tuning all parameters

In this section we show how our VNS approach can seamlessly be adapted to solve the natural

extension of model (7) given in (8): here the simultaneous tuning of T RBF kernels of type (12)

and their scaling factors σt is considered. Note that none of the benchmark methods reviewed

in [22] is directly applicable to this model, while it is straightforward to apply our nested VNS.

Compared with the basic model (7), tuning the parameters of this more general model may

lead to accuracy improvements, while the complexity of our procedure remains the same.

We use a nested sequence of models K(1) ⊂ K(2). The outer class K(2) is the kernel class (8),

where each base kernel Kt is allowed to vary in the kernel class Kt =
{
KRBF
Bt,σt

: σt > 0
}
. The

inner class K(1) considers that all the weights are equal, µt = µ, and all the scaling kernels are

equal, σt = σ, i.e.:

K(1) =

{
µ

T∑
t=1

KRBF
Bt,σ : µ > 0, σ > 0

}
.

The parametrization for K(1) and K(2) also uses the logarithmic scale, as done in Section 3.2.

The nested VNS algorithm described in Algorithm 2 is run with m1 = 100 and m2 = 500.

The results are presented in the last three columns of Table 5. The first of these columns reports

the dimension of the parameter space Θ, namely, p = 2T. The other two columns show the test
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error and the rank of the nested VNS in model (8). We can observe that nested VNS applied

to model (8) beats the best benchmark for model (7) in four out of five data sets, whereas in

the other one it is better than the median and very close to the best.

This last experiment shows that, VNS, being a simpler method than many of the methods

reviewed in [22], is able to successfully cope with more general kernel models than the methods

existing in the literature.

4 Conclusions

In this work we have shown that a simple metaheuristic, namely, VNS, can be successfully

customized to address the problem of parameter tuning in Support Vector Machines. The fact

that parameter models are usually nested is successfully exploited in our version of VNS, called

nested VNS, in which the parameters obtained as output when optimizing simpler models are

used as starting solutions for tuning the parameters of the most general models. This key

idea of exploiting the nested structure of models can be applied to many other metaheuristics,

though we have found VNS easy to implement and tune. We conclude from our computational

experience that, with simpler methods and using less demanding computational tools, we can

get better or similar accuracy results than those obtained with benchmark procedures, which

may be more specific and software demanding.

We emphasize that these encouraging results are obtained with a method, VNS, which is not

specifically designed for MKL, as most of the benchmarking methods are. Moreover, VNS does

not require specific software, hence it is more suitable for practitioners than the more specialized

tuning techniques reviewed in [22], where some of the models call for specific algorithms, such

as those needed to optimize a second-order cone programming problem [1].

In our VNS implementation no local searches are performed. This makes the method applicable

under low software requirements (a numerical routine for solving convex quadratic optimization

problems under linear constraints is sufficient) and applicable to parameter tuning problems

for different kernel models. Nevertheless, embedding within our nested VNS as a local search

methods such as those described in [12, 18, 48] deserves further study.

The strategy developed in this paper is also applicable to tune the parameters of SVM-like
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models, such as those analyzed in [7], Support Vector Regression as well as other kernel models,

[27]. Whether nested-VNS is competitive against benchmark procedures in these new settings

deserves being explored.
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