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ABSTRACT

If a dynamical system is long-lived and non-resonant (that is, if there is a set of tracers that have evolved indepen-
dently through many orbital times), and if the system is observed at any non-special time, it is possible to infer
the dynamical properties of the system (such as the gravitational force or acceleration law) from a snapshot of the
positions and velocities of the tracer population at a single moment in time. In this paper, we describe a general
inference technique that solves this problem while allowing (1) the unknown distribution function of the tracer
population to be simultaneously inferred and marginalized over, and (2) prior information about the gravitational
field and distribution function to be taken into account. As an example, we consider the simplest problem of this
kind: we infer the force law in the solar system using only an instantaneous kinematic snapshot (valid at 2009 April
1.0) for the eight major planets. We consider purely radial acceleration laws of the form ar = −A [r/r0]−α , where r
is the distance from the Sun. Using a probabilistic inference technique, we infer 1.989 < α < 2.052 (95% interval),
largely independent of any assumptions about the distribution of energies and eccentricities in the system beyond
the assumption that the system is phase-mixed. Generalizations of the methods used here will permit, among other
things, inference of Milky Way dynamics from Gaia-like observations.

Key words: celestial mechanics – ephemerides – gravitation – methods: statistical

1. INTRODUCTION

The Gaia Satellite (Perryman et al. 2001) will measure po-
sitions and velocities for millions to billions of stars at varying
precision. One of the principal goals of this mission is to pro-
vide the data necessary to infer the dynamical state of the Milky
Way. However, there are issues in principle with inference of
dynamics from a snapshot or instantaneous set of configuration
and velocity measurements: the instantaneous positions and ve-
locities have no necessary relationship with the gravitational
potential or accelerations. Indeed, despite considerable litera-
ture (for example, Oort 1932; Schwarzschild 1979; Little &
Tremaine 1987; Kaasalainen & Binney 1994; Johnston et al.
1999; Beloborodov & Levin 2004) there is no methodology for
performing this inference that naturally handles all of the is-
sues, including finite and non-trivial observational uncertainties
or noise, missing data, non-steady aspects of the mass distri-
bution, and the (incredibly likely) possibility that the potential
is not (simply) integrable. Robust inference may not even be
possible if the Milky Way has significant time dependence or is
strongly chaotic or is far from showing any simple symmetries
(such as axisymmetry).

Certainly there is no hope for dynamical inference on the
massive scale required for the Gaia data set if we cannot perform
it on much simpler, much more symmetrical, much older (in a
dynamical sense), and much smaller (in a data sense) systems. In
what follows, we take one of the simplest possible systems—the
solar system—and the smallest possible data set—the positions
and velocities of the major planets at a moment in time—and
perform a complete dynamical inference. For a test system we
could also have chosen the black hole at the Galactic center,
where similar considerations apply. However, this system has
additional issues with “missing data” because not all six phase-
space coordinates are directly measurable for all stars. The solar
system truly is the simplest problem in this class.

Our inferential starting point is orbital roulette (Beloborodov
& Levin 2004). In this previous work, it was assumed that the

orbital angles (in the action–angle formalism) are uniformly
distributed. Thus, dynamical model parameters that correspond
to orbital angles that suspiciously lack diversity are rejected.
More specifically, the method considers a large range of possible
dynamical model parameters, and computes orbital angles at
every value of the parameters and a distribution statistic on
those orbital angles. If the distribution statistic is designed to
monotonically increase with the diversity of the angles or the
flatness of the angle distribution, the “best-fit” dynamical model
parameters are those that optimize the distribution statistic.
This kind of approach is inherently frequentist: on many
applications of these procedures to independent data sets a
confidence interval captures the true dynamical parameters on
a guaranteed fraction of trials. However, for any given data set
the confidence interval produced might not represent a credible
set of parameters.

In what follows we cast the dynamical parameters estimation
as a probabilistic inference problem (a “Bayesian” approach).
We adopt the same core assumption as the roulette problem:
we assume that the orbital angles are uniformly distributed.
However, in this framework, we must also construct prior
probability distribution functions for the dynamical model
parameters and conditional probabilities of the data given the
model to encode the assumptions of a long-lived and bound solar
system. These prior and conditional probability distributions and
the data create posterior probability distribution functions for all
the parameters. We use this new method to infer the gravitational
force law (radial dependence and amplitude). What is new here,
in the context of solar system dynamics, is that we perform this
inference with only a snapshot of the kinematic state, that is,
with only the positions and velocities of the planets at a single
instant of time.

Of course the kinematic snapshot we employ is, in fact, a set
of initial conditions for a solar system integration (Giorgini et al.
1996). These initial conditions were determined not by a single
measurement at a single epoch, but are in fact the result of an
optimization of a solar system integration to observed planetary
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positions over many decades. In the context of this paper—a
demonstration of a method—it is best to think of these “data” as
“simulated data” useful for testing the method. They just happen
to be data that have been simulated by the analog computer we
know as the solar system.

What is new here, in the context of dynamical inference,
is that our method is fully probabilistic or Bayesian. This is
important for future problems, such as the Gaia problem, or for
inferring the mass of the black hole at the center of the Milky
Way, because in these real data analysis problems, the data
points come with non-trivial and highly correlated observational
uncertainties, and because entire dimensions of phase space are
missing or unobserved. At the Galactic center, we do not know
the radial distance to anything accurately, and in the Gaia data
set many of the radial velocities will not be measured. The
Bayesian framework handles these real-world data issues very
naturally, although in fact they are not important in the test
problem we solve here. Aside from these issues of principle,
it is also the case, as we will show, that the Bayesian method
performs extremely well.

Of course, a lot is known about the gravitational force law
in the solar system, so we do not expect, at the outset, to be
surprised by our results. The first force-law inference in the
solar system (Newton 1687, and also work by contemporaries,
particularly Hooke, who may have priority) made use of full
orbit shape determination (Kepler 1609). In this sense, Newton’s
problem—find the force law (from among a small, discrete
group of possible force laws) that leads to elliptical orbits with
the Sun at one focus—was much easier than the problem we
have set for ourselves. Of course, along the way, Newton had
to develop for the first time the general principles of kinematics
and dynamics!

2. PARAMETERIZED FORCE LAW OR
DYNAMICAL MODEL

We are going to assume spherical symmetry of the solar
system’s force law and gravitational potential, although nothing
in the general inference formalism that follows will require this.
Consider a radial force law (really acceleration law) of the form

�a = −A

[
r

r0

]−α

r̂, (1)

where A is an amplitude, r is the distance from the Sun, r0 is a
distance scale (in this case we will use r0 = 1 AU so that A can be
thought of as the acceleration at Earth’s orbit), α parameterizes
the radial dependence, and r̂ is the radial direction. In this model,
the list of free parameters is

ω ≡ {ln A, α}, (2)

where we have taken the logarithm of A because in inference
problems, dimensioned parameters are usually best handled in
the log (Jeffreys 1939; Sivia & Skilling 2006).

The potential u (potential energy per unit planet mass),
radial effective potential ueff , and binding energy per unit mass
ε ≡ −E/m are

u(r) = Ar0

1 − α

[
r

r0

]1−α

, (3)

ueff(r) = u(r) +
j 2

2 r2
, (4)

ε = −ueff − 1

2
v2

r , (5)

where j2 is the square of the magnitude of the planet’s angular
momentum per unit mass (or L2/m2), and vr is the radial
component of the velocity (the component of �v parallel to �x).
The perihelion and aphelion distances rperi and rap are both
found by setting ε = −ueff . With these, we can define a radial
asymmetry e as

e ≡ rap − rperi

rap + rperi
, (6)

where we have called this “e” because in the Kepler–Newton
α = 2 case it is the orbital eccentricity. One way of thinking
of this radial asymmetry is that at any point in the space made
up of the dynamical parameters ω and the binding energy ε, the
radial asymmetry e is a dimensionless description of the angular
momentum magnitude.

Importantly for what follows, we can define a “radial angle”
φr that increases linearly with time from perihelion passage
through next perihelion passage. Any planet at radius r on an
orbit with perihelion distance rperi and aphelion distance rap can
be assigned this angle φr by

φr ≡

⎧⎪⎪⎨
⎪⎪⎩

π
t(r) − t(rperi)

t(rap) − t(rperi)
for vr > 0

π + π
t(r) − t(rap)

t(rperi) − t(rap)
for vr < 0

, (7)

where the first numerator is the time it takes to go from rperi to
r outbound, the first denominator is the time it takes to go from
rperi to rap outbound, the second numerator and denominator are
the times inbound, and all time differences between two radii can
be computed numerically for general values of α by integrating
the inverse of the radial velocity between these radii. The first-
order form of this integral has an integrable singularity at the
perihelion and aphelion, which can be handled by an appropriate
change of variables (e.g., Press et al. 2007). A planet observed
at a set of random times spanning many orbits will be observed
to have radial angles φr drawn from a flat distribution in the
range 0 < φr < 2 π . This radial angle is one of the angles in
the action–angle formulation of the system, which is integrable
for the simple reason that it is spherically symmetric.

3. KINEMATIC DATA

In what follows, we are going to use and compare several
methods for inferring the force-law parameters ω (the ampli-
tude ln A and radial exponent α of the spherical force law)
from an instantaneous snapshot of the positions and veloci-
ties of the eight major planets. This snapshot was taken from
JPL’s HORIZONS System which provides highly accurate
ephemerides for solar system objects4 (Giorgini et al. 1996).
It is an extrapolation (at the time of writing) to 2009 April
1.0, approximately 400 years after the important publication of
Kepler (1609). This kinematic snapshot is given in Table 1.

Since this snapshot is obtained by integrating the positions
and velocities of solar system bodies, the accuracy is limited
by (1) the correctness of the dynamical model used, (2) the
numerical integration of the equations of motion, and (3) the
accuracy to which the initial conditions are known. It is generally
believed that the dynamical model used is correct and complete,

4 Available at http://ssd.jpl.nasa.gov/?horizons.

http://ssd.jpl.nasa.gov/?horizons


No. 2, 2010 DYNAMICAL INFERENCE FROM A KINEMATIC SNAPSHOT 1159

Table 1
Planet Ephemerides for 2009-Apr-01 00:00:00.0000 (CTa)

Planet x y z vx vy vz

(AU) (AU) (AU) (AU yr−1) (AU yr−1) (AU yr−1)

Mercury 0.324190175 0.090955208 −0.022920510 −4.627851589 10.390063716 1.273504997
Venus −0.701534590 −0.168809218 0.037947785 1.725066954 −7.205747212 −0.198268558
Earth −0.982564148 −0.191145980 −0.000014724 1.126784520 −6.187988860 0.000330572
Mars 1.104185888 −0.826097003 −0.044595990 3.260215854 4.524583075 0.014760239
Jupiter 3.266443877 −3.888055863 −0.057015321 2.076140727 1.904040630 −0.054374153
Saturn −9.218802228 1.788299816 0.335737817 −0.496457364 −2.005021061 0.054667082
Uranus 19.930781147 −2.555241579 −0.267710968 0.172224285 1.357933443 0.002836325
Neptune 24.323085642 −17.606227355 −0.197974999 0.664855006 0.935497207 −0.034716967

Notes. The xyz-coordinate system is defined as follows: the xy-plane is given by the plane of the Earth’s orbit at J2000.0, the x-axis is out along the ascending
node of the instantaneous plane of Earth’s orbit and Earth’s mean equator at J2000.0, and the z-axis is perpendicular to the xy-plane in the directional (+ or −)
sense of Earth’s north pole at J2000.0. The origin of the coordinate system is given by the barycenter of the solar system. One year is defined as 365.25 days.
a CT is a coordinate time used in connection with ephemerides. It differs from UTC by about 66 s (see http://ssd.jpl.nasa.gov/?horizons_doc#timesys).

Figure 1. Virial relation between the kinetic energy and the potential energy
(Equation (8)) for each of the eight planets in the solar system. For the
combinations of dynamical parameters in the light gray region in the lower
right at least one planet becomes unbound. When the dynamical parameters are
in the light gray region in the upper left at least one planet has rperi < R�. The
light gray regions overlap in the dark gray region. In the units used in this figure,
the “true” value of A lies at ln Ar2

0 G−1 = 0.

and that the numerical integration is sufficiently accurate. The
main uncertainty in the ephemerides is then that due to the
uncertainty in the initial conditions. The current set of initial
conditions (DE405; Standish 1998) is a fit to a set of optical,
radar, and VLBI observations as well as to a set of spacecraft
range and Doppler points from various space missions. The
uncertainties are the largest for the outer planets, since the data
for these are almost entirely from optical observations (with
the exception of Jupiter), and because Neptune has not been
observed over a full orbit since the start of precise measurements.
A comparison between the DE405 ephemerides and more recent
observations shows that the positions of the inner planets are
known to a fractional accuracy of approximately 10−8, while
those of the outer planets are known to a fractional accuracy of
10−6–10−7 (Standish 2004). Uncertainties in the velocities are
at the same fractional magnitude.

This kinematic snapshot is not, of course, a fair data set with
which to perform the inference below, for the main reason that
the “measured” kinematic state of the solar system is in fact
the output of fitting observations with a dynamical model that

Figure 2. Zoomed in version of Figure 1.

assumes α = 2. For this reason, the data should be thought of as
“idealized” or “simulated data” and the work must be considered
a test of the method rather than a definitive inference.

4. BOUND, VIRIALIZED, AND LONG-LIVED

The virial theorem relates the time averages 〈T 〉 and 〈U 〉 of
a test particle’s kinetic and potential energies through

〈T 〉 = 1 − α

2
〈U 〉 , (8)

where α is the exponent in the radial force law. Given that
a planet’s potential energy is a function of the dynamical
parameters ω, while its kinetic energy is not, the virial relation
for each planet becomes a one-dimensional locus in the ω
space. Using kinetic and potential energies computed from the
observations as a proxy for the time-averaged energies, these
loci are shown in Figures 1 and 2. The fact that all eight lines
cross near a single point in the space is encouraging that the
system is virialized (as we expect) and that the inference will
work. That the eight lines so nearly intersect in a single point is
because, in fact, many of the planets are on circular orbits; the
probabilistic method developed in this paper does not assume
this, but it does retain the precision that is possible because of
this situation.

Also shown in Figures 1 and 2 is the region of parameter
space in which one or more of the planets is unbound because
T > U or, equivalently, ε < 0. In what follows, we will assign

http://ssd.jpl.nasa.gov/?horizons_doc#timesys


1160 BOVY, MURRAY, & HOGG Vol. 711

Figure 3. Computed radial angles φr for each of the eight planets as a function
of the dynamical parameters. The gray triangular region in the bottom-right
corner is the region excluded by the condition that all the planets are bound.
Each planet has an angle range of 0 < φr < π if it has radial velocity vr > 0
(outgoing from perihelion) or π < φr < 2 π if it has vr < 0 (incoming from
aphelion).

vanishing probability to regions of parameter space in which
one or more planets is unbound. However, as we will see, this
does not affect any of our conclusions. Also shown in Figure 1
is the region of parameter space in which one or more of the
planets has rperi < R�, where R� is the radius of the Sun. This
part of parameter space ought also to be excluded, although in
practice this is not necessary for any of what follows.

In preparation for what follows, we pre-compute all of the
planet radial angles φr,i—given their positions �xi and velocities
�vi—as a function of the dynamical parameters. These angles are
shown in Figure 3.

5. FREQUENTIST ORBITAL ROULETTE

In orbital roulette (Beloborodov & Levin 2004), the idea is
to compute, for each point ω in parameter space, the N radial
angles φr,i and analyze them statistically for being well mixed.
In practice, this means applying a distribution test or multiple
distribution tests to the angles and preferring parameters for

which these tests are more consistent with a random or flat
distribution of angles in the range 0 < φr < 2 π . Because each
test provides one constraint, and in the case described here the
parameter space is two dimensional, at least two qualitatively
different tests are required to make localized constraints in ω.
In addition to a test for a flat angle distribution we also apply a
test for an angle–energy correlation.

About the simplest consistency test for the calculated angles
is a test of the mean of the angles: Is the mean consistent
with the expected mean for a uniformly distributed set of N
planets? For this to perform well one must fold the angles of the
inbound planets onto the interval [0, π ], that is, disregard the
information in the sign of the radial velocity; then, the expected
mean of the angles is equal to π/2 (for details on how to test
this assumption, see Beloborodov & Levin 2004). The fact that
we have to perform this mapping indicates that the procedure
is ad hoc. Indeed, for a uniform distribution on the circle there
is no specific meaning to the perihelion and the aphelion, or to
any two points, such that no real meaning can be attached to the
mean of the angles between two arbitrary points on the circle.

Better, one can test the consistency of the full distribution
function of the angles with a uniform distribution. This could
again be done with the full [0, 2π ] distributed angles or with the
folded angles; the results will depend on this choice. Testing
an observed distribution for consistency with an expected
distribution often involves comparing cumulative distribution
functions (Kolmogorov 1941). The Kolmogorov–Smirnov (K–
S) test is the simplest in practice, since the distribution of the
test statistic—the maximum difference between the cumulative
distributions—can be approximated by an analytic function
(Stephens 1970). The K–S test is by construction most sensitive
to deviations near the median value; this rules out dynamical
parameters at which the planets bunch up at perihelion or at
aphelion, the situation in which about half are at perihelion and
half at aphelion can easily dupe the test.

A statistic can be chosen that is sensitive to deviations at
all values, such as the Anderson–Darling statistic (Anderson &
Darling 1952). However, no approximate analytic description
of the distribution of this statistic exists and in practice this
distribution has to be obtained by Monte Carlo sampling (e.g.,
Beloborodov & Levin 2004). A statistic more appropriate to
the problem at hand (although we are not primarily interested
in a careful examination of the differences between different
frequentist procedures) is Kuiper’s statistic (Kuiper 1962). This
statistic—the sum of the maximum distance of the observed cu-
mulative distribution above and below the expected cumulative
distribution—is invariant under periodic shifts of the angle and
was specifically designed to test uniform distributions on the
circle. The advantage over Anderson–Darling is that the asymp-
totic distribution of the Kuiper statistic is known (e.g., Press
et al. 2007).

All of these tests for the uniformity of the distribution of the
angles are shown in Figure 4. These tests can fail when for
a certain combination of dynamical parameters some planets
are near aphelion while other planets are near perihelion. This
situation appears here in Figure 3, at α far from 2, where there are
large regions in which the inner planets, especially Mercury and
Venus, are near perihelion, while the outer planets, especially
Uranus and Neptune, are near aphelion and vice versa. This
prevents the mean angle and K–S tests from excluding those
regions. The Kuiper test performs better.

A second constraint (for the two-dimensional parameter
space) comes from a second test. In regions of parameter space
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Figure 4. Various frequentist tests applied to test the uniformity of the angle
distribution and the absence of angle–energy correlations. From top to bottom,
left to right: test of the mean of the angles; K–S test for the uniformity of the
angle distribution; Kuiper test for the uniformity of the angles; Kendall τ test
for the absence of angle–energy correlations; combined confidence intervals
from the Kuiper test and the Kendall test; combined confidence intervals from
the K–S test and the Kendall test. In the plots with a single statistic the darkest
region corresponds to the 95% confidence region, the lighter region to the 99%
confidence region. The same is true for the plots with combinations of statistics,
except that a Bonferroni correction has been applied to the significances of the
individual statistics that make up the combination. In each plot, the lightest
region is excluded because at least one planet becomes unbound for those
parameter values.

in which the inner planets are all near perihelion and the outer
planets are all near aphelion, a significant correlation between
the angles and the energies exists. This correlation is unphysical
if the system is not being observed at any special time. A non-
parametric test for the correlation is preferred here as the angle–
energy correlation will not in general be linear. We perform a
test of the angle–energy correlation using Kendall’s τ (Kendall
1938). This is a rank test; it only considers the relative ordering
of the angles and energies of different planets (for details on this
test see Press et al. 2007). That this test is in a sense orthogonal
to the tests of the uniformity of the angle distribution can be
seen in Figure 4.

All of the frequentist tests permit acceptance or rejection of
a dynamical model at a certain confidence level. Confidence
intervals of 95% and 99% for all of the frequentist tests are
shown in Figure 4. Also shown is the combination of the tests
of the uniformity of the angle distribution with the test of the
angle–energy correlation.

6. PROBABILISTIC DYNAMICAL INFERENCE

The frequentist procedures perform reasonably well in this
simple problem because the number of dynamical parameters
is small and the data have vanishing errors and no missing
components. As the number of dynamical parameters increases
the frequentist must find larger numbers of tests in order to
break degeneracies. While data uncertainties can be included
by sampling the error distribution of the data and combining
the results (e.g., Beloborodov & Levin 2004), this will perform
badly in the limit of low signal-to-noise or missing data. These
difficulties are related to the fact that these procedures use only
a very crude model of the data, that is, that the angles are
distributed uniformly and that angle–energy correlations should
be absent, which allows no room for discovery of structure
in phase space. A fully Bayesian treatment of this problem
can treat the phase-space distribution function as an unknown
function to be inferred from the data. Modeling the full phase-
space distribution function permits simultaneous inference of
missing data and properly marginalized probability distributions
for dynamical parameters.

Imagine that we have the three-vector positions �xi and
three-vector velocities �vi at some time t for N planets i and
a parameterized model for the gravitational acceleration law
(force law per unit mass) �aω(�x), a function of position �x and a list
of parameters ω. We wish to obtain an estimate of the posterior
probability distribution p(ω|{�xi , �vi}) for the parameters, where
{�xi , �vi} is the set of all planet positions and velocities. We
employ Bayes’s theorem as follows:

p(ω|{�xi , �vi}) = p({�xi , �vi}|ω) p(ω)

p({�xi , �vi}) , (9)

where, as usual, p({�xi , �vi}|ω) is the likelihood or the probability
distribution function for the data given the model parameters,
evaluated at the observed values of the data, p(ω) is the prior
probability distribution function for the parameters, and the
denominator is (for our purposes here) a normalization constant.

For our chosen parameterization of the dynamical parame-
ters, ω, a broad flat or uniform prior in the space represents a
reasonable description of our (assumed) prior knowledge. The
much more challenging problem is to specify the likelihood of
the dynamical parameters, the conditional probability distribu-
tion function p({�xi , �vi}|ω). Without detailed knowledge of how
the solar system formed, this probability distribution is also a
representation of our prior beliefs. Ideally our ability to learn
from the observed data will not be too sensitive to these beliefs.

It is easier to express beliefs about the angle φr , radial
asymmetry e, and binding energy ε of each planet than its
position and velocity. This is because, given our assumption
that the planets constitute an angle-mixed population, Jeans’s
theorem (Jeans 1915; Binney & Tremaine 2008) tells us that the
distribution function, which is proportional to the probability
of observing a planet at a certain locus in phase space, is only
a function of the integrals of the motion. We wish to assign
zero probability to dynamical parameters that lead to any of the
computed binding energies ε(�xi , �vi ,ω) being negative (because
we defined ε > 0 to be bound). We would also like to express
our prior information or assumption that the system is long-
lived (in units of the dynamical time), that it is non-resonant,
and that we are not seeing the system at any special time, or
that the radial angles φr will be randomly distributed between
0 and 2 π . In the absence of any better information, we will
try to be as agnostic as possible about the actions (conserved
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quantities) of the planets but extremely confident that all radial
angles 0 < φr < 2 π are equally likely.

In the simple spherical or radial situation under consideration
here, in which there are no missing data, we can rewrite the
likelihood as a function of the planets’ radial coordinates, as
the orientation of the orbit does not depend on the dynamical
parameters:

p(�x, �v|ω) ∝ p(r, vr , j
2|ω) = |J (ln ε, e, φr ; r, vr , j

2)|
× p(ln ε, e, φr |ω), (10)

where, again, we have gone to ln ε because dimen-
sioned parameters are usually best handled in the log, and
J (ln ε, e, φr ; r, vr , j

2) is the Jacobian matrix of all the partial
derivatives of (ln ε, e, φr ) with respect to (r, vr , j

2). For spheri-
cal potentials, this Jacobian is given by

|J (ln ε, e, φr ; r, vr , j
2)| = 2 π

Tr

1

ε

∣∣∣∣ ∂e

∂j 2

∣∣∣∣ , (11)

where the derivative is evaluated at the current location in
phase space and Tr is the radial period, which depends on
the dynamical parameters and the integrals of the motion. For
general α this radial period can be computed numerically (see
Section 2). The derivative of the radial asymmetry with respect
to the specific angular momentum squared can be written in
terms of the perihelion and aphelion distance as

∂e

∂j 2
= Arα

0 rap rperi

r3−α
ap − r3−α

peri

(rap + rperi)2

[
j 2 − Ar3

0

(
rap

r0

)3−α
]−1

×
[
j 2 − Ar3

0

(
rperi

r0

)3−α
]−1

. (12)

In the special case α = 2, this Jacobian is

|J (ln ε, e, φr ; r, vr , j
2)| ∝ ε3/2 e−1 M−3

� , (13)

where we have dropped any terms that do not depend on the
mass of the Sun.

As well as assuming that the angles are independently and
uniformly distributed, we might further assume that the energy
and radial asymmetry of each planet were drawn independently:

p({ln εi, ei, φr,i}|ω) = 1

(2π )N

N∏
i=1

p(ei, ln εi |ω). (14)

However, we do not know a priori the distribution function
from which radial asymmetries and binding energies were
drawn. Fixing p(ei, ln εi |ω) to a broad distribution would be
making a strong assumption: regardless of what the data say
we would continue to dogmatically believe that the distribution
function was broad, which could result in poor inferences about
the model as a whole.

We can assume that the planets’ properties were drawn in-
dependently and identically distributed, without making strong
assumptions about what that distribution was. This is achieved
by introducing auxiliary parameters θ = {θ e, θ ε} that if known
would specify the distribution function. Since we do not know
these nuisance parameters, introducing a prior p(θ |ω) and
marginalizing over them,

p({ln εi, ei, φr,i}|ω) = 1

(2π )N

∫
dθ p(θ |ω)

×
N∏

i=1

p(ei, ln εi |θ ,ω), (15)

is then part of the inference task. With all of this in place, we
apply Equation (9) to get the posterior distribution over the
dynamical parameters

p(ω|{�xi , �vi}) ∝
[

N∏
i=1

|J (ln εi, ei, φr,i; ri, vr,i , j
2
i )|

]

×
∫

dθ p(θ ,ω)
N∏

i=1

p(ei, ln εi |θ ,ω), (16)

where each planet’s value of (ln εi, ei, φr,i) is a function of
phase-space position (�xi , �vi) and dynamical parameters ω, and
the Jacobian is evaluated at each planet’s value of (ln εi, ei, φr,i).

For situations in which we have missing data or noisy
observations, further unknown quantities will be added to the
model and marginalized over. As the model becomes more
complicated it is more likely that Markov chain Monte Carlo
(e.g., Neal 1993) or other approximate computational methods
will be required.

6.1. Basic Method

To keep things as simple as possible, at first we model the
distribution function p(ln ε, e|ω, θ ) as a product of a top-hat
function in ln ε from ln εa to ln εb with a top-hat function in e
from ea to eb. In this context, the phase-space parameter list is

θ = {ln εa, ln εb, ea, eb}. (17)

In what follows, we only consider values A < ln εa < ln εb <
B, where A and B provide very distant (uninformative) limits
(below, we will take the limit), and 0 � ea � eb � 1. These
enforce our assumption or prior information that the system is
bound.

For our initial model we also set the prior p(θ,ω) flat or
uniform in all the parameters. Now the marginalization required
to compute the posterior (Equation (16)), an integral over all
four of the phase-space distribution parameters in θ , can be
performed analytically; it leaves

p(ω|{�xi , �vi}) ∝ [ln εK − ln εL]2−N
[
1 − [1 − eL]2−N

−[eM ]2−N + [eM − eL]2−N
]

×
N∏

i=1

∣∣J (
ln ε, e, φr ; ri, vr,i , j

2
i

)∣∣, (18)

where ln εL is the lowest planetary binding energy at this point
ω in dynamical parameter space, ln εK is the highest, eL is
the lowest planetary radial asymmetry at this point ω, eM is
the highest, and we have taken the limit in which the range
of the parameters (ln εa, ln εb) goes to infinity, or A → −∞,
B → ∞. This posterior probability distribution for ω represents
our posterior beliefs marginalized over all possible values of
{ln εa, ln εb, ea, eb} of the top-hat model.
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6.2. Alternative Methods

The results of any inference depend both on the data and on
modeling assumptions. Thus, it is always sensible to question
any assumptions and investigate how sensitive the results are to
them.

The marginalization in our basic method is tractable at
the expense of believability: it seems unlikely that the true
distribution function over the planet properties is uniform in
the chosen parameterization. If the true distribution function is
far from this assumption, the inference performed here could
be in trouble because the zero prior probability assigned to
all other reasonable forms of the distribution function makes it
impossible for the model to learn this. This family of distribution
functions also has no special status: a distribution which is
uniform in one parameterization will not be uniform in another.
Instead of modeling the distribution in (ln ε, e, φr ), we could
have chosen to model the distribution function in terms of
(ln ε, e2, φr ). This set of parameters is, in a sense, more natural
as it is closer to action–angle coordinates, and, thus, the Jacobian
|J (ln ε, e2, φr ; r, vr , j

2)| is more close to constant. Indeed, from
Equation (13) it is clear that, in the case of α = 2, this Jacobian
does not depend on the eccentricity of the orbit any longer
and Figure 8 shows that this Jacobian is close to constant for
all values of ln A and α. However, it is not obvious a priori
whether using this parameterization will give better results.
Rather than guessing, we can assume that the distribution over
radial asymmetries is uniform in an unknown parameterization,
and infer from the data what this parameterization should be.
We tried assuming that the radial asymmetry was uniform
over some range of e, e2, or

√
e, with equal prior probability

over each choice. This method corresponds to extending θ to
parameterize a richer class of distributions. As we did with
nuisance parameters before, we can marginalize over this choice.

In general, we could marginalize over a very flexible class of
distributions for both the binding energy and radial asymmetry.
A generic way of representing distributions is with a histogram,
where any distribution can be represented within an arbitrary
tolerance for sufficiently narrow bins. Some care is required
in putting a prior p(θ ) over the heights of the bins. It is
tempting to use a Dirichlet distribution, which allows analytical
marginalization. However, this assumes that the heights of the
bins are unrelated except through their overall normalization. An
arbitrarily spiky distribution function is not only unphysical, but
we would be unable to infer its shape from point observations.

We attempted to construct a sensible prior over distributions
using histograms with many bins by coupling the heights of the
bins so that the densities appear smooth. Since the focus on this
paper is on the principles of dynamical inference and not on the
specific result on the solar system’s force law, we only provide a
brief description of how we implemented this approach. We refer
the interested reader to the references provided in the following
for more details on the specifics. A multivariate Gaussian prior
can be put over the log bin heights, approximating a logistic
Gaussian process (Leonard 1978). We used 100 equal-width
bins coupled with a Gaussian covariance function (Rasmussen
& Williams 2006). We put uniform priors over the start and end
points of the histogram and over physically reasonable ranges
of the covariance function’s parameters. The posterior over the
dynamical parameters was estimated by Markov chain Monte
Carlo simulation of all the unknowns; Gibbs sampling was used
to update the dynamical parameters over a grid of values for
which we had precomputed the Jacobian term. Slice sampling
(Neal 2003) was used to update all nuisance parameters, except

Figure 5. Density plots of the absolute value of the determinant
|J (ln ε, e, φr ; r, vr , j

2)| of the Jacobian of the transformation from the energy
ε, radial asymmetry e, and radial angle φr coordinates to the relevant positional
and kinematical observables, evaluated at the observed positions and velocities
of the planets, as a function of the dynamical parameters. Gray scales are linear
with darker shades for larger values.

the bin heights which were updated with a Metropolis–Hastings
method (Neal 1999, Equation (15)).

7. RESULTS AND DISCUSSION

In our basic method we evaluate the Jacobian |J (ln ε, e, φr ;
ri, vr,i , j

2
i )| for each planet at the observed radius, radial ve-

locity, and specific angular momentum, for each value of
the dynamical parameters ω, and multiply the magnitudes
of the determinants of these Jacobians together. Following
Equation (18), we multiply this product with the value of the
marginalized product of the distribution function and finally
multiply this with the (uniform) prior on the dynamical param-
eters in order to obtain the posterior probability distribution for
the dynamical parameters.

It is instructive to look at the magnitude of the determinant
of the Jacobian for each planet as a function of the dynamical
parameters in Figure 5. These factors seem to show a clear
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Figure 6. Posterior probability distribution p(ω|{�xi , �vi}) for the dynamical
parameters on a linear scale. Contours are 95% and 99% posterior regions.

preference for the dynamical parameters of each planet to lie
on its virial locus. Why is this? For nearly circular orbits the
last two factors in Equation (12) are equal and are unbounded
for perfectly circular orbits; this results in a natural preference
for nearly circular orbits for all of the planets, i.e., for each
planet to lie somewhere along its virial locus. At the same
time the measured non-zero radial velocity limits the extent
to which a planet’s orbit can be circularized by a suitable choice
of the dynamical parameters and, thus, how close to the circular
singularity an individual planet can be brought. This naturally
leads to a weighting scheme in which planets that are closer
to circular orbits (as measured by the observed angle between
the planet’s velocity and the tangent to the circular orbit going
through its present location) receive a higher weight in the
analysis than planets on less circular orbits. This weighting
scheme is good in that planets on more circular orbits are indeed
more informative about the potential than planets on less circular
orbits. Therefore, it may seem that the decision to model the
radial asymmetries as uniform in e was fortuitous, but in fact, as
we will discuss below in Section 7.1, the results obtained using
the basic method are robust in that more flexible models learn
that the top hat in e leads to a good interpretation of the data.

The posterior probability distribution is shown in Figure 6.
A strong peak is apparent near α = 2 and the Newtonian
solar value for ln A. The width of the probability distribution
is indicated by the 95% and 99% posterior contours. These
contours are defined to enclose the smallest area that holds 95%
and 99%, respectively, of the posterior probability distribution.

In order to infer the exponent α of the force power law we
perform a second marginalization of the posterior probability
distribution, this time over the (for our purposes) uninteresting
parameter ln A. This gives a posterior probability distribution
for the parameter α,

p(α|{�xi , �vi}) =
∫

d ln Ap(ω|{�xi , �vi}). (19)

This probability distribution is shown in Figure 7. The 95% and
99% posterior intervals in this figure are defined to exclude 2.5%

Figure 7. Marginalized posterior probability distribution for the parameter α

with 95% and 99% posterior intervals.

and 0.5%, respectively, of the distribution on either side of the
central region.

The result of the inference is not a value for the parameters
but a posterior probability distribution. A “best-fit” value for α
could be obtained according to various criteria. For example, the
posterior mean minimizes the expected square difference from
the true parameter. However, since the posterior distribution is
multi-modal, a point estimate does not capture our uncertainty.
The posterior is better summarized by a credible interval,
containing a given fraction of the probability mass. The 95%
posterior interval is 1.989 < α < 2.052. This compares
favorably with the results obtained by Newton (1687) who
inferred α = 2 from a much richer data set (though a less rich
model set). Modern tests constrain the value of the exponent α
to a fractional accuracy of 10−8–10−9 on solar system scales
(Adelberger et al. 2003; Fischbach & Talmadge 1999) using
lunar laser ranging tests (Williams et al. 2004) and Keplerian
tests comparing G(r)M� and the rate of precession for different
planets (Talmadge et al. 1988).

Our method appears to work well: the true dynamical pa-
rameters A and α are plausible under a fairly tight posterior
distribution, see Figure 6. The confidence intervals from the fre-
quentist tests, Figure 4, are somewhat broader than the posterior
intervals, but are not directly comparable. Frequentist confi-
dence intervals do not represent beliefs about the parameters
for this data set, simply a region that satisfies some sampling
properties. As a result it is unsurprising that the frequentist con-
fidence intervals appear less good if interpreted as beliefs given
the data. It is difficult to use the frequentist confidence intervals
to make statements about α alone: without the assumptions of
the Bayesian method we cannot marginalize over the parameter
A. One approach that allows frequentist guarantees is to set A
adversarially, but this pessimistic view would give unreasonably
large error bars for α.

That the posterior distribution p(α|{�xi , �vi}) turns out to be
multi-modal is no surprise in the light of the virial considerations
from Figures 1 and 2. The two peaks in p(α|{�xi , �vi}) correspond
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Figure 8. Density plots of the absolute value of the determinant
|J (ln ε, e2, φr ; r, vr , j

2)| of the Jacobian of the transformation from the en-
ergy ε, radial asymmetry squared e2, and radial angle φr coordinates to the
relevant positional and kinematical observables, evaluated at the observed po-
sitions and velocities of the planets, as a function of the dynamical parameters.
Gray scales are linear with darker shades for larger values. Only the Jacobians
for Mercury and Venus are shown here; the corresponding Jacobians for the
other planets are very similar to these.

to the two main regions in parameter space in which the
different virial loci cross. These virial considerations, and also
the frequentist techniques, are very similar to the probabilistic
approach in that they all prefer each planet to be in a non-special
region of radial angle space, that is, between perihelion and
aphelion; this can only happen simultaneously near the points
in parameter space at which virial loci cross. The advantage
of the probabilistic approach is that it explains and quantifies
this reasoning, and uses it to set formal limits on the dynamical
parameters.

7.1. Sensitivity Analysis

The strongly peaked Jacobian factors shown in Figure 5
depend strongly on the choice of parameterization. If the model
was expressed using the radial asymmetries squared rather than
the radial asymmetries, the Jacobians, some of which are shown
in Figure 8, are much flatter. If the model is maintained by also
transforming the prior over radial asymmetry distributions to the
new parameterization, the posterior distribution over dynamical

Figure 9. Alternative posterior probability distributions for the parameter α

with 95% and 99% posterior intervals. Top: distribution over radial asymmetry
is assumed to be uniform in one of

√
e, e, or e2. Bottom: results from a non-

parametric prior over the distributions of both e and ln A.

parameters will be unchanged. Setting all the radial asymmetries
close to 1 is penalized elsewhere in the mathematical expression.

However, setting the prior over radial asymmetry distributions
to consider only uniform distributions was a strong assumption.
If we had only considered distributions uniform in the radial
asymmetry squared, this combined with the flat Jacobians in
Figure 8 would not have given as tight a posterior distribu-
tion. Fortunately we can infer a suitable parameterization, or
equivalently the distribution function from a richer family of
possibilities, from the data.

Figure 9 shows the posterior over α from using the two
more flexible priors outlined in Section 6.2. Assuming that
the radial asymmetry is uniform in one of

√
e, e, or e2 gave
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a 95% credible interval of 1.990 < α < 2.035. A variety of
different flexible priors for the radial asymmetry distribution
gave very similar results. Allowing the ln A constant in the force
law to come from a flexible family of distributions changed
the posterior very little. The 95% credible interval from the
flexible non-parametric prior on both distributions gave a 95%
credible interval of 1.991 < α < 2.040. The fine details of the
posterior distribution, specifically the relative mass in the two
modes, are sensitive to prior assumptions. This is unsurprising
with only eight data points. However, the position of the bulk
of the posterior mass, which gives the confidence interval, is
surprisingly robust across a wide range of modeling choices.

As a warning, it is possible to obtain poor results through
bad modeling choices. The reasonable posterior from our basic
method, Figure 7, was to some extent due to chance. The family
of possible radial asymmetry distributions is inflexible as it
forces this distribution to be flat over some range in radial
asymmetry. Using the basic method it is not possible to learn the
true distribution, which is not flat in radial asymmetry, from data,
because the truth is assigned zero prior probability. We were
fortunate to choose a parameterization in which the inflexible
family was not too unreasonable. The non-parametric approach
is much more flexible in that its weak smoothness constraints
assign non-zero prior probabilities to all reasonable distribution
functions such that the true one could be picked out with enough
data. However, care must also be taken with non-parametric
modeling. An unsmooth Dirichlet prior over bin heights in a
non-parametric prior over distributions gave a broad and biased
distribution over α.

7.2. Future Work

The necessity of a proper probabilistic approach as laid out
in this paper has been recognized before in the context of
inferring the mass of the Galaxy from a small set of highly
informative tracers: distant satellite galaxies (Little & Tremaine
1987) and high velocity stars (Leonard & Tremaine 1990).
The limitations of those works are that they choose restrictive
forms of the distribution function in which the distribution of
angular momentum is fixed as either radial or isotropic, or
given as an inflexible parametric function in between these
two extrema (Kochanek 1996). The precision of their results
for the fundamental parameters of the Galaxy is limited by the
systematic uncertainty arising from this assumption. In the case
of estimating the local escape velocity from a sample of high
velocity stars, a power-law model for the energy part of the
distribution function was used; some progress has been made
marginalizing over the exponent, a nuisance parameter, with a
prior coming from cosmological simulations (Smith et al. 2007).
In the future, using the technique introduced in this paper there
is no need to make strong assumptions about the degree of
anisotropy of the system at hand or the form of the distribution
function beyond the assumption of complete angle mixing. The
results of this paper show that by introducing flexible models
for the distribution function that can learn from the data, robust
constraints on the parameters of a dynamical system can be
obtained.

The approach developed here can be applied to other (perhaps
more pressing) dynamical inference problems in which test par-
ticles can be relied upon to be well-mixed in angle space. One
such problem is the dynamics in the region surrounding the black
hole at the Galactic center. Often in these problems complica-
tions arise because of large observational uncertainties (often
highly correlated), the absence of some of the six-dimensional

phase-space coordinates, and selection effects, all of which are
absent in the simple problem considered here. It will be neces-
sary for these problems to model the full six-dimensional phase-
space distribution function. This will complicate the marginal-
ization over the phase-space parameters, which was trivial here
in the basic method, but at the same time it will permit the dis-
covery of structure in the phase-space distribution, which can
aid with the presence of missing data and large observational
uncertainties. That this approach has much potential has been
shown before in the case of the Galactic center; the assumption
that a set of stars at the Galactic center is part of a disk-like
population has been successful in reconstructing missing data
(Beloborodov et al. 2006). Extension of the approach devel-
oped in this paper will permit incorporation of much more of
the available data on the dynamics in the central region of the
Galaxy. This, in turn, will lead to a better determination of the
mass of the black hole and the surrounding density profile.

On larger scales, approaches like that developed in this paper
will prove to be essential for the analysis of the large data sets
of upcoming surveys such as Gaia. As the duration of the Gaia
mission is vanishingly smaller than any dynamical timescale,
the problem posed is essentially the same as the problem posed
here: infer the dynamics from a snapshot of the kinematics.
Our approach cannot simply be applied to this larger problem
because the system is almost certainly not (trivially) integrable,
and the assumption of mixed angles and lack of resonances
is invalidated by the clear abundance of substructure in the
halo (e.g., Willman et al. 2005; Belokurov et al. 2006, 2007;
Koposov et al. 2008) and the disk (Dehnen 1998; Bovy, Hogg,
& Roweis 2009); indeed, Jeans himself, in the paper in which he
first wrote down his eponymous theorem (Jeans 1915), argued
against assuming a steady state for the Galaxy. Modeling the
details of the phase-space distribution function will be even
more important in this context. However, we expect that a large
fraction of the Galaxy, even a large fraction of the stellar halo,
is well-mixed, such that mixed-angle approaches are expected
to lead to valuable inferences. Combining the mixed-angle and
unmixed-substructure techniques into a general inference about
the dynamics of the Galaxy requires a fully probabilistic method
and the approach developed in this paper is a baby step toward
this ambitious goal.
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