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Abstract 

Co-crystallisation is proposed as an effective method to adapt the physico-chemical properties of energetic 

materials, thus presenting the opportunity to fine-tune performance characteristics at the molecular level. This 

is illustrated by the characterisation of four co-crystals of the high explosive CL-20. 

 

Main text 

Energetic materials represent an important class of compounds that contain large amounts of stored chemical 

energy within their molecular structures and which can undergo rapid decomposition to produce large 

quantities of hot gaseous products. These high-energy-density materials (encompassing propellants, 

explosives and pyrotechnics) have applications that include mining, armaments, space exploration and 

fireworks. For many applications, reproducible and reliable performance is essential especially when these 

materials may be exposed to a range of environments, e.g. long-term storage, elevated temperatures, impact 

from shrapnel, mechanical shock and friction. Properties that are critical to energetic performance include 

sensitivity to detonation (by impact, friction, shock or charge); the detonation velocity; thermal stability and 

crystal morphology. As a result of these stringent performance criteria, current energetic formulations are 

based on a very small number of compounds. An increasingly important consideration for energetic materials 

is their sensitivity to accidental initiation and this is leading to the development of “insensitive munitions”.
1
 

Current strategies for reducing sensitivity involve the embedding of crystallites of the explosive or propellant 

in a polymer binder. The binder serves the purpose of dissipating the energy of impact/friction and reduces the 

likelihood of initiation via hot-spots. Another strategy is the use of reduced sensitivity components in the 

polymer-bonded explosive (PBX). Several companies now market so-called “reduced-sensitivity (RS) RDX” 

that is claimed to exhibit reduced sensitivity to accidental initiation and which hence commands a premium 

for certain applications. The details of such formulations are proprietary information and so despite a number 

of investigations by laboratories around the world, it is not yet clear what is responsible for the reduced 

sensitivity. Factors such as purity, particle size, particle morphology, number of voids, and number of defects 

have all been suggested to play a role.
2
 Another strategy that has been deployed is the development of new 

energetic materials that are intrinsically less sensitive. Recent examples include FOX-7 (1,1-diamino,2,2-

dinitroethene) and FOX-12 (guanylurea dinitramide). It has been suggested that the reason for the intrinsic 

insensitivity of these materials lies in the way that these molecules pack together in the crystals. Both 

compounds adopt structures in which the molecules are arranged in layers linked by relatively strong 

hydrogen bonds – it is believed that such structures allow energy to be dissipated efficiently throughout the 

crystal thereby reducing the likelihood of initiation via hot-spots.
3
 A novel and intriguing approach that has 

very recently been suggested is the use of co-crystallisation to enhance the energetic performance of existing 

materials and as a possible method of improving the viability of other candidate materials.
4, 5
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It is well documented that co-crystallisation is an effective technique for the modification of the physico-

chemical propertes of crystalline solids.
6-8

 Such attempts at crystal engineering are nowhere more evident than 

in the pharmaceutical sector, where it may be desirable to improve factors such as dissolution rate, thermal 

stability and bioavailability without the structural adaptation of the active pharmaceutical ingredient (API).
9, 10

 

In contrast to typical APIs, which generally have a range of functional groups that can be exploited for crystal 

engineering, typical energetic molecules have a much narrower range of functionality (often restricted to 

nitro-groups). This is perhaps reflected in the scarcity of structural data reported for co-crystals of energetic 

materials. Although numerous solvates of the high explosives HMX (1,3,5,7-tetranitro-1,3,5,7-

tetraazacyclooctane) and RDX (1,3,5-trinitrohexahydro-1,3,5-triazine) have been identified 

spectroscopically,
11, 12

 only six of these have been structurally characterised.
13-16

 In addition, 2,4,6-

trinitrotoluene (TNT) has recently been the subject of a thorough co-crystallisation screening, the result of 

which was the structural characterisation of 17 co-crystals of TNT with a range of aromatic and heterocyclic 

co-formers.
4
 Therefore, in order to exploit the potential for new energetic co-crystals with tailored properties, 

it is necessary to develop a library of supramolecular synthons suitable for their rational design.  

In this work we have studied the co-crystallisation of the polycyclic nitramine 2,4,6,8,10,12-

hexanitrohexaazaisowurtzitane (HNIW), commonly referred to CL-20 on account of its development at China 

Lake, USA.
17

 CL-20 (shown in Figure 1) is currently the most powerful explosive available commercially, 

although concerns remain over its sensitivity to detonation.
18

 It would therefore be desirable to obtain CL-20 

in a form that displays sufficiently reduced sensitivity, without compromising explosive performance. Recent 

studies have focussed on the development of CL-20-based PBXs.
19-21

 

 

 

Figure 1. Molecular structure of CL-20 

 

In order to provide an alternative route to insensitive CL-20-based munitions, we have conducted co-

crystallisation trials with a range of organic co-formers. The conformational flexibility displayed by the CL-20 

molecule, a feature it has in common with HMX, may lead one to expect this material to be an ideal candidate 

for such an approach. The structure consists of a rigid isowurtzitane cage with nitro groups attached to each of 

the bridging nitrogens. The relative orientations of these nitro groups to the isowurtzitane cage, together with 
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the crystal packing, gives rise to the rich polymorphism that has been explored in detail in previous studies.
17, 

22, 23
 Of the 24 possible conformers, DFT calculations on the isolated molecule have shown that the four most 

stable arrangements correspond to those observed experimentally in the crystalline state, reflecting the 

relatively small energy barriers that exist between these conformations, see Figure 2.
24

 

 

 

 

Figure 2. The most stable molecular conformations and the polymorph in which they are observed (the 

relative energies, in kJ mol
-1

, calculated by Kholod et al.
24

 are also shown). The conformation shown in I is 

adopted by β-CL-20, II is exhibited in both the α- and γ-forms, while ε-CL-20 adopts conformation III.
17

 The 

high-pressure form, ζ-CL-20, adopts conformation IV.
23

 

 

We therefore present the full structural refinements for four binary co-crystals of CL-20, with N,N-

dimethylformamide (DMF), 1,4-dioxane, hexamethylphosphoramide (HMPA) and γ-butyrolactone. It should 

be noted that the DMF adduct of CL-20 has been reported previously but no detailed discussion of the 

structure was presented.
25
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Results 

A summary of the structural information for each of these co-crystals can be found in Table 1. 

Table 1. Crystallographic information for the four co-crystals of CL-20 

 DMF 1,4-dioxane HMPA butyrolactone 

S.G. P-1 P-1 P21/c Cc 

a (Å) 7.7843(16) 10.3061(3) 18.8930(3) 15.7503(9) 

b (Å) 12.857(3) 10.7691(3) 12.07295(13) 20.5096(13) 

c (Å) 13.002(3) 14.5298(4) 21.8241(4) 23.2073(13) 

α (°) 113.73(2) 73.897(2) 90 90 

β (°) 106.34(3) 89.527(2) 114.977(2) 90.092(2) 

γ (°) 92.43(3) 85.057(2) 90 90 

V (Å
3
) 1125.1(6) 1543.38(8) 4512.41(14) 7496.7(8) 

Dc* (Mg m
-3

)  1.725 1.606 1.436 1.856 

T (K) 150 150 100 100 

Stoichiometry 1:2 1:4 1:3 1:1 

CL-20 conformation γ γ β γ 

*For reference, the crystal density of ε-CL-20 is 2.083 Mg m
-3

 at 100 K.
26

 

 

CL-20:DMF (in a 1:2 ratio) has been found to crystallise in the triclinic crystal system (P ), in which the 

molecules are broadly arranged in alternate layers of CL-20 and DMF, as shown in Figure 3(a). In the DMF 

layer, both independent molecules each form dimers over inversion centres oriented such that the carbonyl 

group of each molecule is directed along the interplanar direction. The result of this is that no significant 

intermolecular interactions occcur between the DMF molecules – the closest contacts exist between the 

hydrogen atoms of the methyl groups (at 2.323(1) and 2.983(1) Å, respectively). Similar contacts exist 

between the dimers themselves, resulting in a planar arrangement of the co-former molecules. 

 

 

Figure 3. (a) the layered arrangement observed in CL-20:DMF (viewed down the a-axis; (b) the 

intermolecular C-H…O interactions between the layers of CL-20 and DMF molecules. 
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Within the CL-20 layers, the individual molecules adopt both the molecular conformation and the relative 

spatial distribution observed in the γ-polymorph of the unsolvated material. The ‘face-to-face’ arrangement 

(whereby all five-membered rings of the cage are oriented about the same axis) results in a network of weak 

C-H…O interactions linking CL-20 molecules along two dimensions. In the third direction, perpendicular to 

the layers, the most significant intermolecular interaction occurs between the oxygen atoms of the DMF 

molecules and the C-H groups along two of the cage edges (see Figure 3(b)), ranging from 2.241(1) to 

2.732(1) Å.  

The contacts between CL-20 and dioxane molecules are limited to weak C-H…O interactions (ca 2.7 – 2.8 Å) 

– this is reflected in the relatively low desolvation temperature. Desolvation was observed by a dramatic 

difference between the Raman spectra obtained at 313 and 323 K; at the latter temperature the characteristic 

spectrum for γ-Cl-20 was observed. It is interesting to note that this temperature is ca 100 K below the 

reported ε → γ transition in the non-solvated material.
27

 

 

 

Figure 4. Super cell (2 x 2 x 2) showing the crystal packing in CL-20:dioxane, viewed down the c-axis. It 

should be noted that each colour represents a crystallographically independent molecule; only one orientation 

of the disordered dioxane molecule (red) is shown for clarity. 
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In the crystal structure (monoclinic, P21/c) of CL-20:HMPA, two independent molecules of HMPA are 

positioned such that the phosphorus-oxygen double bond is oriented directly at the hydrogen atoms of 

opposite faces of the isowurtzitane cage, as shown in Figure 5(a). Meanwhile, a third HMPA molecule 

completes a shell of co-former molecules that surrounds a ‘dimer’ of CL-20 molecules situated over an 

inversion centre (see Figure 5(b)).  

Excluding the C-H…O interactions between the molecules of the dimer, which, at 2.430(2) Å, are shorter than 

similar contacts observed in any of the pure polymorphs, there are no significant CL-20…CL-20 

intermolecular interactions in this structure. It may therefore be regarded as a lattice composed solely of 

HMPA molecules; voids in this lattice are then filled by the CL-20 dimers. Finally, the layered nature of the 

overall structure also becomes evident when viewed down the monoclinic axis (Figure 5(b)). The molecules 

are arranged in zig-zag chains along the face diagonal with remarkably few inter-chain interactions.  

Desolvation of CL-20:HMPA results in the formation of β-CL-20, the polymorph with which it shares its 

molecular conformation. In contrast to CL-20:dioxane, however, desolvation does not occur until ca 413 K, as 

determined by variable temperature Raman spectroscopy. This relatively high desolvation temperature is 

perhaps indicative of the strength of the intermolecular interactions that occur between the CL-20 and HMPA 

molecules. 

The crystal structure of CL-20:γ-butyrolactone was initially determined by X-ray powder diffraction. 

Indexing of the high-resolution powder diffraction pattern suggested an orthorhombic unit cell [Pna21; a = 

23.2762, b = 10.2938, c = 7.8935 Å], with which it was possible to perform structure solution by global 

optimisation methods (using the program FOX).
28

 However, upon re-inspection of the Rietveld refinement of 

the diffraction pattern it became clear that the proposed orthorhombic structure did not accurately model the 

very weak diffraction intensities, for example those observed at 5.6 and 9.0° (see Figure 6). Despite further 

indexing trials that included the peaks highlighted in Figure 6, it was not possible to obtain a definitive unit 

cell based on the powder diffraction data. Our efforts therefore became focussed on obtaining a single crystal 

suitable for single-crystal X-ray diffraction. Subsequently, structure solution based on single-crystal data 

showed that CL-20:butyrolactone (in a 1:1 ratio) in fact adopts a very complicated structure, in which there 

are four independent CL-20 molecules in the asymmetric unit.  

Comparison of the monoclinic structure (Cc) determined by single-crystal diffraction with the initial 

orthorhombic structure, depicted in Figure 7, highlights a number of similarities between the solutions. Firstly, 

both structures exhibit the CL-20 molecule in the γ-conformation, despite the ε-conformation being input into 

the global optimisation software. Secondly, the distribution of the CL-20 and butyrolactone molecules is 

broadly consistent between the two solutions. Thirdly, initial inspection of the two unit cells may suggest they 

be related, i.e. the b- and c-parameters of the orthorhombic indexing are doubled to produce the monoclinic 

unit cell and the monoclinic β-angle remains close to 90°. However, no sub-group relationship exists between 

the space groups Pna21 and Cc. Furthermore, close examination of each of the solutions shows that the 
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reduction in symmetry results in a very subtle change in the crystal packing. While nearest-neighbour 

intermolecular interactions may be comparable in both solutions, structural overlap becomes considerably 

worse as we progress away from the origin. Finally, demonstrable proof that the monoclinic solution is, 

indeed, correct, was obtained by Rietveld refinement of the X-ray powder diffraction pattern obtained using 

the single-crystal structure as the starting model. 

 

 

Figure 5. (a) The short intermolecular contacts between two independent HMPA molecules and the CL-20 

molecule; and, (b) the CL-20 dimer (blue) surrounded by a shell of HMPA co-formers (coloured by symmetry 

equivalence). This perspective also demonstrates the layered nature of this structure. 
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Figure 6. Comparison of the Rietveld refinements of the diffraction pattern collected for CL-20:γ-

butyrolactone (150 K) using both the initial Pna21 solution (bottom) and the Cc structural model (top). The 

experimental data (Iobs) are shown as pink crosses, the calculated patterns (Icalc) as a black line and the 

difference between these models (Iobs – Icalc) is shown in cyan. The weak peaks that are indicative of the true 

monoclinic nature of this structure are highlighted. 

 

As shown in Figure 8, four independent CL-20 molecules are observed in the asymmetric unit, all of which 

adopt the γ-conformation with minimal variation between them. When viewed down the a-axis, the CL-20 

molecules may be considered to be arranged in layers, which themselves may be sub-divided into layer A and 

B. Layer A contains alternating CL-20 molecules 1 (magenta) and 2 (green), while the same arrangement of 

molecules 3 (blue) and 4 (red) can be found in layer B. Within both layers A and B, the CL-20 molecules 

adopt the ‘face-to-face’ arrangement, giving rise to chains running parallel to the a-axis, linked by weak C-

H…O interactions (ranging from 2.326(6) to 2.663(6) Å). Similar interactions arise between layers A and B, 

resulting in a zig-zag network of CL-20 molecules in the ab-plane. 

A similar distribution of molecules is observed in the γ-butyrolactone layers, which occur between the CL-20 

layers (see Figure 8(b)). The co-former molecules may therefore be considered to form two chains running 

parallel to the a-axis, each of which consists of two independent molecules. It is interesting to note that the 

carbonyl group of every molecule is oriented approximately perpendicular to the direction of the chain. 

Hence, no signficant intermolecular interactions are observed between γ-butyrolactone molecules themselves. 

It should also be noted that it has been necessary to refine one of the co-former molecules over two sites (each 
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with half occupancy), although this disorder changes significantly neither the crystal packing nor the 

intermolecular interactions. 

 

 

Figure 7. Structure overlay of the Pna21 powder diffraction solution (shown in red) and the Cc structure 

determined in the single-crystal diffraction experiment (blue). The structures have been oriented such that the 

one CL-20 molecule of the Pna21 structure is superimposed on a corresponding molecule in the Cc structure. 

Hydrogen atoms have been omitted for clarity. 

 

Interplanar interactions are dominated by C-H…O interactions between the hydrogen atoms of the 

isowurtzitane cages and the oxygen atoms of the co-formers. As shown in Figure 8(c), the butyrolactone 

molecules are situated such that the ring oxygen interacts with its nearest neighbouring CL-20 molecule 

(2.287(6) – 2.411(6) Å), while the carbonyl oxygen is in close proximity to the nearest neighbour and the next 

molecule in the CL-20 chain (2.279(7) – 3.073(7) Å). In this way, the CL-20/butyrolactone interactions may 

be viewed as an extended chain that runs along the a-axis.  

The thermal stability of CL-20:butyrolactone was also investigated by variable temperature Raman 

spectroscopy. Desolvation was observed to occur at 376 K, as indicated by the characteristic Raman spectrum 

of the γ-form of the unsolvated material. This desolvation temperatues lies between that observed for CL-
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20:dioxane and CL-20:HMPA, perhaps suggesting a hierarchy of the intermolecular interactions in these co-

crystals: CL-20:HMPA > CL-20:γ-butyrolactone > CL-20:dioxane. 

 

 

Figure 8. (a) The four independent CL-20 molecules in the asymmetric unit; (b) crystal packing in CL-20:γ-

butyrolactone viewed down the a-axis, highlighting the layered structure; (c) an example of the CL-20:γ-

butyrolactone intermolecular interactions. 
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Discussion 

Although this survey of CL-20 co-crystals is by no means exhaustive, comparison of the structures determined 

for these four cases may provide important information regarding the dominant intermolecular interactions 

and the favourability of different CL-20 molecular conformations. Thus we have shown that in the absence of 

traditional crystal engineering motifs (such as hydrogen bonding or π…π stacking), co-crystal formation 

appears to be directed by much weaker C-H…O and P=O…H intermolecular interactions. This observation is 

in accordance with IR and NMR spectroscopic studies which have shown that the solvents DMF, dioxane, 

HMPA, dimethylsulfoxide (DMSO) and γ-butyrolactone are capable of forming molecular complexes with 

CL-20.
29, 30

 This information is extremely valuable since it may allow the rational selection of candidate co-

former molecules, thus streamlining future crystallisation trials.  

The conformations observed for the CL-20 molecules in the four co-crystals illustrate the delicate balance of 

intra- and intermolecular interactions in the solid state. Thus, three of the structures display the CL-20 

molecule in the γ-conformation and one in the β-conformation. The γ-conformation is also observed in the 

hemihydrate (α-CL-20)
17

 and the CO2-inclusion compound recently reported by Saint Martin et al.
31

 While it 

is difficult to draw conclusions based on so few examples, there is perhaps a trend in the co-crystals towards 

the adoption of molecular conformations that more closely mirror the relative conformational energies of 

isolated CL-20 molecules, namely β: 0.0 kJ mol
-1

; γ: 4.73 kJ mol
-1

; ε: 6.99 kJ mol
-1

; and, ζ: 9.63 kJ mol
-1

.
24

 It 

is also interesting to note that, in the case of CL-20:dioxane, CL-20: HMPA and CL-20:butyrolactone, 

desolvation results in the γ-form of the unsolvated material, the polymorph with which they share their 

molecular conformation. Furthermore, in each of these cases the characteristic Raman spectrum of γ-CL-20 

was observed at a temperature considerably lower than that at which the ε → γ is observed in pure CL-20. It is 

clear from this observation that, in addition to altering the energetic performance in the solid state, co-

crystallisation may be viewed as a highly-discriminating method for polymorph selection and indeed may 

provide crystallisation pathways to novel polymorphs. 

In terms of the practical application of energetic co-crystals it is important to assess the explosive performance 

of these materials, particularly with reference to the pure materials. From these results it is immediately clear 

that the inclusion of co-former molecules leads to a reduction in crystal density, and should therefore result in 

a decreased detonation velocity.
32

 However, Matzger has shown that, at least for some TNT cocrystals, this 

reduction in density is not observed
4
, suggesting that high-density co-crystals of CL-20 may yet be 

discovered.  

Clearly the incorporation of another non-energetic co-former will result in a substantial decrease in explosive 

power, i.e. the energetic component has been diluted. Given the superior explosive power of CL-20 with 

respect to other common explosives e.g. HMX
18

 , it may be possible to obtain a CL-20 co-crystal with reduced 

sensitivity which retains sufficient explosive power. Of course, the loss of explosive power can be overcome 

by co-crystallisation with compounds which are themselves energetic. 
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Detailed sensitivity tests on these co-crystals are currently being performed to assess quantitatively changes in 

sensitivity. Qualitatively, we have not observed any dramatic increases in sensitivity during manipulation. 

Given the layered motifs observed for three of the structures it is possible that these co- crystals might display 

improved stability to friction or shock through dissipation of energy through the layers. The remarkable 

insensitivity to detonation of FOX-7, for example, has been attributed to a similar layered packing in the 

crystalline state, although FOX-7 also displays significant intermolecular hydrogen bonding.
3
 

 

Conclusions 

Co-crystallisation is proposed as an attractive route to the modification of the physico-chemical properties of 

energetic materials, thereby presenting the opportunity to dramatically alter explosive performance. The 

potential for obtaining energetic co-crystals of the high explosive CL-20 has been demonstrated by the 

structural analysis of four co-crystals. This was particularly challenging given the absence of traditional 

supramolecular synthons used in crystal engineering (e.g. hydrogen bonding). In addition to the analysis of the 

intermolecular interactions, it has been shown that the conformational flexibility of the CL-20 molecule is an 

important factor during crystallisation, thus demonstrating the delicate balance of intra- and intermolecular 

forces that is attained during crystallisation. Furthermore, there is an apparent link between the CL-20 

molecular conformation adopted in the co-crystal and the polymorph observed after desolvation. In this way, 

one may conclude that co-crystallisation of energetic materials may provide a highly-selective means of 

polymorph screening and may, indeed, afford new forms of the unsolvated material.  

As has been shown in this study, co-crystallisation often results in a reduction in crystal density and hence one 

would expect such formulations to exhibit a substantial reduction in explosive power. However, should such 

energetic co-crystals display sufficiently reduced sensitivity to accidental detonation, it is possible that such 

formulations may become attractive candidates for insensitive munitions. 
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Notes and references 

[
‡

] 
Polycrystalline CL-20 was kindly provided by Dstl. CL-20:DMF was obtained by rapid crystallisation 

from a saturated solution of CL-20 (5 mg) in DMF (1 cm
3
, ca 425 K). X-ray single-crystal diffraction data (λ 

= 0.68890 Å) were collected at the Small Molecules Single-Crystal Diffraction Beamline (I19), Diamond 

Light Source. The crystal was mounted on a diffractometer equipped with a customised Crystal Logic 4-circle 

κ goniometer, a Rigaku Saturn 724 CCD detector and an Oxford Cryostream-Plus low-temperature device.
33

 

Data reduction, including multiscan absorption correction, was performed using the d*TREK software 

package.
34

 The structure was solved
35

 and refined by full-matrix least squares against F
2
, using all data.

36
 All 

non-hydrogen atoms were refined anisotropically; hydrogen atoms were geometrically placed on the parent 

atoms. X-ray data: μ = 0.156 mm
-1

, θmax = 29.4768°, 13 383 reflections measured, 6199 unique (Rint = 0.088). 

Final residuals for 362 parameters were R1 = 0.0645, wR2 = 0.1639 for 6175 data. 

CL-20:dioxane was obtained by slow crystallisation (several days at 295 K) from a concentrated solution of 

CL-20 in 1,4-dioxane (10 mg in ca 2 cm
3
). X-ray diffraction intensities were collected using Mo-Kα radiation 

on a Bruker SMART APEX CCD diffractometer equipped with an Oxford Cryostream-Plus low-temperature 

device.
33

 The structure was solved
35

 and refined by full-matrix least squares against F
2
 using all data.

36
 One 

dioxane molecule was best modelled over two positions, each with approximately half-occupancy (0.52, 

0.48). All non-hydrogen atoms were refined anisotropically; hydrogen atoms were geometrically placed on the 

parent atoms. X-ray data: μ = 0.143 mm
-1

, θmax = 26.576°, 16 796 reflections measured, 6375 unique (Rint = 

0.032). Final residuals for 514 parameters were R1 = 0.0738, wR2 = 0.1526 for 6352 data. 

CL-20:HMPA was obtained by slow crystallisation (1-2 days, 285 – 290 K) from a concentrated solution of 

10 mg CL-20 in 2 cm
3
 hexamethylphosphoramide. X-ray single-crystal diffraction data were collected using 

Cu-Kα radiation on an Oxford Diffraction SuperNova dual wavelength diffractometer equipped with an Atlas 

CCD detector and an Oxford Cryostream-Plus low-temperature device.
33

 Data were integrated and a multi-

scan absorption correction was applied using the CrysAlis Pro software package.
37

 The structure was solved
35

 

and refined by full-matrix least squares against F
2
 using all data.

36
 All non-hydrogen atoms were refined 

anisotropically; hydrogen atoms were geometrically placed on the parent atoms. X-ray data: μ = 1.953 mm
-1

, 

θmax = 73.440°, 43 599 reflections measured, 8920 unique (Rint = 0.067). Final residuals for 568 parameters 

were R1 = 0.0535, wR2 = 0.1370 for 8920 data. 

CL-20:butyrolactone was obtained by slow crystallisation (several weeks at 295 K) from a concentrated 

solution of CL-20 in γ-butyrolactone (10 mg in 2cm
3
). X-ray diffraction intensities were collected using Mo-

Kα radiation on a Bruker SMART APEX CCD diffractometer equipped with an Oxford Cryostream-Plus low-

temperature device.
33

 The structure was solved using SUPERFLIP
38

 and refined against F
2
 using full-matrix 

least squares in CRYSTALS.
36

 It was necessary to refine one butyrolactone molecule in two orientations, the 

occupancies of each were fixed to be 0.5. In order to retain a satisfactorily high data:parameter ratio, it was 

also necessary to refine all atoms isotropically. Hydrogen atoms were geometrically placed on the parent 
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atoms. X-ray data: μ = 0.173 mm
-1

, θmax = 25.026°, 6564 reflections measured, all unique (Rint = 0.048). Final 

residuals for 582 parameters were R1 = 0.0627, wR2 = 0.1337 for 6542 data. 
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