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Abstract 

Carbon-based nanoelectromechanical devices are approaching applications in electronics. Switches based on 

individual carbon nanotubes deliver record low off-state leakage currents. Arrays of vertically aligned carbon 

nanotubes or nanofibers can be fabricated to constitute varactors. Very porous, low density arrays of quasi-

vertically aligned arrays of carbon nanotubes behave mechanically as a single unit with very unusual material 

properties. 

 

Introduction 

The theoretical model predictions and experimental observations of actual response to electrical and 

mechanical stimuli of the carbon nanotube material family show that it is worthwhile to design and fabricate 

electronic devices using such materials. Advances for employing carbon nanotubes (CNTs) as conductors of 

current and/or heat in future integrated electronic systems have been extensively reported on and progress in 

that area has been rapid
1-3

. CNTs are also investigated in the role of acting as the active element in 

transistors
4,5

. With a broad perspective on electronics, carbon nanostructures have been demonstrated as an 

attractive choice as electrode material in sensor applications
6
. A different class of devices exploits the 

interplay between electrical and mechanical effects as the very key to the device functionality in a 

nanoelectromechanical system (NEMS). Although it is possible to conceive of many different devices and 

applications of NEMS made up of CNTs or similar materials, we focus our description on switches and 

varactors as model examples of such devices in this overview of recent advances towards the realization of 

carbon-based NEMS. 

 

Modeling 

By importing theoretically predicted
7
 or measured values for the Young’s modulus of CNTs

8
 or carbon 

nanofibers (CNFs)
9
 and by employing continuum mechanics in conjunction with analytical expressions or 

boundary element methodology we can couple the mechanical actuation to voltage induced electrical forces. 

In this way it is possible to make predictions of the behavior of electronic devices like switches and varactors. 

In the case of a switch, the basic functionality is to change conductivity from infinite to zero as fast as possible 

and with minimum cost of energy. One attractive feature of using CNT electromechanics to realize a 

switching device is that the small dimensions and high stiffness will give a high resonance frequency. This 

enables fast switching. Furthermore, the disjunct off-state of such a device will yield a leakage current that 

will give negligible contribution to the total power consumption of the device
10

. 
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In the case of varactors the functionality is more complex than just achieving a transition from an on-state to 

an off-state. The geometry considered in this paper employs a pair of nanoelectromechanical electrodes to 

obtain the voltage dependent capacitance characteristic of varactors. These non-linear circuit elements find 

use e. g. in voltage controlled oscillators, and some of the critical features of the varactors are their 

capacitance per unit chip area and their swing in capacitance for the applicable voltage range. The modeling 

methods employed to describe these devices comprise boundary element calculations to resolve the 

geometrical effects on the nanostructures as well as simplistic analytical descriptions which can capture the 

qualitative behavior and give first order estimates of critical parameters. 

 

Switches 

In order to evaluate the optimal performance of digital switching devices fabricated using carbon nanotubes, a 

continuum mechanics approximation has been employed to describe mechanically switching beams of either 

multi-wall carbon nanotubes (MWCNT) or dense bundles of single-wall carbon nanotubes (SWCNT)
10

. The 

thickness of the beam, t, is a crucial design parameter among the geometrical dimensions where the beam 

length, L, and the nominal distance between beam and the actuating electrode, g0, also play an important role. 

Figure 1 shows a schematic illustration of the geometrical configurations considered in the paper by Yousif et 

al.
10

 and in Figure 2 the calculated threshold voltage to turn the switch on is displayed as a function of the 

beam length with the thickness as parameter for a given beam-contact gap of 2 nm and a beam width, W, of 8 

nm. In order to optimize the geometry it is important to be able to control the beam thickness, i. e. the 

nanotube diameter or in the case of bundles, the number of nanotubes. Still, exploiting the freedom of the 

design space and assuming a high Young’s modulus of 1 TPa, the carbon nanotube nanoelectromechanical 

switching will be more than one order of magnitude slower than a DRAM element at the same critical length 

(gate length and beam length). On the up side, the NEMS switch will consume orders of magnitude less 

power, mainly due to negligible off-state leakage current (1×10
-5

 µAµm
-1

 for CMOS DRAM and 1×10
-9

 

µAµm
-1 

for the CNT switch). With a low actuation voltage design, the energy cost for a switching event can 

be in the aJ range
10

. 

 

 

Figure 1. Schematic pictures of the (a) singly clamped and (b) doubly clamped configurations for a beam 

switch. From Yousif
10 

reprinted with permission from IOP Publishing. 
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Figure 2. The dependence of the threshold voltage on the length of the switching beam. From Yousif
10

 

reprinted with permission from IOP Publishing. 

 

Varactors 

In the case of varactors one focus issue of the modeling we have employed is to correlate the effective 

Young’s modulus of the NEMS with the experimentally measurable pull-in voltage – the minimum voltage 

required to bring the two electrodes of the capacitor into contact, forming an electrical short-circuit. In a 

simplistic lumped capacitance model, depicted in Figure 3, it is possible to arrive at an analytical relationship 

for the pull-in voltage as a function of the geometrical dimensions of the actuated electrode and of its effective 

spring constant, k
11

. Such a model is not powerful enough to faithfully resolve the interplay between pull-in 

voltage, geometry and stiffness of an individual NEMS element to the extent that we can understand e. g. the 

impact of growth conditions on its experimentally observed mechanical behavior. Using the boundary element 

method (BEM) in simulations
12

 it is possible to obtain the deflection at a given geometry and biasing 

condition in an iterative fashion; the charge distribution is calculated first, then the resulting electric force, 

thereafter the deflection, after which the charge distribution (at the given voltage) is recalculated to start the 

next round of iteration. The outcome of such a simulation is displayed in Figure 4. In a design space delimited 

by estimations of experimentally relevant geometries, voltages and Young’s moduli, the BEM simulations are 

run to generate a database of correlations between pull-in voltage and Young’s modulus; a measurement of 

the pull-in voltage can then be directly correlated to a value of the Young’s modulus for a given experimental 

condition, by referring to a generated relationship such as the one shown in Figure 5. 
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Figure 3. One-dimensional lumped model of the CNF varactor. 

 

 

 

 

 

 

 

Figure 4. This image shows the result of applying the BEM to calculate the nanofiber deflection for a given 

applied voltage. 
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Figure 5. Resulting relationship between pull-in voltage and Young’s modulus 

 

Device Fabrication and Characterization 

The technique of chemical vapor deposition (CVD) can produce CNTs and CNFs with a desired functional 

pattern. Any electronic function designed on a chip carries a cost in terms of its footprint, which makes it 

immediately favorable to design NEMS devices that extend upward, perpendicular to the chip surface. 

Depending on the processing details it is possible to obtain either individual free-standing vertically aligned 

CNFs (Figure 6) or forests of erect CNTs (Figure 7). In the case of CNFs the electric field of a plasma 

environment controls the growth directionality
13

, whereas it is the interaction between CNTs grown at a high 

enough density and rate which induces the vertical alignment in the forest configuration
14

. The CNFs have a 

complex internal structure with less order than a nanotube
9
, but one advantage is that individual vertically 

aligned nanostructures can be grown. It is not possible to achieve this with individual carbon nanotubes. 
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Figure 6. An SEM picture of a pair of individually contacted CNFs separated by a distance below 500 nm. 

 

 

 

Figure 7. The forest of CNTs with a close up view to show the wiggly and porous structure. From Olofsson
16

 

reprinted with permission from IOP Publishing. 

 

Individual Vertically Aligned Carbon Nanofibers 

Electron beam patterned nanoscale Ni dots have been employed to catalyze the growth of nanofibers with a 

diameter of 100 nm and lengths exceeding 1 μm. Plasma CVD with a dc-plasma at a current of 20 mA was 

used to grow the fibers at 700 °C. The CNF pair of Figure 6 is an example of best achievement. The insulation 

between the individual fibers appears to be very good, with sub 0.1 nA current leakage up to 100 V. There is 

still need for further process optimization before we can fabricate single carbon nanofibers deterministically 

as a NEMS building block, but this development is on the level of optimization for specific processing tools, 

with the main hurdle being the choice of least interfering work-around to handle the discharging instabilities 
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in the dc-plasma. Individual electrically addressable vertically aligned CNFs without mechanical degrees of 

freedom have been demonstrated
15

. 

Carbon Nanotube Forest 

Using thermal CVD at 700 °C with Fe catalyst, forests of vertically aligned 135 μm high multiwalled carbon 

nanotubes have been grown with a length of 200 μm, a width of 4 μm and a lateral separation of 10 μm
16

. The 

areal density of nanotubes in the forest was estimated at 10
10

 nanotubes cm
−2

, and matching simulations to the 

measured actuation of these varactor electrodes yielded an effective Young’s modulus on the order of a few 

MPa, i. e. far below the TPa often attributed to individual nanotubes, thus allowing actuation to be achieved 

for relatively low applied voltages
16

. The very low effective Young’s modulus can be attributed to the highly 

porous and “wiggly” nature of the material (Figure 7). A varactor device designed using this material is 

displayed in Figure 8, showing the buttresses that need to be added to achieve sufficient mechanical rigidity. 

In Figure 9 the degree to which capacitance tuning can be achieved is shown along with the consequence of 

exceeding the pull-in voltage, as illustrated by two SEM images after the catastrophic event, which also alters 

the capacitance-voltage characteristic. The capacitance was determined by matching S parameter simulations 

to measurements, using an equivalent circuit which gave very good agreement with experimental 

observations
17

. 

 

 

 

 

Figure 8. Varactor electrodes made by carbon nanotube forests. Reprinted from Ek-Weis
17

 with permission 

from Professional Engineering Publishing. 
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Figure 9. a) Capacitance change as a function of voltage; b) and c) SEM images of the structure after 

exceeding pull-in. From Olofsson
16

 reprinted with permission from IOP Publishing. 

 

CMOS Compatibility 

It is a very attractive goal to be able to harness the advantages of carbon-based NEMS on a conventional 

CMOS electronics platform. Integration is a crucial issue when aiming for competitive system level 

performance for devices that incorporate and utilize NEMS. 

However, finding a way to match the processing requirements to obtain good carbon nanostructures with the 

restrictions for processes and materials in CMOS production is not trivial. The outcome of exposing 

transistors fabricated in 130 nm bulk CMOS technology to carbon nanofiber growth conditions, i. e. elevated 

temperatures and a plasma environment, shows that transistors can survive such a treatment and even perform 

without immediate detrimental consequences. Comparing rf-plasma processing at 560 °C, thermal CVD at 

610 °C and exposure to a dc-plasma at 500 °C, the last of these three nanofiber growth methods gives the least 

impact on transistor performance
18

, and in the case of the on-state drain current there is no discernible effect, 

as is shown in Figure 10. 
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Figure 10. Deterioration of the on-state drain current of PMOS and NMOS transistors after three disparate 

growth processes. From Ghavanini
18

; reprinted with permission from ACS Publications. 

 

Conclusion 

In theory, carbon-based nanoelectromechanical switches can provide a low static power technology with 

potential for high frequency operation. Components constituted by carbon nanotubes will display high 

mechanical stability and will also be highly stable with regards to temperature. However, the dependencies of 

device properties like these on the specific growth conditions need further investigations. Large scale 

reproducible and reliable manufacturing of integrated NEMS elements remains extremely challenging, where 

growth on top of CMOS as a back-end process further increases the complexity and limits the degrees of 

freedom by having to resolve the conflict between CMOS compatibility requirements and carbon 

nanostructure quality; this integration scenario is still however a future possibility albeit not obviously 

achievable. 

CNT-based NEMS switches demonstrate very low off-state leakage currents. Varactors can be realized with 

individual vertically aligned CNFs or with walls consisting of quasi-vertically aligned arrays of sparse CNTs. 

The latter are very porous, but behave mechanically as a cohesive unit with exceptional material properties. 
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