
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A Distributed -Calculus with Local Areas of Communication

Citation for published version:
Chothia, T & Stark, I 2001, 'A Distributed -Calculus with Local Areas of Communication' Electronic Notes in
Theoretical Computer Science, vol. 41, no. 2, pp. 1-16. DOI: 10.1016/S1571-0661(04)80869-7

Digital Object Identifier (DOI):
10.1016/S1571-0661(04)80869-7

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Electronic Notes in Theoretical Computer Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/28975268?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/S1571-0661(04)80869-7
https://www.research.ed.ac.uk/portal/en/publications/a-distributed-calculus-with-local-areas-of-communication(05aec966-0609-426a-92c1-34cfef87ca4d).html


Electronic Notes in Theoretical Computer Science 41 No. 2 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume41.html 16 pages

A Distributed π-Calculus with Local Areas of
Communication

Tom Chothia and Ian Stark

Laboratory for Foundations of Computer Science
Division of Informatics, The University of Edinburgh
Mayfield Road, Edinburgh EH9 3JZ, Scotland, UK

{stark,tpcc}@dcs.ed.ac.uk

Abstract

This paper introduces a process calculus designed to capture the phenomenon of
names which are known universally but always refer to local information. Our
system extends the π-calculus so that a channel name can have within its scope
several disjoint local areas. Such a channel name may be used for communication
within an area, it may be sent between areas, but it cannot itself be used to transmit
information from one area to another. Areas are arranged in a hierarchy of levels,
distinguishing for example between a single application, a machine, or a whole
network. We give an operational semantics for the calculus, and develop a type
system that guarantees the proper use of channels within their local areas. We
illustrate with models of an internet service protocol and a pair of distributed agents.

1 Introduction

Most computer programs make assumptions about the environment in which
they operate: the facilities available, and how to use them. A C programmer
will freely use the function printf, and expect that wherever their compiled
code is executed an appropriate library will be loaded to print formatted text.
The Java model of lightweight applets travelling over the web relies on ev-
ery browser supporting a standard interface to a large collection of known
libraries. Even more dynamically, the notion of “mobile agents” [9] has pro-
grams hopping from place to place: and everywhere they land, interrogating
local directories and using local services through known access methods.

The common theme here is using globally-known names to access local re-
sources. But how do names become globally known, and what counts as local?
Typically this is a very static and non-computational affair: user manuals list
library calls, or services are offered at “well-known” addresses. In this paper
we offer a calculus that begins an investigation of the interaction between the
scope over which a name is known and the local areas in which it operates.

c©2001 Published by Elsevier Science B. V.

1



Our system is based around the π-calculus, which provides an established
framework for reasoning about names and communication. Specifically, we
work with a variant that is polyadic (channels carry tuples rather than single
values [10]) and asynchronous (output actions always succeed [3]). To this we
add a couple of novel extensions, which we motivate here with a brief example.

One of the original observations behind the π-calculus is that many issues
associated with mobile code can be studied by looking simply at mobile names.
So it is here, and our example is the operation of a service protocol that directs
the internet. When a browser contacts a web server to fetch a page, or a person
operates finger to list the users on a machine, both connect to a numbered
“port” on the remote host: port 80 for the web page, port 79 for the finger
listing. Of course, this only works if both sides agree; and a port number
becomes “well-known” when enough systems do agree on it [8].

Under Unix, the file /etc/services holds a list mapping numbers to
services 1 . There is also a further level of indirection: most machines run only
a general meta-server inetd, the Internet daemon, which listens on all ports.
When inetd receives a connection, it looks up the port in /etc/services,
and then consults a second file which identifies the program to provide that
service. The inetd starts the program and hands it a connection to the caller.
A π-calculus model of the procedure might look like this.

Client Carp = νc.(pike〈finger , c〉 | c(x).print〈x〉)
Server Pike = !pike(s, r).s̄〈r〉 | !finger(y).ȳ〈PikeUsers〉

| !daytime(z).z̄〈PikeDate〉
System (Carp |Pike)

Here a client machine Carp wishes to contact a server Pike with a finger
request. The client has two components: the first transmits the request, the
second prepares to print the result. Server Pike comprises three replicating
processes: a general Internet daemon, a Finger daemon, and a time-of-day
daemon. Channel pike is the internet address of the server machine, while
the free names finger and daytime represent well-known port numbers. In
operation, Carp sends its request to Pike naming the finger service and a
reply channel c. The Internet daemon on Pike handles this by retransmitting
the contact c over the channel named finger . The Finger daemon collects this
and passes information on PikeUsers back to the waiting process at Carp.

This is a fair model, very much in the π-calculus style, but it has some
shortcomings. Because the names finger and daytime are visible everywhere,
even when the Internet daemon on Pike has collected the request there is no
protection against a Finger daemon on some different server actually handling
it — perhaps even one back on the “client” Carp itself. If, however, we restrict

1 This usually includes an abundant litter of port numbers which never became sufficiently
“well-known”.

2



the scope of finger to host Pike, then Carp cannot formulate the request
because it must know the name of the service. We break this Catch-22 by
extending the π-calculus with local areas and assigning each channel a level of
operation. Our system is now

net [ host [Carp] | host [Pike] ]

which represents the fact that Carp and Pike are separate hosts residing on a
single network. Each of the names in the system is identified as operating at
net or host level:

c@net , pike@net , finger@host , daytime@host , print@host .

Thus communication on the finger , daytime or print channels can span only a
single host, while channels c and pike operate over the whole network. This is
distinct from the scope of names, given by ν-binding; that determines where
a name is known, not how it is used. In particular, the finger name in this
example has a wide scope, but identical Finger daemons on different hosts will
never interfere.

Introducing levels distinguishes between the different uses of concurrency
and communication in a single system. For example, within a host there might
be several applications, represented by areas at level app; or between host and
net there could be a subnet level. Communication between two threads within
an application will typically have a very different character to that between
two hosts on a network, and a total order of levels allows us to express this
concisely.

Overview

In Section 2 we develop a formal description of this local area π-calculus. We
give an operational semantics, and prove that it correctly limits communica-
tion to the appropriate local areas. We expand on the Internet service example,
and present an illustration of agent-based programming in the calculus.

This operational semantics incorporates several dynamic checks to make
sure that channels are used correctly. In Section 3 we propose a type system
that captures this information statically. For example, our finger channel has
type (string@net)@host ; this indicates that it is a host-level channel carrying
values that themselves name net-level channels for communicating strings. We
prove that “well-typed processes cannot go wrong”, and deduce that we can
omit most of the dynamic checks in the operational semantics. Section 4 of
the paper concludes.

3



Related work

In earlier work, Vivas and Dam [15] investigate the behaviour of a blocking
operator in the π-calculus: essentially CCS restriction P \ a, which blocks
communication on the single channel a without binding it. Their specific
observation is that this breaks Sangiorgi’s reduction of the higher-order π-
calculus to the first-order π-calculus. One contribution of our local areas and
levels is to provide a systematic framework for this kind of static restriction.

There are a range of projects addressing locations in the π-calculus, with
some similarities to our local areas. On the whole their aims are comple-
mentary: for example, Sangiorgi investigates non-interleaving semantics and
causality using locations [11], and Amadio models local failure in distributed
systems [1]. Neither of these limit the range of communication.

Systems proposed for mobile agents often use locations to curtail com-
munication very strictly: agents may interact only with agents at the same
location, and must move to talk to others. This is the case for Cardelli and
Gordon’s mobile ambients [4] and the system Dπ of Hennessy and Riely [7,6].

Approaches to distributed systems sometimes select particular disciplines
for local and global communication. Sewell proposes a type system to dis-
tinguish between these, where channels either have universal reach or are
restricted to a single local area [14]. The Join calculus requires all channels
to be located : while anyone may transmit data, only a chosen process at a
single site can receive it [5]. Sangiorgi’s notion of uniform receptiveness is
similar [12].

The use of types to structure the “expected” use of π-calculus channels is
well-established: the survey paper by Sangiorgi [13] gives a good overview.

2 A π-calculus with local areas

2.1 Syntax

The calculus is built around two classes of identifiers:

channels a, b, c, x, y, query , reply , . . . ∈ Chan

and levels �,m, app, host , net , . . . ∈ Level.

Channel names are drawn from a countably infinite supply, Chan. Syntacti-
cally, they behave exactly as in the π-calculus. Levels are rather more con-
strained: we assume prior choice of some finite and totally ordered set Level.
The examples in this paper all use app < host < net . In the formal description
of calculus, we take � and m as metavariables for these levels.

Processes are given by the following syntax, based on the asynchronous

4



polyadic π-calculus.

Process P,Q ::= 0 inactive process
| P |Q parallel composition

| ā〈�b〉 output tuple

| a(�b).P input

| !a(�b).P replicated input
| �[P ] local area at level �
| νa@�.P fresh channel a at level �

Most of these are entirely standard. The last two constructions are particular
to the local area calculus: thus �[P ] represents a process P running in a local
area at level �, and the name binding νa@�.P specifies at which level channel a
operates. Areas, like processes, are anonymous; this is in contrast to systems
for locations, which are usually tagged with identifiers.

Definition 2.1 An agent is any process of the form �[P ]: that is, a single
enclosed area.

Channel names may be bound or free in any process. The binding prefixes
are as usual the input prefixes a(�b), !a(�b) and restriction νa@�. We write fn(P )
for the set of free names of process P .

We identify process terms up to a structural congruence ‘≡’, defined as the
smallest congruence relation containing the following equations:

a(�b).P ≡ a(�c).P{�c/�b} P | 0 ≡ P

!a(�b).P ≡ !a(�c).P{�c/�b} P |Q ≡ Q |P
νa@�.P ≡ νb@�.P{b/a} (P |Q) |R ≡ P |(Q |R)
νa@�.0 ≡ 0 νa@�.νb@m.P ≡ νb@m.νa@�.P a 
= b

�[νa@m.P ] ≡ νa@m.(�[P ]) (νa@�.P ) |Q ≡ νa@�.(P |Q) a /∈ fn(Q)

Here P{�c/�b} stands for capture-avoiding simultaneous substitution. This con-
gruence allows for alpha-conversion of bound names, algebraic properties of
parallel composition ‘|’, and flexible scope for channel names. This last point
means that we can freely expand and contract the scope of any ν-binding,
provided of course that it always includes every use of the name it binds.

2.2 Scope and areas

One point of interest in the structural congruence above is the equation
�[νa@m.P ] ≡ νa@m.(�[P ]), commuting name binding and area boundaries.
A consequence of this is that the scope of a channel name, determined by
ν-binding, is quite independent from the layout of areas, given by �[−]. Scope
determines where a name is known, and this will change as a process evolves:
areas determine how a name can be used, and these have a fixed structure.

5



For a process description to be meaningful, this fixed structure of nested
areas must accord with the predetermined ordering of levels. For example, a
net may contain a host , but not vice versa; similarly a host cannot contain
another host . Writing <1 for the one-step relation in the total order of levels,
we require that every nested area must be <1-below the one above.

Definition 2.2 The top-level agents of a process P are all the subterms m[Q]
not themselves contained in any intermediate area �[−].

For example, in the process āb |m[Q] | a(b).m[R] the top-level agents are
m[Q] and m[R].

Definition 2.3 A process P is well-formed at level � if for every top-level
agent m[Q], level m <1 �, and Q is itself well-formed at level m, recursively.
An agent �[P ] is well-formed if P is well-formed at level �.

We can now make formal the distinction between the scope of a name and
its area of operation. Consider some occurrence of a bound channel name a in
a well-formed process P , as the subject of some action: ā〈−〉, a(−), or !a(−).
The scope of a is the enclosing ν-binding νa@�.(−). The local area of this
occurrence of a is the enclosing level � area �[−].

A single name may have several disjoint local areas within its scope. It
is also possible for a name to occur outside any local area of the right level;
in this case it can only be treated as data, not used for communication. We
shall see how the operational semantics, and later the proposed type system,
enforces this behaviour.

2.3 Operational semantics

We give the local area calculus a late-binding, small-step operational seman-
tics. Much of this is standard from the regular π-calculus; the only refinement
is to make sure that communication on any channel is contained within the
appropriate local area.

Just what area is appropriate depends on the operating level of every
channel, and we capture that information in a level context Λ: a finite partial
map from channel names to levels. We write down level contexts using the
a@� notation from name binding. For example:

Λ = {pike@net , finger@host , daytime@host , print@host}

or, more simply:

Λ = pike@net ; finger , daytime, print@host .

This declares that pike is a channel used for remote communication over the
net , while finger , daytime, and print , even when globally known, are restricted
to host-level interaction.

6



OUT Λ �� ā〈�b〉 ā〈�b〉−→ 0 � ≤ Λ(a)

IN Λ �� a(�b).P
a(�b)−→ P � ≤ Λ(a) �b ∩ dom(Λ) = ∅

IN! Λ �� !a(�b).P
a(�b)−→ P | !a(�b).P � ≤ Λ(a) �b ∩ dom(Λ) = ∅

PAR
Λ �� P

α−→ P ′

Λ �� P |Q α−→ P ′ |Q

COMM
Λ �� P

ā〈�c〉−→ P ′ Λ �� Q
a(�b)−→ Q′

Λ �� P |Q τ−→ P ′ |Q′{�c/�b}

BIND
Λ, a@m �� P

α−→ P ′

Λ �� νa@m.P
α−→ νa@m.P ′ a /∈ fn(α)

AREA
Λ �� P

α−→ P ′

Λ �m �[P ]
α−→ �[P ′]

if α is ā〈�b〉 or a(�b)
then m ≤ Λ(a)

Fig. 1. Operational semantics for the local area calculus

Given some level context Λ, we write Λ �� P to denote that process P
is well-formed at level � with fn(P ) ⊆ dom(Λ). When the process is in fact
a single agent we can omit the annotation on the turnstile and write this as
Λ � �[P ]

Our operational semantics is given as an inductively defined relation on
well-formed processes, indexed by their level � and context Λ. Transitions take
the form

Λ �� P
α−→ Q

where Λ �� P and α is one of the following.

Transition α ::= ā〈�b〉 output

| a(�b) input
| τ silent internal action

Transitions themselves have free and bound names, given by functions fn(α)
and bn(α) respectively, where as usual

fn(ā〈�b〉) = {a} ∪�b fn(a(�b)) = fn(!a(�b)) = {a}
bn(ā〈�b〉) = ∅ = fn(τ) = bn(τ) bn(a(�b)) = bn(!a(�b)) = �b .

Valid transitions are derived using the rules of Figure 1. We make several
observations of these rules and the side-conditions attached to them.

• Active use of the structural congruence ‘≡’ is essential to make full use of
the rules: a process term may need to be rearranged or α-converted before

7



it can make progress. For example, there is no symmetric form for the PAR
rule (and no need for one).

• In order to apply the COMM rule it may be necessary to use structural con-
gruence to expand the scope of communicated names to cover both sender
and recipient.

• Late binding is enforced by the side-condition �b∩ dom(Λ) = ∅ on the input
rules; this ensures that input names are chosen fresh, ready for substitution
Q{�c/�b} in the COMM rule. Again, we can always α-convert our processes
to achieve this.

All of these comments are simple (and well-known) tidying of the standard
π-calculus. The following are specific to local areas.

• The side-condition � ≤ Λ(a) on the OUT, IN and IN! rules prevent channels
being read or written at too high a level. For example, trying to transmit on
an application-level name in a host-level process. Any process that attempts
this becomes stuck.

• The side-condition m ≤ Λ(a) on the AREA rule prevents communications
escaping from their local area. Notice that necessarily � <1 m here, because
of the requirement that the left-hand side l [P ] be well-formed at level m.

The following results show that this operational semantics does successfully
capture the intuition behind areas and levels: areas retain their structure over
transitions, and actions on a channel are never observed above their operating
level.

Proposition 2.4 If we can derive the transition Λ �� P
α−→ Q then

• the process Q is well-formed at level � with fn(Q) ⊆ dom(Λ) ∪ bn(α);

• if the transition α is ā〈�b〉 or a(�b) then � ≤ Λ(a).

Proof. Structural induction on the derivation of Λ �� P
α−→ Q.

In particular if Λ �� P
τ−→ P ′ then Λ �� P ′ and P ′ might itself make

further transitions.

Corollary 2.5 If we can derive the sequence of transitions

Λ �� P
τ−→ P1

τ−→ · · · τ−→ Pk
α−→ Q

then the same properties hold of Q as in Proposition 2.4

Proof. Repeated application of the preceding Proposition.

2.4 Examples

In the introduction we met a small model of Internet service provision. Fig-
ure 2 formulates this system as a term of the local area calculus, with the

8



Carp = host [νc@net .(pike〈finger , c〉 | c(x).print〈x〉)]
Pike = host [Inet |Finger |Daytime]

Inet = !pike(s, r).s̄〈r〉
Finger = !finger(y).ȳ〈PikeUsers〉

Daytime = !daytime(z).z̄〈PikeDate〉
Λ = pike@net ; finger , daytime, print@host

Λ �net (Carp |Pike)

Fig. 2. Example of processes using local areas: an Internet server daemon

following structure:

Λ �net (Carp |Pike) .

Recall that the host Carp wishes to contact a Finger daemon running on host
Pike, through a general Inet daemon. We can now apply our operational
semantics to see this in action.

Λ �net (Carp |Pike) ≡ (host [νc@net .(pike〈finger , c〉 | c(x).print〈x〉)]
|host [Inet |Finger |Daytime])

extend scope
of νc@net

≡ νc@net . (host [pike〈finger , c〉 | c(x).print〈x〉]
|host [Inet |Finger |Daytime])

expand Inet ≡ νc@net . (host [pike〈finger , c〉 | c(x).print〈x〉]
|host [!pike(s, r).s̄〈r〉 |Finger |Daytime])

communication
on pike@net

τ−→ νc@net . (host [c(x).print〈x〉]
|host [finger〈c〉 | Inet |Finger |Daytime])

expand Finger ≡ νc@net . (host [c(x).print〈x〉]
|host [finger〈c〉 | Inet | !finger(y).ȳ〈PikeUsers〉 |Daytime])

communication
on finger@host

τ−→ νc@net . (host [c(x).print〈x〉]
|host [Inet | c̄〈PikeUsers〉 |Finger |Daytime])

communication
on c@net

τ−→ νc@net . (host [print〈PikeUsers〉]
|host [Inet |Finger |Daytime])

After a sequence of internal communications at the net and host level, the
first host Carp is ready to print the information PikeUsers , and host Pike is
restored to its original configuration.

Even this small example exhibits interesting scalability.

• Pike can support multiple simultaneous finger or daytime requests, because

9



Main = app[νc@host .(load〈c〉 | c(y).link(z).print〈y/z〉)]
Probe = app[νc@host .(load〈c〉 | c(w).link〈w〉)]
Load = app[!load(x).x̄〈LocalLoad〉]

Λ = load@host , link@net , print@host

Λ �net host [Main |Load ] | host [Probe |Load ]

Fig. 3. Example of processes using local areas: load management agents

freshly-created channels like c provide private communication links.

• The system can support Finger and Daytime servers on several hosts, with
exactly the same agent code and protocol, because the finger and daytime
names are known globally but act locally.

Figure 3 presents another example, this time a very simple model of agent-style
programming. Two hosts both carry a load-monitoring agent Load , which will
report the current system load to any other agent on the same host. A Main
program on one host wants to compare the load on the two machines, and
does this using a Probe agent with which it shares a private channel link .

The processes execute with the following result:

Λ �net host [Main |Load ] | host [Probe |Load ]
τ−→∗

host [print〈k〉 |Load ] | host [Load ]

where k is the numerical ratio of the load on the two hosts. Output print〈k〉
is the residue of the Main agent, and the Probe is discharged entirely.

One purpose of a system arranged like this is the simplifications it allows
in the Load agent:

• The two Load agents are actually identical: no parameters, no distinguishing
identifiers.

• Both are addressed using the same globally-known channel name load .

• They only require host-level communication capabilities, and can operate
independently of firewalls or authentication.

These are the kind of advantages put forward for agent-based programming:
the example shows how the local area calculus can represent them. Of course,
they really take off when agents become mobile, but we can begin to evaluate
their properties even in static systems like these.

3 Types for areas

The results at the end of Section 2.3 showed that local communications do
remain local: an action on a channel is never observed above its level of

10



operation. However, this relies on several side-conditions in the operational
semantics of Figure 1, of the form � ≤ Λ(a), which are essentially runtime
level checks. In this section we show that a suitable type system can provide
enough static information to make these checks unnecessary.

The rule AREA of Figure 1 deals with propagating actions once they have
happened, and its side-condition remains essential. The level tests accompa-
nying OUT, IN and IN! are different: they check to see if an action should
be attempted at all. For example, the process a(�b).P should not proceed if
it is above a’s level of operation. Arguably, such processes should never be
written; the reason it is not entirely trivial to eliminate them is that they can
arise during execution as a result of substitution. For example, consider the
following system:

a@host , b@app � host [ app[ā〈b〉] | a(x).x̄〈〉 ] τ−→ host [ b̄〈〉 ] 
−→

Here an application sends name b to a host-level process; this is fine as data,
but the host then tries to transmit on it, and the process halts as b is only
intended for communication within an application.

The type system we propose handles this by specifying not just the oper-
ating level of a channel, but also the levels of the channel names passed over
it, and so on recursively.

3.1 Type system

Types are given by the following rather simple grammar.

Type σ ::= �σ@�

A type declaration of the form a : �σ@� states that a is an �-level channel carry-
ing tuples of values whose types are given by the vector �σ. The base types are
those with empty tuples: a channel of type ()@� is for synchronisation within
an �-area. In concrete examples we shall assume additional base datatypes
like int or string as convenient; these can be incorporated without difficulty
into the formal presentation.

The only syntactic change required to introduce types into processes is at
ν-binding:

Process P,Q ::= · · · | νa:σ.P fresh channel a of type σ.

The other binding operation, input prefix a(�b).P , does not need any explicit

type annotation, as the types of the �b are fixed by the type of the channel a.

We also replace level contexts Λ with type contexts Γ, finite partial maps
from channel names to types. With these alterations, Figure 4 presents the
rules for deriving type assertions of the form Γ �� P , which states that pro-
cess P is well-typed at level � in context Γ.

11



Γ �� 0
Γ �� P Γ �� Q

Γ �� P |Q
Γ,�b : �σ �� P

Γ �� a(�b).P

Γ(a) = �σ@m
and � ≤ m

Γ �� P

Γ �m �[P ]
� <1 m

Γ, a : σ �� P

Γ �� νa:σ.P

Γ,�b : �σ �� P

Γ �� !a(�b).P

Γ(a) = �σ@m
and � ≤ m

Γ �� ā〈�b〉 Γ(a) = �σ@m, Γ(�b) = �σ and � ≤ m

Fig. 4. Types for processes in the local area calculus

To connect the typed calculus to the untyped one we use a notion of
erasure. If σ = �σ@� is a type, then its erasure �σ� is just the level �. If P is a
typed process, then its erasure �P � is the same process with all types replaced
by their erased versions: in particular name binding νa:�σ@�.Q is replaced by
νa@�.Q. This throws away the detail of type information, but keeps the basic
level declaration. Finally, erasing a type context Γ gives a level context �Γ�.
Proposition 3.1 If P is a well-typed process at level � in type context Γ, then
its erasure �P � is well-formed at level � in the level context �Γ�.

Γ �� P =⇒ �Γ� �� �P �
Proof. Structural induction on the type derivation Γ �� P .

3.2 Examples

We can give types to both of our examples from Section 2.4, which sensibly
reflect their operation. First, for the internet daemon of Figure 2.

c : string@net pike : (service, response)@net

finger : service

daytime : service service = response@host

print : string@host response = string@net

The type service for finger and daytime expands to (string@net)@host . This
means that the channels can be used only for host-level communication, but
the values carried will themselves be net-level names. The host-level commu-
nication is between Inet and Finger or Daytime; the net-level communication
is the response sent out to the original enquirer, in this case machine Carp.

Channel pike has a net-level type that acts as a gateway to this, reading
the name of a service and a channel where that service should send its reply.

The second example, of agents comparing the load on two hosts, has the
following typing.

c : int@host load : (int@host)@host

link : int@net print : int@host

12



The most interesting type here is that for load : it captures the fact that not
only must requests to load come from agents on the same host, but replies are
also host-limited. This characterises a purely local procedure call used within
a larger distributed environment.

3.3 Correctness

The operational semantics for well-typed processes replaces Λ with Γ in all the
rules of Figure 1 and omits the side-condition � ≤ Λ(a) from OUT, IN, and
IN! What we show in this section is that it is safe to make these omissions.
The first step is to show that this operational semantics preserves types.

Proposition 3.2 If P is a well-typed process at level � in context Γ and we
can derive the transition Γ �� P

α−→ Q, then Q is well typed:

• if α = ā〈�b〉 or τ then Γ �� Q

• if α = a(�b) then Γ,�b : �σ �� Q where Γ(a) = �σ@m

Proof. Structural induction on the derivation of the transition Γ �� P
α−→ Q.

As expected, there is an extremely tight connection between the behaviour
of typed process terms and their untyped erasures.

Proposition 3.3 Suppose that Γ �� P is some well-typed process.

(i) If Γ �� P
α−→ P ′ then �Γ� �� �P � α−→ �P ′�.

(ii) If �Γ� �� �P � α−→ Q for some untyped Q, then there is a typed process P ′

such that Q = �P ′� and Γ �� P
α−→ P ′.

Proof. Structural induction on the derivation of the transitions.

Combining Propositions 3.2 and 3.3(i) with Corollary 2.5, we obtain a
demonstration that “well-typed terms cannot go wrong”.

Theorem 3.4 For any well-typed process P , if we can derive the sequence of
transitions

Γ �� P
τ−→ . . .

τ−→ α−→ Q

where α is ā〈�b〉 or a(�b) and Γ(a) = �σ@m then level � ≤ m.

This establishes that a well-typed process will never attempt to use a
channel above its level of operation, without the need for explicit checks in
the operational semantics.

4 Conclusion and further work

The local area calculus provides a reasonable setting to explore the use of
names that are known globally but act locally. We have given an operational
semantics and proved that it correctly captures this intuition. Illustrative
examples include an internet service protocol and a pair of distributed agents.

13



We propose a type system for channels in the calculus, and prove that it
removes the need for some run-time locality checks.

A further area of application that we are exploring is layered network
protocols: where each level communicates with the next on a local name, and
only the outermost layer engages in actual long-distance communication. For
example, TCP/IP is often used with an ordering of levels as application <
transport < network < link .

We have an encoding of local areas into the pure π-calculus, using an
explicit apparatus of controller processes to enforce level constraints: every
communication is marshalled through routers, one for each local area. We have
also built components of an implementation in MLj [2], which has provided
useful insight on various design choices for the calculus.

With channels operating at distinct levels — network, host, application
— the possibility arises of tuning observations of a process to inspect a single
level of interest. We are working on a corresponding notion of bisimulation
that filters out actions at some levels and focuses attention on others. Local
areas give an opportunity for this to capture spatial information too.

The fact that communication in the calculus may be restricted to certain
areas provides a form of security, though rather a weak one, and it may be
possible to make a connection here to relevant versions of the π-calculus. For
example, if encryption and decryption of messages are represented by commu-
nication on channels named by a private key, then carrying these out within
a small “sandbox” area prevents eavesdropping. See Vivas and Dam [15] for
an illustration of this using blocking.

The ordering of levels immediately suggests notions of subtyping on chan-
nels: for example, a net-level name might be used in place of a host-level
name. However, even if this were desirable, it breaks down as soon as we pass
around names themselves. The type constructor ‘@’ in �σ@� turns out to be
invariant in its left argument, essentially because channels are used for both
input and output.

One direction that is certainly worth pursuing is the step from static agents
to properly mobile ones, and we are looking at various ways to incorporate
these into the calculus while retaining the separate handling of scope and area.
The π-calculus encoding mentioned above provides some hints: in classic π-
calculus style, it can be subverted to emulate mobile areas by dynamically
rewiring the attendant router processes.

14



References

[1] Roberto Amadio. On modelling mobility. Theoretical Computer Science,
240:147–176, 2000.

[2] P. Nick Benton, Andrew Kennedy, and George Russell. Compiling Standard ML
to Java bytecodes. In ICFP ’98: Proceedings of the Third ACM SIGPLAN
International Conference on Functional Programming. ACM Press, 1998.

[3] Gérard Boudol. Asynchrony and the π-calculus. Rapport de recherche 1702,
INRIA, Sophia Antipolis, 1992.

[4] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Foundations
of Software Science and Computation Structure: Proceedings of FoSSaCS ’98,
Lecture Notes in Computer Science 1378, pages 140–155. Springer-Verlag, 1998.

[5] Cédric Fournet and Georges Gonthier. The reflexive CHAM and the join-
calculus. In Conference Record of POPL ’96: 23rd ACM Symposium on
Principles of Programming Languages, pages 372–385. ACM Press, 1996.

[6] Matthew Hennessy and James Riely. Resource access control in systems of
mobile agents. In Proceedings of HLCL ’98: High-Level Concurrent Languages,
Electronic Notes in Theoretical Computer Science 16.3, pages 3–17. Elsevier,
1998.

[7] Matthew Hennessy and James Riely. A typed language for distributed mobile
processes. In Conference Record of POPL ’98: 25th ACM Symposium on
Principles of Programming Languages. ACM Press, 1998.

[8] IANA, the Internet Assigned Numbers Authority. Protocol numbers and
assignment services: Port numbers. http://www.iana.org/numbers.html#P.

[9] Danny B. Lange and Mitsuru Oshima. Seven good reasons for mobile agents.
Communications of the ACM, 42(3):88–89, March 1999.

[10] Robin Milner. The polyadic π-calculus — a tutorial. Technical Report ECS-
LFCS-91-180, Laboratory for Foundations of Computer Science, University of
Edinburgh, 1991.

[11] Davide Sangiorgi. Locality and non-interleaving semantics in calculi for mobile
processe. Theoretical Computer Science, 155:39–83, 1996.

[12] Davide Sangiorgi. The name discipline of receptiveness. In Automata,
Languages and Programming: Proceedings of the 24th International Colloquium
ICALP ’97, Lecture Notes in Computer Science 1256. Springer-Verlag, 1997.

[13] Davide Sangiorgi. Reasoning about concurrent systems using types. In
Foundations of Software Science and Computation Structure: Proceedings of
FoSSaCS ’99, Lecture Notes in Computer Science 1578, pages 31–40. Springer-
Verlag, March 1999.

15



[14] Peter Sewell. Global/local subtyping and capability inference for a distributed
π-calculus. In Automata, Languages and Programming: Proceedings of the 25th
International Colloquium ICALP ’98, Lecture Notes in Computer Science 1442.
Springer-Verlag, 1998.

[15] José-Luis Vivas and Mads Dam. From higher-order π-calculus to π-calculus
in the presence of static operators. In CONCUR ’98: Concurrency Theory.
Proceedings of the 9th International Conference, Lecture Notes in Computer
Science 1466. Springer-Verlag, 1998.

16


