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Abstract

This letter describes the use of vertically aligned carbon nanotubes (CNT)-based arrays with estimated 2-nm thick cobalt
(Co) nanoparticles deposited inside individual tubes to unravel the possibility of using the unique templates for ultra-high-
density low-energy 3-D nano-magneto-electronic devices. The presence of oriented 2-nm thick Co layers within individual
nanotubes in the CNT-based 3-D matrix is confirmed through VSM measurements as well as an energy-dispersive X-ray
spectroscopy (EDS).
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Introduction

The progress of planar silicon-based electronics technology –

described by Moore’s Law – is coming to an end. [1,2] Gate-

length scaling has pushed the gate-dielectric and junction

technology to its physical limits and has resulted in a design in

which billions of transistors are interconnected by tens of

kilometers of wires packed into an area of square centimeters -

new materials and processes have been introduced, but it is

expected that the continued increase in interconnect wiring will

ultimately lead to the demise of further CMOS scaling, quite apart

from the very high power and associated thermal budgets that are

required to drive such an architecture. [3] The electronics industry

will be forced to meet the demand for additional functionality in a

reduced footprint with revolutionary new electronic devices based

on new state variable rather than electronic motion and by the

extension of electronics into the third dimension. These next

generation technologies will extend Moore’s Law and create

dynasties of low power electronics with greater capabilities at a

fraction of the cost.

The leap in the integration of devices can be addressed by 3-D

technology. [4] Conventional electronics is based on 2-D planar

processes, but this is becoming prohibitively expensive as well as a

barrier to performance. By stacking devices and interconnecting

them in a 3-D arrangement, a huge leap in functional density is

possible together with reduced power consumption. 3-D integra-

tion is a cornerstone of the coming revolution in electronics not

only because of the possibility of high-density architectures but also

because it will enable the introduction of disparate signals and new

materials and devices. [5–11] The 3-D device architecture allows

functionally integrating different materials in one system thus

providing a platform to combine the advantages of nanomagnetic

structures with the unprecedented electronic and thermal prop-

erties of new materials such as graphene and other Carbon based

nano-formulations. Using a 3-D matrix of nanomagnetic nodes

‘‘connected’’ via magnetic fields promises also to substantially

reduce the number of physical wires and interconnects (vias) which

is another important roadblock in the current 2-D planar VLSI

technology. Nanomagnetic devices can be partially polarized and

therefore naturally allow for multi-valued signal coding. In

nanomagnetic devices, multi-valued signals can be reliably

achieved with high noise tolerance, no increased power consump-

tion, and no significantly increased circuit complexity, thus making

multi-valued logic a cost effective and power efficient signal

processing solution, further increasing the computing capacity per

unit area or volume.

One of the innovative features of densely packed vertically

aligned CNTs is the potential to be used as the 3-D matrices

(templates) for enabling next-generation 3-D nano-magnetoelec-

tronic devices. CNTs have been a promising candidate to build

future electronic devices due to their many attractive properties.

[12–19] In this paper, as a trivial example, a CNT matrix is used

to control magnetic properties in nano scale.

Results and Discussion

The inherent to the 3-D-matrix shape-induced magnetic

anisotropy (due to the vertically aligned CNTs) ideally allows

using any magnetic material in a specific orientation. The

significance of this feature can be illustrated on the example of

perpendicular magnetic recording (PMR) currently used as the

core technology in magnetic disk drives. [20] The recording media
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Figure 1. An array of vertically aligned CNTs with various magnetic materials deposited inside individual tubes. The magnetic
anisotropy is shape-induced.
doi:10.1371/journal.pone.0040554.g001
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used in PMR has an intrinsically induced anisotropy and

consequently is severely material limited. Indeed, there are only

a handful of materials used in the industry such as a hexagonal

closed packed (hcc) phase of Co-based compounds, Co/Pt (or Pd)

multilayer, high anisotropy L10 materials, and a few others. As a

result, the optimization of magnetic properties of the recording

media is challenging. On the contrary, with the use of CNT-based

templates, ideally any magnetic material could be used with an

effectively perpendicular orientation, as illustrated in Figure 1.

Here, we show that even a magnetically ‘‘soft’’ material could be

made relatively ‘‘hard’’ and oriented through inducing shape

anisotropy. In this case, the saturation moment is defined by the

material, while the anisotropy is due to the 3-D matrix

architecture. More specifically, the shape-induced anisotropy can

be controlled by controlling the size of the filled (by the magnetic

materials) nanotubes, i.e. a longer nanotube would induce a

stronger out-of-plane anisotropy.

There are many ways to deposit magnetic materials inside

CNTs: 1) sputtering, 2) evaporation, 3) electroplating, and many

others. In this particular experiment, we used porous Aluminum

oxide (AAO) membranes to deposit a cobalt (Co) particles as a

patterned array of catalyst sites. [21,22] With such templates, with

narrow distributions of diameters, Co nanoparticles were electro-

deposited at the bottoms of openings to serve as catalysts in the

subsequent pyrolysis step. Uniformly aligned carbon nanotubes

were generated inside the pores of AAO through the catalytic

pyrolysis of a hydrocarbon such as acetylene. The formed tubes

had outer diameters equal to the inner diameters of the base pores.

The desired cobalt particles were deposited within the nanotubes

through the electroless deposition. Crystallite sizes in the range of

1.4 to 11.9 nm could be achieved. [23] Previous studies had shown

that fcc, instead of hcp, was the stable and preferable structure of

Co particles. [24,25] It was found in some cases, Co would get

inside the tubes and could occupy from 0 to 100 percent of a tube.

Figure 2(A) and (B) represent SEM images of a vertically aligned

high-aspect ratio CNT array. An energy-dispersive X-ray spec-

troscopy (EDS) of the composition of a vertically aligned CNT

array is shown in Figure 2(C). The presence of Co is obvious from

the spectrum.

The magnetic moment of the CNT-based magnetic arrays was

measured via vibrating sample magnetometry (VSM) PPMS (by

Quantum Design, San Diego, CA). The measurements in two

different directions, along and perpendicular to the plane are

shown in Figures 3a and b, respectively. The more open hysteresis

in the perpendicular direction and the anisotropy field higher than

1000 Oe (that is comparable to the saturation magnetization 4pMs

of the order of 1000 emu/cc) indicate the orientation of the

magnetization is tilted toward the perpendicular direction and is

shape induced. For comparison, the magneto-crystalline anisotro-

py of Co doesn’t exceed approximately 300 Oe, that is substan-

tially smaller than the observed anisotropy value. Here, it should

be mentioned that in the absence of CNT-tubes, the magnetiza-

Figure 2. SEM images of (A) a vertically aligned CNT array and (B) a cross sectional image of an aligned CNT. (C) An energy-dispersive
X-ray spectroscopy (EDS) of the composition of a vertically aligned CNT array. (The bottom left shows the targeted region for EDS pattern.).
doi:10.1371/journal.pone.0040554.g002

Carbon Nanotubes Based 3D Nano Magneto-Electronics

PLoS ONE | www.plosone.org 3 July 2012 | Volume 7 | Issue 7 | e40554



tion of Co would be in fcc (cubic) phase and preferentially in a

plane direction.

Assuming that the anisotropy is indeed shape induced, i.e. 2pMs

(assuming the cylindrical shape of a nanotube) one can estimate

that the approximate volume of Co in the CNT sample is of the

order 261026 emu/103 emu/cc = 261029 cc, which corresponds

to the effective thickness of 261029 cc/

0.09 cm2,261027 cm = 2 nm. [26]

In summary, using an example of Co particles deposited inside

individual CNTs, the study showed that densely packed vertically

aligned CNTs could be indeed used a 3-D matrix for controlling

the anisotropy direction of magnetic materials. The presence of

oriented 2-nm thick Co layers within individual nanotubes in the

CNT-based 3-D matrix was confirmed through VSM measure-

ments as well as through an energy-dispersive X-ray spectroscopy

(EDS).

Materials and Methods

Deposition of Cobalt Nanoparticles
Porous Aluminum oxide (AAO) membranes were used to pre-

deposit cobalt (Co) particles as a patterned array of catalyst sites.

Uniformly aligned carbon nanotubes were generated inside the

pores. The desired cobalt nanostructures were filled in the interior

of the nanotubes using electroless deposition.

Vibrating Sample Magnetometry
M-H loop measurements were performed using the VSM

option of a Quantum Design cryogenic physical property

measurement system (PPMS) with a 9-Tesla superconducting

magnet. Samples were mounted on a quartz paddle with regular

disk holders, using GE-7031 varnish to withstand thermal cycling.

To optimize the touchdown process, the samples were mounted

with an upward offset of 35 mm.

Figure 3. Magnetic moment (m) versus the applied field (H) hysteresis loops (A) along and (B) perpendicular to the plane directions
at room temperature before subtracting diamagnetic background effects (originating from the substrates). (C) In-plane and (D) out-of-
plane m-H loops for a range of temperature from 10 to 300 K after subtracting the diamagnetic background, (E) Room temperature m-H loops with
out-of-plane and in-plane orientation, and (F) m-H loops from two directions before normalizing the magnetic moments. All the saturation values are
above the value of the bulk fcc Co material [166 emu/g or 175 emu/g]. [27–29]
doi:10.1371/journal.pone.0040554.g003
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SEM and EDS Measurements
The SEM and EDS study was performed with JEOL JSM

6330F.
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