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SUMMARY

The Krebs cycle enzyme fumarate hydratase (FH) is a human tumor suppressor whose inactivation is asso-
ciated with the development of leiomyomata, renal cysts, and tumors. It has been proposed that activation of
hypoxia inducible factor (HIF) by fumarate-mediated inhibition of HIF prolyl hydroxylases drives oncogen-
esis. Using a mouse model, we provide genetic evidence that Fh1-associated cyst formation is Hif indepen-
dent, as is striking upregulation of antioxidant signaling pathways revealed by gene expression profiling.
Mechanistic analysis revealed that fumaratemodifies cysteine residueswithin the Kelch-like ECH-associated
protein 1 (KEAP1), abrogating its ability to repress the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-medi-
ated antioxidant response pathway, suggesting a role for Nrf2 dysregulation in FH-associated cysts and
tumors.

INTRODUCTION

Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is

an inherited cancer syndrome in which affected individuals are at

risk of developing benign cutaneous and uterine leiomyomas,

renal cysts, and aggressive collecting duct and Type 2 papillary

renal cell carcinomas (pRCC) (Kiuru et al., 2001; Tomlinson et al.,

2002; Toro et al., 2003). The early onset of cysts in hereditary

renal cancer syndromes including HLRCC and von Hippel-

Lindau (VHL) disease (Kaelin, 2008; Lehtonen et al., 2006)

together with observation of dysplastic changes in cystic epithe-

lium and solid tumors arising from cyst walls, strongly suggests

that cystic change represents an early stage in carcinogenesis.

Patients with HLRCC carry heterozygous germline mutations in

Significance

Activation of hypoxia pathways is strongly associated with poor prognosis in cancer. Inactivation of the tumor suppressor
gene encoding fumarate hydratase (FH) causes activation of hypoxia signaling, and it has been proposed that this plays
a causal role in renal cyst and tumor development. Analyses of mice defective in both FH and HIF signaling reveal that inac-
tivation of Hif-1a but not Hif-2a actually exacerbates renal cyst development. A HIF-independent association has been iden-
tified between NRF2 pathway activation and FH deficiency, which correlates with fumarate-mediated modification of
cysteine residues in KEAP1, the negative regulator of NRF2. Our data introduce NRF2 dysregulation, rather than HIF acti-
vation, as a candidate oncogenic pathway in FH-associated disease.
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the gene encoding the Krebs cycle enzyme fumarate hydratase

(FH) and tumor formation is associated with loss of heterozy-

gosity at this locus (Tomlinson et al., 2002). Although FH has

a central role in cellular energy metabolism, the mechanisms

underlying FH-associated tumorigenesis remain to be defined

(Frezza et al., 2011).

Much interest has focused on the possibility that upregulation

of one or more transcriptional pathways mediated by hypoxia

inducible factor (HIF) may underlie the oncogenic process (Rat-

cliffe, 2007). In normal cells, oxygen dependent prolyl hydroxyl-

ation of HIF-alpha (HIF-a) subunits promotes their degradation

by the VHL ubiquitin E3 ligase-proteasome pathway (Kaelin,

2008). In FH-deficient cells and tumors, fumarate accumulates

to very high levels, and competitively inhibits the 2-oxoglutarate

(2OG) dependent dioxygenases that catalyze HIF prolyl hydrox-

ylation, thus mimicking hypoxia and stabilizing the HIF complex

(Isaacs et al., 2005; O’Flaherty et al., 2010; Pollard and Ratcliffe,

2009). This process, termed pseudohypoxia, has been proposed

to drive tumor development by activation of oncogenic HIF

target genes. In favor of this hypothesis, activation of the HIF

transcriptional cascade is strongly associated with aggressive

behavior and poor prognosis across a wide range of common

human cancers and HIF target genes include many with poten-

tially oncogenic actions in angiogenesis, energy metabolism,

invasion and dedifferentiation (Kaelin and Ratcliffe, 2008). HIF

is strongly upregulated, both in HLRCC-associated human

pRCC and in the hyperplastic renal cysts that develop in mice

following targeted inactivation of Fh1 (the murine homolog of

FH), and studies of gene expression patterns in these tissues

have revealed strong signatures of HIF activation (Ashrafian

et al., 2010; Isaacs et al., 2005; Pollard et al., 2005; Pollard

et al., 2007). Based on these findings, it has been proposed

that pharmacological downregulation of HIF pathways by agents

that promote HIF hydroxylation in the face of high fumarate levels

might provide an effective treatment for FH-associated

neoplasia (Mackenzie et al., 2007; Tennant and Gottlieb, 2010).

It has been shown (Alderson et al., 2006; Frizzell et al., 2011;

Nagai et al., 2007) that fumarate, in addition to its role as an allo-

steric regulator of 2OG-dioxygenase, also modifies cysteine

residues in many proteins, forming S-(2-succinyl)-cysteine

(2SC). Critically, these modifications have functional conse-

quences as exemplified by inactivation of glyceraldehyde-3-

phosphate dehydrogenase (Blatnik et al., 2008a, 2008b).

Recently, we have reported that FH-deficient cells and tumors

accumulate high levels of 2SC (Bardella et al., 2011). Further-

more, this modification is highly specific and absent in normal

tissues and other tumor types and therefore a candidate mech-

anism for tumorigenesis.

To define the role, if any, of HIF activation in FH-associated

neoplasia, we combined inactivation of Fh1 with Hif-1a, Hif-2a,

or both Hif-a isoforms, measured the frequency of renal cyst

formation in a mouse model recapitulating the cystic phenotype

of the human disease, and compared the outcome with that of

genetic inactivation of the Hif prolyl hydroxylases (Phds). To

extend our analyses and understanding of events underpinning

cyst formation following the loss of FH, and to identify potential

HIF-independent oncogenic pathways, we compared gene

expression patterns in Fh1- and Fh1; Hif-1a-deficient kidneys,

where Fh1-associated profiles are not confounded by Hif activa-

tion.We provide evidence for an alternativemechanismbywhich

fumarate may activate oncogenic pathways.

RESULTS

Role of Hif in Fh1-Associated Renal Cystic Disease
To assess the role of HIF activation in FH-associated renal cystic

disease, we determined if parallel inactivation of Hif-1a or Hif-2a

would ameliorate the hyperplastic renal cystic phenotype inmice

with renal tubule specific inactivation of Fh1 (Pollard et al., 2007).

Accordingly, mice bearing conditionally inactivated alleles of

Hif-1a (Cramer et al., 2003; Higgins et al., 2004), Hif-2a (Gruber

et al., 2007), and Fh1 (Pollard et al., 2007) were intercrossed

with transgenic animals expressing Cre recombinase under the

control of a kidney specific cadherin (Ksp) promoter (Shao

et al., 2002) to generate mice that were transgenic for Ksp-Cre

and homozygous for one or more conditionally inactivated

alleles. A total of seven lines were generated as follows: Fh1fl/fl

Ksp-Cre+/� (Fh1�/�), Hif-1afl/fl Ksp-Cre+/� (Hif-1a�/�), Hif-2afl/fl

Ksp-Cre+/� (Hif-2a�/�), Hif-1afl/fl Hif-2afl/fl Ksp-Cre+/� (Hif-1a�/�

Hif-2a�/�), Fh1fl/fl Hif-1afl/fl Ksp-Cre+/� (Fh1�/�Hif-1a-/-), Fh1fl/f

Hif-2afl/fl Ksp-Cre+/� (Fh1�/�Hif-2a�/�), and Fh1fl/fl Hif-1afl/fl

Hif-2afl/fl Ksp-Cre+/� (Fh1�/�Hif-1a�/�Hif-2a�/�). Control

animals (Fh1+/+) were littermates bearing conditional alleles

without Ksp-Cre or carrying a wild-type allele with Ksp-Cre.

For each allele, PCR amplification of genomic DNA from the

kidneys was used to verify efficient tissue-specific recombina-

tion (Figure 1A).

To determine whether loss of the Hif genes alone in kidney

tubules would generatemajor abnormalities that might confound

assessment of cyst development in the combined Fh1�/�

Hif-a�/� genotypes, we first analyzed kidneys from control,

Hif-1a�/�, Hif-2a�/�, and Hif-1a�/�Hif-2a�/� mice. No major

anatomical abnormalities and in particular no cysts were

observed by 40 weeks of age in any of these animals (Figure 1B).

By comparison, cyst development in Fh1�/� mice is observed

from 13 weeks of age (Figure 2A) and is followed by ill health

or death from renal failure by 50–65 weeks (Pollard et al.,

2007). We therefore conclude that inactivation of Hif-1a or

Hif-2a, either alone, or in combination, is not sufficient to initiate

cyst formation or to disrupt the renal tubule architecture.

Next,we analyzed kidneys frommice inwhichHif-1a, Hif-2a, or

both had been deleted in renal tubules in parallel with Fh1. Histo-

logical analysis was performed at 13, 17, and 24 weeks of

age (Figure 2A). Combined deletion of Fh1 and Hif-1a in

Fh1�/�Hif-1a�/� mice did not ameliorate the development of

cystic disease as had been postulated. In contrast, parallel inac-

tivation of Hif-1a strikingly accelerated both the initiation and

progression of cystic disease compared with mice lacking Fh1

alone, evidenced by increased numbers of dilated tubules and

microcysts that progressed to larger and more frequent cysts.

By comparison, cysts were never observed in control mice

(Figures 1B and 2B). Quantification of the numbers of microcysts

(>0.1 mm) in kidneys from control, Fh1�/� and Fh1�/�Hif-1a�/�

mice at three time points revealed a significant increase in

Fh1�/�Hif-1a�/� mice at 13 and particularly at 17 weeks of age

as comparedwith Fh1�/�mice (p < 0.01). Thismarked exacerba-

tion of the cystic phenotype is also seen in the numbers ofmacro-

cysts (>0.5 mm) observed at 17 and 24 weeks of age (Figure 2B).
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The development of renal cysts in mice deficient for the Vhl

tumor suppressor gene can be repressed by genetic inactivation

of the Hif dimerization partner Hif-1b (Arnt) but not Hif-1a; thus

suggesting a causal role for Hif-2a in renal cyst development

(Rankin et al., 2006). This is in keeping with a potential oncogenic

role for HIF-2a in the pathogenesis of clear cell renal cancer

(Kaelin, 2007). Since inactivation of Fh1, like Vhl, could poten-

tially result in stabilization of both Hif-a isoforms, we investigated

the role of Hif-2a in cyst development in our model. Combined

inactivation of Hif-2a and Fh1 failed to ameliorate either the initi-

ation or development of cysts at the three time points analyzed

(Figure 2A) and quantification of microcysts and macrocysts

showed no differences from Fh1 deficient mice (Figure 2B).

These data suggest that distinct mechanisms underlie Vhl- and

Fh1-dependent cyst formation.

Although mice subjected to parallel inactivation of Fh1 and

Hif-2a were not phenotypically different from animals in which

Fh1 alone was inactivated, an inverse relationship between

Hif-1a and Hif-2a activity has been proposed previously in

some settings (Carroll and Ashcroft, 2006). Therefore, to assess

any compensatory or synergistic effects between the two Hif-a

isoforms we inactivated both Hif-1a and Hif-2a in combination

with Fh1 in the kidney tubules (Figures 2A and 2B). These mice

had an apparently identical phenotype to Fh1�/�Hif-1a�/�

mice and therefore, at least in the context of this model, Hif-2a

does not appear to have a causal role in the cystic phenotype.

Cyst Development in Fh1-Deficient Mice Is Independent
of Phd Inactivation
HIF prolyl hydroxylation is catalyzed by three closely related

enzymes, PHD-1, -2, and -3, (also termed Egln2, -1 and -3) (Ep-

stein et al., 2001). Fumarate, which accumulates in cells lacking

FH, mimics hypoxia by allosteric inhibition of the PHDs, allowing

HIF to escape destruction and to activate transcription (Isaacs

et al., 2005; O’Flaherty et al., 2010). Furthermore, PHDs have

Figure 1. Loss of Hif-aDoes Not Initiate Renal Cyst

Formation

(A) Representative blots of the PCR amplification of

genomic DNA from tails and kidneys of mice lacking

combinations of Fh1, Hif-1a, Hif-2a, Phd1, Phd2, and

Phd3 alleles. These show that Phd1 and Phd3 are

constitutively deleted, whereas null alleles for Fh1, Hif-1a,

Hif-2a, and Phd2 are present only in DNA from the kidney,

generated as a consequence of excision of floxed alleles

by Ksp-cre in the tubules.

(B) H&E staining of kidney sections from control,Hif-1a�/�,
Hif-2a�/�, and Hif-1a�/� Hif-2a�/� mice showing that

there is no renal cyst development by 40 weeks of age;

scale bar = 100 mm.

been proposed to hydroxylate other substrates

in addition to HIF and it is plausible that fuma-

rate-mediated PHD inhibition drives oncogen-

esis via HIF-independent pathways (Luo et al.,

2011; Xie et al., 2009). A number of conditional

mouse models exist for the Phd enzymes (Ara-

gonés et al., 2008; Fong and Takeda, 2008;

Mazzone et al., 2009). Mice lacking both Phd1

and -3 are viable and develop mild erythrocytosis, although

levels of Hif-1a or Hif-2a in the kidney remain normal (Takeda

et al., 2008), whereas deletion of Phd2 results in an embryonic

lethal phenotype (Takeda et al., 2006). Therefore, to investigate

the role of Phds in the regulation of Hif and possibly other rele-

vant pathways affecting cyst formation, we generated mice

lacking both Phd1 and �3, (Phd1�/�Phd3�/�) or Phd1, -2, and
-3 (Phd1�/�Phd2fl/fl Ksp-Cre+/�Phd3�/� from herein termed

Phd1�/�Phd2�/�Phd3�/�). PCR amplification of genomic DNA

from the kidneys verified recombination (Figure 1A). Kidney

sections were analyzed from Phd knockout mice at two time

points, 17 and 24 weeks of age and compared with littermate

controls. Whereas kidneys from control animals had no abnor-

malities, kidneys from Phd1�/�Phd3�/� double knockout mice

and Phd1�/�Phd2�/�Phd3�/� triple knockout mice developed

subtle tubular cell vacuolization, but no dilation or cyst formation

(Figure 3A). Since loss of all three Phds in the kidney failed to

induce cyst formation, despite the increased levels of Hif-1a

(Figures 3B and 3C), we conclude that cystogenesis in Fh1-defi-

cient mice is both Hif and Phd independent.

The NRF2-Mediated Antioxidant Response Pathway
Is Activated in FH-Deficient Cysts and Tumors
To gain a better understanding of the molecular mechanisms

causing renal cyst development, comparative genome-wide

transcript profiling was performed. Since we observed the

largest phenotypic differences in cyst development between

control mice and Fh1�/� or Fh1�/�Hif-1a�/� mice these were

chosen as the experimental groups between which we com-

pared gene expression profiles. All mice were aged 15 weeks

and therefore in the early stages of cystic disease as determined

by histological analysis. Pairwise comparisons between the

above groups revealed 489 mRNAs to be differentially regulated

(see Table S1available online), which were then subjected to IPA

pathway analysis (Ingenuity Systems, http://www.ingenuity.com)
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as in Table S2. The most significant differentially regulated

canonical pathway was the Nrf2 -mediated antioxidant pathway

whichwas upregulated in both Fh1�/� and Fh1�/�Hif-1a�/�mice

(Figure 4A).

To validate the results obtained from the microarray analysis

and to quantify the differential expression of some genes in the

Nrf2- mediated gene pathway we analyzed a subset of genes

by quantitative reverse transcription polymerase chain reaction

(Q-PCR) in control, Fh1�/�, Fh1�/�Hif-1a�/� and Fh1�/�

Hif-2a�/� mouse kidneys. First, we quantified the expression of

Fh1 andHif-1a (Figure 4B) and confirmed that Fh1 is significantly

reduced (p < 0.05) in the Fh1�/�, Fh1�/�Hif-1a�/� and Fh1�/�

Hif-2a�/� mouse kidneys compared with controls and that

Figure 2. Renal Cyst Formation in Fh1-Deficient

Mice Is Independent of the Hif-a Pathway

(A) H&E staining of kidney sections from Fh1�/�,
Fh1�/�Hif-1a�/�, Fh1�/�Hif-2a�/�, and Fh1�/�Hif-1a�/�

Hif-2a�/� mice at 13, 17, and 24 weeks of age illustrating

the development of renal cysts; scale bar = 100 mm.

Increased numbers of dilated tubules and microcysts are

evident initially, leading to increased size and frequency of

cyst formation where Hif-1a is deleted.

(B) Analysis of the numbers of microcysts (>0.1 mm) and

macrocysts (>0.5 mm) in kidneys from control, Fh1�/�,
Fh1�/�Hif-1a�/�, Fh1�/�Hif-2a�/�, and Fh1�/�Hif-1a�/�

Hif-2a�/� mice at 13, 17, and 24 weeks of age. Five

low-power fields were assessed for cyst numbers from

mice in each group (n = 4). Error bars indicate ± 1 SD.

Hif-1a was significantly reduced (p < 0.05) in

the Fh1�/�Hif-1a�/� mouse kidneys compared

with controls, Fh1�/� and Fh1�/� Hif-2a�/�.
Next, gene expression levels were determined

for three of the Nrf2 target genes highlighted in

the microarray analysis; glutathione S-trans-

ferase alpha 1 (Gsta1), heme oxygenase 1

(Hmox1), and NAD(P)H dehydrogenase

[quinone]1 (Nqo1) (Figure 4B). All three tran-

scripts were increased very significantly in

Fh1�/�, Fh1�/�Hif-1a�/� and Fh1�/�Hif-2a�/�

mouse kidneys compared with controls (p <

0.02). Also, we confirmed that expression of

the Hif target gene pyruvate dehydrogenase

kinase, isozyme 1 (Pdk1) was increased in

Fh1�/� kidneys, but was reduced by parallel

Hif-1a or Hif-2a deletion (Figure 4B). To confirm

changes in the expression of Fh1, Hif-1a, Nrf2,

and Nqo1 at a cellular level, we undertook

immunohistochemistry (IHC) on kidney sections

from Fh1�/� and Fh1�/�Hif-1a�/� mice at

17 weeks of age. IHC staining confirmed that

Fh1 (Figure 4C) is deleted in the cysts, but in

both groups continues to be expressed in the

interstitium and in a proportion of the renal

tubules. Hif-1a is stabilized in the nuclei of cells

lining the cysts in Fh1�/� kidneys while this

staining is absent in the Fh1�/�Hif-1a�/�

kidneys (Figure 4C). Renal cysts from both

groups manifest increased nuclear expression of Nrf2; elevated

expression in cysts was particularly striking for Nqo1 as com-

pared with the interstitium and some noncystic tubules (Fig-

ure 4C). Similarly, strong staining was observed for NRF2 and

NQO1 exclusively in the tumor cells and not the stroma in FH-

associated Type 2 pRCC (Figure 4D).

Thus, we conclude that expression of Nrf2, and some Nrf2

target genes, are elevated in those kidney tubule cells that

have lost Fh1 and line renal cysts, and that, at least in the mouse

model, this occurs independently of Hif-1a and Phds and at an

early stage of renal cyst formation. Furthermore, elevated levels

of these genes can be detected specifically in the tumor cells of

HLRCC-associated Type 2 pRCC.
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Loss of Fh1 Directly Upregulates the NRF2-Mediated
Antioxidant Pathway
The findings of increased expression of Nrf2 and Nrf2 target

genes in FH mutant material from both hyperplastic cysts of

knockout mice and human tumors indicate that the Nrf2-medi-

ated antioxidant response is activated during the development

of FH-associated disease. To determine if this occurs as a direct

consequence of Fh1 inactivation, rather than indirectly in re-

sponse to subsequent pathology, we analyzed changes in the

expression of Nrf2 target genes and other relevant proteins

in vitro in wild-type and Fh1�/� mouse embryonic fibroblasts

(MEFs) and isogenic stable Fh1�/� transfectants re-expressing

human FH (Fh1-/-+FH) (O’Flaherty et al., 2010). In normal cells,

the activity of the NRF2 pathway is controlled by KEAP1; a com-

ponent of an E3 ubiquitin ligase complex that targets NRF2 for

degradation (Zhang, 2006). Mutation, deletion, or oxidation of

KEAP1 leads to accumulation of nuclear NRF2, enhanced

binding to antioxidant response elements (AREs) and activation

of downstream target genes (Hayes et al., 2010; Taguchi et al.,

2011; Zhang, 2010). To assay the activity of this pathway in

MEFs we prepared nuclear and cytoplasmic fractions and

analyzed Nrf2, Keap1 and Nqo1 by immunoblotting (Figure 5A).

Increased levels of Nrf2 were observed in both the nuclear and

cytosolic fractions of Fh1�/� cells compared with either wild-

type cells, or to two independent Fh1�/�+FH clones. Whereas

the level of Keap1 was unaffected by FH status, Nqo1 was

clearly increased in Fh1�/� MEFs relative to the other cell lines.

Since, in addition to NRF2, a complex network of transcription

factors, including NRF1, can be recruited to the AREs to modu-

late transcriptional activity (Biswas and Chan, 2010; Nguyen

et al., 2003) we asked whether activation of the antioxidant

response observed in Fh1-deficient cells was directly mediated

by Nrf2. We therefore depleted Nrf1 or Nrf2 by siRNA in Fh1�/�

or wild-type MEFs. The cells were transfected at 0h and 24h

and harvested at 48h for analysis. Efficient and specific knock-

down of both Nrf1 and Nrf2 was confirmed at the protein level

(Figure 5B). In both cell types, the expression levels of Gsta1,

Hmox1, and Nqo1 were reduced by depletion of Nrf2, but not

by either Nrf1 knockdown, or a non-targeting control (Figure 5C).

To determine whether NRF2 also mediates upregulation of the

antioxidant pathway in human FH-associated cancer we per-

formed siRNA knockdown of NRF2 in UOK 262 cells, derived

from lymph node metastases in an HLRCC patient with aggres-

sive recurring kidney cancer (Yang et al., 2010). Efficient deple-

tion of NRF2 was confirmed by immunoblotting (Figure 5D) and

associated with striking reduction of HMOX1 and NQO1 (Fig-

ure 5E). Taken together, the data indicate that activation of the

Nrf2 pathway occurs as a direct consequence of inactivation of

FH in mouse and human cells.

Upregulation of the NRF2-Mediated Antioxidant
Pathway Is Independent of HIF Prolyl Hydroxylase
Activity
As shown in Figure 4, upregulation of Nrf2 and its target genes

Gsta1, Hmox1, and Nqo1 were observed in kidneys from

Fh1�/�, Fh1�/� Hif-1a�/�, and Fh1�/� Hif-2a�/� mice, suggest-

ing that this occurs independently of Hif. Similarly, Nrf2 and

Nqo1 are both increased in cells lining Fh1-associated renal

cysts. To further test any relationship to the Hif/Phd pathway

we generated PhdD123 MEFs that lack all three of the Phd

enzymes. Validation of the genotype and confirmation of upregu-

lation of Hif-1a and Hif target genes in these cells is provided in

Figure S1. We then compared expression of Gsta1, Hmox1, and

Figure 3. Loss of Prolyl Hydroxylase Domain Enzymes Does Not

Initiate Renal Cyst Formation

(A) H&E staining of sections of kidneys from wild-type control,

Phd1�/�Phd3�/� and Phd1�/�Phd2�/�Phd3�/� mice at 17 and 24 weeks of

age confirming the absence of renal cysts; scale bar = 100 mm. Kidneys from

wild-type, and Phd1�/�Phd3�/� double knockout mice show no abnormal

pathology. Kidneys from Phd1�/�Phd2�/�Phd3�/� mice have subtle vacuoli-

zation, but show no evidence of either tubular dilation or cyst formation.

(B) IHC for Hif-1awas performed on kidney sections from 24-week-old control,

Phd1�/�Phd3�/� and Phd1�/�Phd2�/�Phd3�/� mice. Hif-1a staining (high-

lighted in insert) is observed only in the Phd1�/�Phd2�/� Phd3�/� mice in the

nuclei of cells lining the renal tubules and not in the interstitium; scale bar =

100 mm.

(C) Immunoblot of lysates of kidneys from control, Phd1�/�Phd3�/� and

Phd1�/�Phd2�/�Phd3�/�mice for Hif-1a showing stabilization of Hif-1a in only

the kidneys of the Phd1�/�Phd2�/�Phd3�/� mice. Protein loading is indicated

by b-actin.
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Nqo1 and the Hif target genes Hexokinase 2 (Hk2), Pdk1 and

Glucose transporter 1 (Slc2a1) in wild-type, Fh1�/�, Fh1�/�+FH,
and PhdD123 MEFs. Q-PCR analysis (Figure 5F) demonstrated

that while Fh1�/�MEFs express significantly elevated levels of

both antioxidant response and Hif-target genes, PhdD123 MEFs

upregulated Hif-target genes, but not antioxidant response

Figure 4. Upregulation of the Nrf2-Mediated Antioxidant Response Pathway in FH-Deficient Cells and Tumors

(A) Heat map comparing the patterns of expression for 14 Nrf2 pathway genes for control, Fh1�/�Hif-1a�/�, and Fh1�/�mouse kidneys (age = 15weeks, n = 4 per

group). Red and green indicate up- or downregulation, respectively. The Heatmap was generated using R (Ihaka and Gentleman, 1996) with differentially

regulated genes specific to the Nrf2 pathway.

(B) Q-PCR validation of a subset of genes in control, Fh1�/�, and Fh1�/�Hif-1a�/� mouse kidneys using the same template mRNA as for microarray analysis and

compared with renal tissue from Fh1�/�Hif-2a�/�mice confirms significant reduction of mRNA for Fh1 andHif-1a as expected and upregulation of the Nrf2 target

genes Gsta1, Hmox1, and Nqo1 in Fh1�/�, Fh1�/�Hif-1a�/�, and Fh1�/�Hif-2a�/� mouse kidneys. Error bars indicate ± 1 SD calculated from three biological

replicates, each assayed in duplicate; p < 0.02 (students t test). Increased expression of the Hif-1a target gene Pdk1 in Fh1�/� kidneys is ameliorated by Hif-1a

deletion and to a lesser extent by Hif-2a deletion.

(C) IHC for Fh1, Hif-1a, Nrf2, and Nqo1 was performed on kidney sections from 17-week-old control, Fh1�/�, and Fh1�/� Hif-1a�/� mice. In contrast to the

ubiquitous expression of Fh1 in the controls, Fh1 is deleted in cysts of both Fh1�/� and Fh1�/�Hif-1a�/�mice, but is retained in the interstitium and in a proportion

of the renal tubules. Hif-1a is stabilized in the nuclei of cells lining the cysts in Fh1�/� kidneys, while this staining is absent in the control tissue and Fh1�/�Hif-1a�/�

kidneys. Renal cysts from both these groups show increased nuclear expression of Nrf2 and Nqo1 compared with the interstitium and most non-cystic tubules

and with the control; scale bar = 100 mm.

(D) H&E staining and IHC for NRF2 and NQO1 in pRCC shows strong staining for both in the tumor cells exclusively and not the stroma; scale bar = 100 mm.

See also Tables S1 and S2.
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Figure 5. Upregulation of the Antioxidant Pathway in FH-Deficient Cells Is NRF2-Dependent and HIF/PHD-Independent

(A) Immunoblot ofMEF lysates from Fh1+/+, Fh1�/�, and two independent clones of Fh1�/� reconstitutedwithwild-type FH (Fh1�/�+FH) shows increased levels of

Nrf2 in both the nuclear and cytosolic fractions of Fh1�/� cells. Protein levels of Nqo1 are also increased in Fh1�/� MEFS. Protein loading for the nuclear and

cytoplasmic fractions is indicated by histone H3 and a-tubulin, respectively.

(B) Immunoblot of Fh1+/+ and Fh1�/� MEFs following siRNA knockdown of Nrf1, Nrf2 and a nontargeting (NT) control. Protein loading is indicated by b-actin.

(C) Q-PCR analysis following siRNA knockdown of Nrf1 or Nrf2 in Fh1+/+ and Fh1�/�MEFs.Gsta1,Hmox1, andNqo1 are significantly reduced by depletion of Nrf2

(p < 0.02), but not by either Nrf1 knockdown, or the nontargeting control (NT).

(D) Immunoblot of UOK 262 cells for NRF2 and FH following siRNA knockdown. Protein loading is indicated by b-actin.
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genes. Thus we conclude that upregulation of the antioxidant

response pathway in Fh1 deficient cells occurs entirely indepen-

dently of Hif/Phd dysregulation.

Upregulation of the Nrf2-Mediated Antioxidant Pathway
Is Independent of Mitochondrial Dysfunction
In previous work, we have demonstrated that the intracellular

accumulation of fumarate in Fh1�/� cells can be corrected in

the face of a persistent defect in mitochondrial oxidative metab-

olism by the re-expression of an extramitochondrial form of

human FH (Fh1�/�+FHDMTS) (O’Flaherty et al., 2010). There-

fore, to distinguish whether Nrf2 activation was a consequence

of accumulated fumarate or the mitochondrial defect, we

compared Keap1, Nrf2, and Nqo1 protein levels between wild-

type, knockout, and Fh1�/�+FHDMTS MEFs. Only Fh1�/�

MEFs showed elevated levels of Nrf2 and Nqo1, whereas the

Fh1�/�+FHDMTS MEFs restored the Nrf2 and Nqo1 levels to

those of wild-type MEFs (Figure 5G). Similarly, expression of

Gsta1, Hmox1, and Nqo1 were elevated only in the Fh1�/�

MEFs as compared with wild-type and Fh1�/�+FHDMTS MEFs

(Figure 5H). Elevation of the Hif target gene Pdk1 was observed

in only the Fh1 knockout MEFs (Figure 5H), consistent with

previous work (O’Flaherty et al., 2010). Taken together, these

findings suggest that activation of Nrf2 signaling occurs as a

direct consequence of fumarate accumulation in Fh1�/� cells,

rather than as a consequence of defective oxidative metabolism.

Loss of FH Causes Succination of Cysteine Residues
of KEAP1 and Abrogation of Its Function to Repress
NRF2 Activity
Since the NRF2-KEAP1 pathway is regulated by critical cysteine

residues in KEAP1 and proteins containing succinated cysteine

residues are detected readily in FH-deficient cells and tumors

(Bardella et al., 2011), we postulated that the succination of

cysteine residues in Keap1 might account for the increased

levels of Nrf2 and its downstream targets observed in Fh1 defi-

cient cells and tissues.

We were unable to immunoprecipitate endogenous Keap1

with available antibodies; therefore to determine if Keap1 was

indeed subject to succination in Fh1 defective cells we gener-

ated Fh1+/+ and Fh1�/� MEFs stably expressing KEAP1-V5

and confirmed cytoplasmic localization of KEAP1 by immunoflu-

orescence (IF) (Figure 6A). To test the function of KEAP1, we

analyzed Nrf2 and Nrf2 target gene expression in these cells

and demonstrated that as expected, stable expression of

KEAP1-V5 reduced levels of Nrf2 protein, and Gsta1, Hmox1,

and Nqo1 transcript levels in Fh1+/+ MEFs. In contrast, expres-

sion of KEAP1-V5 in Fh1�/�MEFs increased levels of these tran-

scripts indicating that KEAP1 function was strikingly affected by

Fh1 status. Furthermore, only KEAP1-V5 immunoprecipitated

from Fh1�/� MEFs exhibited strong immunoreactivity for 2SC

(Figure 6B, top panel) implying that at least some cysteine resi-

dues within KEAP1 were succinated specifically by high levels

of fumarate within Fh1�/� cells (Figure 6B).

To identify the site(s) of modification in KEAP1 precisely,

V5 immunoprecipitates from the KEAP1-V5 transfectants were

subject to enzymatic digestion with trypsin, chymotrypsin or

elastase and subsequent analysis by tandem mass spec-

trometry (UPLC-MS/MS). This revealed mass increments of

116.01 Da corresponding precisely to the predicted mass of

the succinyl modification on 17 peptides derived from Fh1�/�

but not Fh1+/+ transfectants (Table 1). MS/MS analysis identified

succination modification at residues Cys38, Cys151, Cys241,

Cys288, Cys319, and Cys613 (Table 1 and Figure 6D). Cys151

and Cys288 have previously been implicated in the regulation

of KEAP1 activity by oxidant stress (Nguyen et al., 2009).

Precise quantification of the extent of modification by MS/MS

is difficult since the ionization efficiency of modified and unmod-

ified peptide species may differ. However, the addition of two

carboxyl residues in the succinated peptide would be predicted

to impair ionization, suggesting that succination might be under-

estimated. The abundance of modified peptides therefore

supports the existence of very high levels of succination on

KEAP1. Susceptibility of cysteine residues to succination varies,

and previous studies have indicated that high pKa thiols such

as those found in glutathione (GSH) or N-acetylcysteine are not

efficiently targeted for succination (Alderson et al., 2006; Blatnik

et al., 2008a). Consistent with this, we observed normal or some-

what elevated levels of reduced GSH in Fh1�/� kidneys, despite

high levels of fumarate (Figure S2), therefore suggesting that

fumarate does not react directly with GSH.

Taken together, our results suggest that increased levels of

fumarate in Fh1�/� cells promote activation of the Nrf2 antioxi-

dant response pathway by succination of specific redox sensi-

tive cysteine residues in KEAP1 (Figure 7) and not by general

oxidant stress.

DISCUSSION

The unexpected demonstration that the gene encoding the

Krebs cycle enzyme fumarate hydratase conforms to the clas-

sical genetic model of a tumor suppressor, predisposing individ-

uals carrying germline mutations to cancers bearing somatic

inactivation of the second allele (Tomlinson et al., 2002), has

raised great interest in defining the associated oncogenic

pathway(s).

(E) Q-PCR analysis in UOK 262 cells shows a significant reduction of HMOX1 and NQO1 expression following siRNA knockdown of NRF2 (p < 0.05), but not in

cells treated with a non-targeting (NT) control.

(F) Q-PCR analysis of Gsta1, Hmox1, Nqo1, Hk2, Pdk1, and Slc2a1 in Fh1+/+, Fh1�/�, Fh1�/�+FH, and PhdD123 MEFs. Fh1�/� MEFs have significantly elevated

levels of antioxidant response- and Hif-target genes, whereas PhdD123 MEFs upregulate Hif-target genes, but not antioxidant response genes.

(G) Immunoblot of MEF lysate from Fh1+/+, Fh1�/� and two independent clones of Fh1�/� reconstituted with extramitochondrial wild-type FH (Fh1�/�+FHDMTS)

shows increased levels of Nrf2 and Nqo1 in the Fh1�/� cells while Keap1 is equivalent in all the lines. Protein loading is indicated by b-actin.

(H) Q-PCR analysis of Gsta1, Hmox1, and Nqo1 and Pdk1 in Fh1+/+, Fh1�/�, and Fh1�/�+FHDMTS MEFs. Fh1�/� MEFs have significantly elevated levels of

antioxidant response and Hif-target genes, which are ameliorated by extramitochondrial FH expression (O’Flaherty et al., 2010).

All error bars indicate ± 1 SD calculated from three biological replicates, each assayed in duplicate.

See also Figure S1.
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Figure 6. Loss of FH Causes Oxidation of Cysteine Residues of KEAP1 and Abrogation of Its Function to Repress NRF2 Activity

(A) Stable transfection and cytoplasmic localization of KEAP1-V5 in Fh1+/+ and Fh1�/� MEFs was confirmed by IF. Nuclei are stained blue with DAPI, V5

expression indicating KEAP1 cellular localization is labeled green, mitochondria (MITO) are labeled red, and in the last panel the images are merged (MERGE).

(B) Immunoblot (IB) analysis of Fh1+/+ and Fh1�/� MEFs shows that stable expression of KEAP1-V5 reduces levels of Nrf2 in Fh1+/+MEFs and increases levels of

Nrf2 in Fh1�/� MEFs. Only KEAP1-V5 immunoprecipitated (IP) from Fh1�/� MEFs exhibits immunoreactivity for 2SC (top panel). Protein levels are indicated by

b-actin (bottom panel).
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Structural, biochemical, and biological analyses have estab-

lished that fumarate, which accumulates in FH-defective cells,

binds to PHDs and inhibits their catalytic activity leading to upre-

gulation of HIF transcriptional pathways, as occurs in hypoxia

(Hewitson et al., 2007; Koivunen et al., 2007). Hypoxia and

activation of the HIF system are commonly associated with

aggressive cancer (Harris, 2002), but despite intense investiga-

tion, cause and effect have remained difficult to distinguish.

Since HIF activation is a direct consequence of inactivation

of the FH tumor suppressor, irrespective of hypoxia, this link

might indicate causality. Indeed, striking activation of HIF was

observed in the mouse model described above and in FH-asso-

ciated human cancer, as well as in tumors linked to inactivation

of the succinate dehydrogenase enzyme complex andmutations

in genes encoding isocitrate dehydrogenases 1 and 2, which

have also been defined as tumor suppressors or oncogenes

(Pollard and Ratcliffe, 2009)).

Our findings clearly demonstrate that despite striking activa-

tion of Hif and a number of Hif-target genes in Fh1-deficient cells,

neither upregulation of Hif nor inactivation of the Phds is required

or responsible for the hyperplastic cystic phenotype observed

in the mouse model. Surprisingly we found that, rather than

ameliorating cyst development, combined inactivation of Hif-

1a (but not Hif-2a) and Fh1, greatly exacerbated cystic hyper-

plasia. Thus, in this setting, upregulation of Hif-1a appears to

exert an antiproliferative effect. While this is apparently at odds

with the frequently observed upregulation of HIF-1a in cancer,

it is consistent with emerging evidence for differential effects of

HIF-1a and HIF-2a in tumor biology. HIF-1a antagonizes MYC

function, whereas HIF-2a promotes MYC activity (Gordan

et al., 2007), and overexpression of HIF-1a and HIF-2a have

contrasting effects on the growth of experimental tumors from

VHL-defective RCC lines (Raval et al., 2005). Furthermore, muta-

tional analyses reveal a modest but significant prevalence of

HIF-1a inactivating mutations in VHL-associated clear cell

RCC (Dalgliesh et al., 2010; Morris et al., 2009; Shen et al.,

2011). Nevertheless, the finding that inactivation of Hif-2a had

no effect on Fh1-associated cystic disease either alone, or in

combination with Hif-1a inactivation, differs from findings re-

ported in a similar mouse model of VHL-associated renal

neoplasia. In this latter model, combined inactivation of Arnt,

but not Hif-1a, ameliorated Vhl-associated renal cystic disease,

(C) Q-PCR analysis of Gsta1, Hmox1, and Nqo1 in Fh1+/+ and Fh1�/� MEFs both with and without stable transfection of KEAP1. Consistent with (B), whereas

KEAP1 expression reduces Nrf2 target gene expression in Fh1+/+ MEFS (p < 0.02), stable expression of KEAP1 in Fh1�/� MEFS increases Nrf2 target gene

expression (p < 0.02). Error bars indicate ± 1 SD calculated from three biological replicates, each assayed in duplicate.

(D) Succination of humanKEAP1 onCys151 and 288was identified in Fh1�/�MEFs transfected with KEAP1 byMS/MS analysis of peptides generated by elastase

digestion of KEAP1. MS/MS spectra are shown for peptides SISMGEKCV (corresponding to residues 144–152 of KEAP1) and QMQLQKCEILLQS (corresponding

to residues 282–293 of KEAP1), indicating that these are succinated at Cys151 and Cys288, respectively. Both the calculated peptide mass, based on the

detectedm/z (m:mass, z: charge) value of the doubly charged precursor peptide ion ([M]2+), and the theoretical peptidemass, are stated for both peptide spectra.

Succination is identified by an additional mass of 116.01 Da added to the corresponding cysteine residue as indicated in the displayed peptide sequence (2SC).

Detected N- and C-terminal fragment ions of both peptides are assigned in the spectrum and depicted as follows: b: N-terminal fragment ion; y: C-terminal

fragment ion; *: fragment ion minus NH3;
0: fragment ion minus H2O; and 2+: doubly charged fragment ion. Both theoretical mass (in brackets) and detectedmass

are given for each assigned fragment ion.

See also Figure S2.

Table 1. Cysteine Residues in KEAP1 Found to Be Succinated in FH–/– MEFs by Tandem Mass Spectrometry

2SC Residue Peptide Amino Acid Position Peptide Sequence Mascot Score Enzyme

38 34–52 ASTECKAEVTPSQHGNRTF 49 Chymotrypsin

32–45 MYASTECKAEVTPS 56 Elastase

35–45 STECKAEVTPS 33 Elastase

151 144–152 SISMGEKCV 42 Elastase

144–155 SISMGEKCVLHV 22 Elastase

145–152 ISMGEKCV 13 Elastase

146–152 SMGEKCV 24 Elastase

146–155 SMGEKCVLHV 25 Elastase

241 233–245 SRDDLNVRCESEV 38 Elastase

288 282–293 QMQLQKCEILQS 39 Elastase

319 304–320 IFEELTLHKPTQVMPCR 47 Trypsin

304–323 IFEELTLHKPTQVMPCRAPK 34 Trypsin

308–319 LTLHKPTQVMPC 23 Elastase

315–323 QVMPCRAPK 25 Elastase

318–323 PCRAPK 15 Elastase

613 602–615 SGVGVAVTMEPCRK 51 Trypsin

607–615 AVTMEPCRK 17 Elastase

Sequences for all detected peptide species covering the relevant modified cysteine are shown. The enzyme used to generate the peptide species and

the MASCOT score obtained for each peptide is listed accordingly.
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implying that Hif-2a might be responsible for the cyst develop-

ment associated with Vhl loss (Rankin et al., 2006). Hence, we

conclude that despite the common activation of HIF pathways

in VHL- and FH-associated neoplasia, the oncogenic mecha-

nisms are likely to be different.

Combined inactivation of Fh1 and Hif-1a in our mouse model

enabled Fh1 dependent changes in transcript profiles to be inter-

rogatedwithout confounding influences from activation of exten-

sive HIF-dependent transcriptional cascades and revealed

striking activation of the Nrf2-mediated antioxidant signaling

pathway. Further analyses in cell lines derived from Fh1�/�

MEFs, mouse cystic tissues and FH-associated human cancer

demonstrated that activation of the canonical NRF2 antioxidant

pathway arose as a direct consequence of FH inactivation.

Though we cannot exclude other influences on Nrf2 dysregula-

tion, the demonstration of high levels of succination on critical

cysteine residues in KEAP1, the abnormal activity of transfected

KEAP1 in Fh1�/� cells and the maintenance of GSH levels in

Fh1�/� cells all argue that Nrf2 activation results from succina-

tion of KEAP1 rather than general oxidant stress, at least under

the conditions of these experiments (Figure 7). NRF2 acts as

a master regulator controlling the ability of mammalian cells to

adapt rapidly to stress caused by oxidants and electrophiles,

through the induction of ARE containing genes (Nguyen et al.,

2003). KEAP1 complexes with Cullin 3 (CUL3) forming an ubiqui-

tin E3 ligase that degrades NRF2. Although not fully understood,

the interactions by which KEAP1 controls the levels of NRF2, its

cellular localization and transcriptional activity are complex.

However, all current models propose that cysteine residues of

KEAP1 are modified in response to oxidative stress, resulting

in compromised function of the ubiquitin E3 ligase complex

that effects proteasomal degradation of NRF2 and enhanced

NRF2 stability (Nguyen et al., 2009).

Given that succination of multiple proteins occurs in FH-defec-

tive cells and tumors (Bardella et al., 2011), we enquired whether

defective KEAP1 function in Fh1 deficient cells might be associ-

ated with succination of critical regulatory cysteine residues.

MS/MS analysis provided clear evidence of succination on

KEAP1 residuesCys151andCys288 in associationwithdefective

regulation of Nrf2 in Fh1�/� cells. These two residues are among

those cysteines, Cys23, 151, 273, 288, and 613, that are con-

served between mouse and human and which have been identi-

fiedashaving functional roles in theactivity ofKeap1 (Hayeset al.,

2010; McMahon et al., 2010; Taguchi et al., 2011). Transgenic

complementation studies have shown that Cys273 and 288 are

essential for Keap1 to repress Nrf2 activity in vivo, while Cys151

is important in facilitating Nrf2 activation in studies with MEFs

from a Keap1 (C151S) transgenic mouse model (Yamamoto

et al., 2008). Although Cys613 is part of a zinc sensor system

(McMahon et al., 2010) and might be modified by fumarate

leading to zinc signaling (Cousins et al., 2006) our microarray

data and pathway analyses do not suggest that this pathway is

dysregulated in Fh1-associated cystic disease.

Interestingly, a recent study has described activation of Nrf2

by exogenous fumarate both in vitro and in vivo (Linker et al.,

2011); similar to our findings, they provide direct evidence that

KEAP1 is modified at Cys151, though not at Cys288. Whereas

this study utilized cell permeable fumaric acid esters (mono-

and dimethylfumarate), we have demonstrated that pathophysi-

ological levels of fumarate associated with cancer are sufficient

to succinate KEAP1 and activate Nrf2 signaling.

To our knowledge,mutations ofKEAP1,NRF2, or downstream

target genes, which might shed further light on the role of this

pathway in FH-associated oncogenesis, have not yet been

described in Type 2 pRCC. Given the extensive transcriptional

cascade regulated by NRF2, whether and how dysregulation of

KEAP1/NRF2 signaling drives oncogenesis requires further

investigation. However, both KEAP1 and NRF2 somatic

missense mutations have been identified in a variety of tumors.

Moreover, functional assays and the clustering of mutations

at sites that disrupt KEAP1/NRF2 regulation have suggested

that dysfunction of KEAP1 contributes in some way to onco-

genesis in these settings (Hayes and McMahon, 2009; Taguchi

et al., 2011). Though KEAP1/NRF2 dysregulation has been

considered as an adaptive response thatmight particularly affect

later stages of oncogenesis, recent data in mouse models of

pancreatic and lung cancer, where Nrf2 ablation was associated

with reduced cellular proliferation, have suggested an early

effect (DeNicola et al., 2011). Our data indicating that Nrf2 dysre-

gulation occurs early in the course of hyperplastic cyst develop-

ment, as a direct consequence of Fh1 inactivation, are consis-

tent with this possibility.

In summary, our investigations have revealed that despite

the striking upregulation of the HIF transcriptional cascade in

FH-associated neoplasia, these pathways do not appear to con-

tribute to hyperplastic renal cyst formation, at least in a mouse

model that recapitulates many features of the human disease;

rather, our findings have raised the possibility of an alternative

Figure 7. The Potential Roles of Fumarate as an Oncometabolite

The KEAP1 protein is part of an E3 ubiquitin ligase, which under normal

physiological conditions targets NRF2 for polyubiquitination and subsequent

degradation (Zhang, 2006). Critical cysteine residues in KEAP1 aremodified by

fumarate via succination. We propose that succination impairs the ability of

KEAP1 to negatively regulate NRF2, thus facilitating transcription of genes that

contain an ARE (Nguyen et al., 2003) in the promoter region.
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oncogenic action of fumarate through the activation of antioxi-

dant response pathways by succination of KEAP1, and possibly

other proteins with tumor suppressor functions.

EXPERIMENTAL PROCEDURES

Mice

All experimental procedures were in line with AACR guidelines and passed

ethical review by Oxford University’s Medical Sciences divisional Local Ethical

Review panel. Experiments were performed under UK Home Office regula-

tions, as required by the terms of the Animal (Scientific Procedures) Act

1986. The Fh1, Hif-1a, and Hif-2a conditional knockout and Ksp-cre mice

have all been described previously (Gruber et al., 2007; Higgins et al., 2004;

Pollard et al., 2007; Shao et al., 2002) as have the Phd1, -2, and -3 knockout

mice (Aragonés et al., 2008; Mazzone et al., 2009). Each line had been back-

crossed with C57/BL6J for at least five generations and was intercrossed to

obtain littermates for the appropriate genotypes. Genotyping was determined

by PCR (details on request).

Microarray Analysis

Total RNA was extracted from each sample using a miVana kit (Ambion). The

RNA quantity and quality were determined using the Agilent BioAnalyzer

2100 (Agilent Technologies). Gene expression data were obtained by

hybridizing a total of 12 mouse samples from three experimental

groups: control, Fh1�/� and Fh1�/�Hif-1a�/� (n = 4 per group) to Illumina

MouseWG-6BeadChips.Chipswere scannedwith IlluminaBeadArrayReader;

GenomeStudioV2010.1 (Illumina Inc) was used for data extraction. Data was

imported to GeneSpring GX 11.0.2 (Agilent Technologies, Inc., Santa Clara,

CA) normalized with Shift to 75 percentile and baseline transformed to median

of all samples to identify significantly differentially expressed geneswhichwere

then subject to IPA pathway analysis (Ingenuity Systems, http://www.

ingneuity.com).
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Microarray data analysis was deposited in the GEO public database

(GSE29988) (http://www.ncbi.nlm.nih.gov/geo/).
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