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In
remental One-Class Learning with BoundedComputational ComplexityRowland R. Sillito and Robert B. FisherS
hool of Informati
s, University of Edinburgh, UKAbstra
t An in
remental one-
lass learning algorithm is proposed forthe purpose of outlier dete
tion. Outliers are identi�ed by estimating- and thresholding - the probability distribution of the training data.In the early stages of training a non-parametri
 estimate of the train-ing data distribution is obtained using kernel density estimation. On
ethe number of training examples rea
hes the maximum 
omputationallyfeasible limit for kernel density estimation, we treat the kernel densityestimate as a maximally-
omplex Gaussian mixture model, and keep themodel 
omplexity 
onstant by merging a pair of 
omponents for ea
hnew kernel added. This method is shown to outperform a 
urrent state-of-the-art in
remental one-
lass learning algorithm (In
remental SVDD[5℄) on a variety of datasets, while requiring only an upper limit on model
omplexity to be spe
i�ed.1 Introdu
tionThe problem of one-
lass learning (also known inter
hangeably as �outlier /novelty / anomaly dete
tion�) arises in a wide variety of di�erent appli
ationdomains. The fundamental goal of one-
lass learning is to generate a rule thatdistinguishes between examples of a known 
lass of items and examples frompreviously-unseen novel 
lasses, on the ex
lusive basis of training examples fromthe known 
lass.This problem presents itself in 
ases where one wishes to distinguish betweenmembers of a 
lass for whi
h examples are abundantly available, and membersof another rarely observed 
lass. This often arises when attempting to dete
tabnormal a
tivity, eg. jet engine failure, 
omputer network intrusions, diseasesymptoms, et
. In ea
h of these domains, anomalous examples may be s
ar
e orentirely absent during training, but their subsequent identi�
ation is of 
ru
ialimportan
e. A wide variety of di�erent methods have been proposed to addressthis problem (see [3℄ for a review). However, almost all existing one-
lass 
las-si�
ation algorithms require all training examples to be available at on
e, for asingle �bat
h� learning step: if a new example is presented, the 
lassi�er must beretrained from s
rat
h.Sin
e outliers might only be identi�able by their deviation from a normalmodel, a key problem in one 
lass learning is the 
hoi
e of model 
omplexity. Insome 
ases training data may be well des
ribed by the parameters of a singleGaussian distribution, while in other 
ases - eg. where the data has multiple
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modes or lies on a non-linear manifold - a more 
omplex model is required. Itis important to sele
t the 
orre
t level of model 
omplexity: if it is too low, thelearned normal model may also in
lude the anomalies that we wish to dete
t; ifit is too high, the model may not in
lude the majority of normal examples.In many 
ases it would be useful to be able to in
rementally train a 
lassi-�er as data be
ame available, without needing to pre-spe
ify the level of model
omplexity. In this paper we propose a new te
hnique for performing in
remen-tal one-
lass learning, where only an upper limit on model 
omplexity needsto be spe
i�ed. While 
omputationally feasible, our algorithm attempts to es-timate the underlying p.d.f. (probability density fun
tion) of the training datausing non-parametri
 kernel density estimation (with Gaussian kernels), therebygenerating a maximally 
omplex one-
omponent-per-example Gaussian mixturemodel. On
e a maximum number of mixture 
omponents has been rea
hed, it iskept 
onstant by merging a pair of 
omponents for every new 
omponent added.We 
hoose pairs of 
omponents for merging based on an information theoreti
merging-
ost fun
tion originally proposed by Goldberger and Roweis in [2℄.Currently, at least two related te
hniques exist in the literature. In [9℄ Ya-manishi et al. propose an unsupervised outlier dete
tion pro
edure �SmartSifter�in whi
h a Gaussian mixture model is trained using an on-line adaptation of theEM (Expe
tation Maximization) algorithm. A key aspe
t of their adaptation isthe in
lusion of �dis
ounting� parameters whi
h ensure that the e�e
t of oldertraining examples on the model parameters is rapidly displa
ed by new exam-ples. Ea
h new training example is given a s
ore based on the extent to whi
hit 
hanges the model parameters: a 
omparatively high s
ore, indi
ating a large
hange in model parameters, indi
ates the possibility of an outlier. This algo-rithm seems inappropriate for 
omparison with the proposed algorithm as itmodels a �nite window of training data pre
eding ea
h new example, ratherthan attempting to in
rementally build a 
omplete normal 
lass des
ription.A more 
losely related algorithm has been proposed in [5℄, where Tax andLaskov present an in
remental training pro
edure for the SVDD (Support Ve
torData Des
ription) algorithm originally proposed by Tax and Duin in [7℄. TheSVDD algorithm attempts to �nd the smallest hypersphere that en
loses thetraining data, and allows more 
omplex hyper-volumes (whi
h may �t the databetter) to be obtained by introdu
ing kernel fun
tions whi
h map the trainingdata to a higher dimensional spa
e [7℄. In both bat
h and in
remental forms,the SVDD algorithm relies 
ru
ially on the 
orre
t 
hoi
e of model 
omplexityparameters. Various methods have been proposed to address this issue in theabsen
e of example outliers, in
luding: pro
edures for generating syntheti
 out-liers (Tax and Duin [4℄) and, more re
ently, a 
onsisten
y based approa
h whi
htakes the simplest possible 
lassi�er and in
reases its 
omplexity parameter un-til the proportion of 
orre
tly re
ognized training data starts to fall (Tax andMuller [8℄). The in
remental variant of SVDD does not in
lude any on-line model
omplexity sele
tion, but it is 
on
eivable that the bat
h optimization methods
ould be applied to a pre-existing dataset to optimally parametrize the 
lassi�erbefore using it for on-line training.



We provide a detailed des
ription of the proposed algorithm in Se
tion 2, andthen illustrate its performan
e on a variety of datasets in Se
tion 3, where we also
ompare its performan
e with the in
remental SVDD algorithm [5℄ (optimizedusing the 
onsisten
y 
riterion proposed in [8℄). Our algorithm is shown to yieldequivalent, often better, performan
e than the in
remental SVDD algorithmwithout requiring any time-
onsuming parameter optimization.2 AlgorithmThe proposed algorithm is designed to re
eive a sequen
e of labeled multivariatetraining data, and to determine - at any stage in the training pro
ess - whetheror not new data are outliers. This is a
hieved by estimating the underlyingprobability density fun
tion that gave rise to the data, and setting a thresholdon this density: if a new example has a probability lower than the threshold, itis 
lassi�ed as an outlier.2.1 Density EstimationPhase 1: Kernel density estimation Initially the probability density of thedata is determined using Kernel Density Estimation. This te
hnique allows usto evaluate the probability of a new example by taking a uniformly weighted
ombination of a set of Gaussian kernels (with identi
al 
ovarian
e matri
es Σ)
entered on ea
h of the training data. Thus, �nding the probability of a newdata point z, given a set of N training data X = {x1, . . . , xN}, simply 
onsistsof evaluating the following fun
tion:
p(z) =

1

(2π)
d
2 |Σ|

1

2

·
1

N
·

N
∑

n=1

e−
1

2
(z−xn)T Σ−1(z−xn) (1)The fa
tor 1

(2π)
d
2 |Σ|

1

2

(where d refers to the dimensionality of the data) en-sures that the resulting probability distribution integrates to 1. Training themodel is straight-forward: when a new training example xNEW is re
eived, it issimply added to the set X :
X → X ∪ {xNEW } (2)The only remaining problem is the 
hoi
e of the 
ovarian
e matrix Σ. Toredu
e 
omputational 
ost, we use a uniform 
ovarian
e matrix Σ(σ) = Id · σ2,whi
h leaves only a single parameter σ to be determined. The value of σ is 
hosenusing the �leave-one-out� likelihood 
riterion proposed by Duin in [1℄ (re
entlyshown to be a good model sele
tion 
riterion for multivariate kernel densityestimation by Zhang et al. in [10℄). This te
hnique allows us to �nd a parameterthat maximizes the likelihood of the dataset, while avoiding the problem ofthe data likelihood tending towards in�nity as σ → 0. For a given value of

σ, the �leave-one-out� likelihood fun
tion 
ombines the log-likelihoods for every



individual example xn given a model 
onstru
ted from all others ∀x 6= xn, asfollows:
LL(σ) =

N
∑

n=1

log

(

1

(2πσ)
d
2

·
1

N − 1
·
∑

∀x 6=xn
e−

1

2σ2
(xn−x)T (xn−x)

) (3)Every time the training dataset is updated (during the kernel density estimationphase) we evaluate (3) for a range of values surrounding the previous σ, and
hoose σ = arg maxσ (LL(σ)).Phase 2: Mixture model merging Sin
e the 
omputational 
ost of evaluating(1) s
ales linearly with the quantity of training data, it eventually be
omesinfeasible to estimate the p.d.f. of the data in this fashion. Noting that the kerneldensity estimate is essentially a maximally-
omplex Gaussian mixture model, weadapt a method proposed by Goldberger and Roweis for redu
ing the 
omplexityof Gaussian mixture models in [2℄: on
e the maximum feasible model 
omplexityhas been rea
hed, we keep it 
onstant by merging a pair of 
omponents for ea
hnew 
omponent added.Initialization On
e the maximummodel 
omplexity has been rea
hedN = Nmaxwe initialize a data stru
ture to store a Gaussian mixture model with weights(initially uniform), and 
ovarian
es (set to the �nal value estimated in the kerneldensity phase), and means (the training data) as follows:
w1...N = 1

N

Σ1...N = Id · σ2
final

µ1...N = x1...N

(4)For ea
h pair of 
omponents Gi = {wi, µi, Σi} and Gj = {wj , µj , Σj} amerging 
ost is then 
al
ulated using (7) - explained in the next se
tion - formingan N × N matrix C. This one-o�1 
al
ulation of Nmax(Nmax−1)
2 di�erent 
ostvalues is 
omputationally feasible for values of Nmax where it is still possible toevaluate (1) in reasonable time.Merging Strategy In this stage every new training example still 
ontributes aGaussian kernel. However the 
ovarian
e matrix is now �xed to the �nal estimateobtained in the pre
eding stage, and we employ a merging strategy to keep thenumber of mixture 
omponents 
onstant. For every new 
omponent added, apair of 
omponents (whi
h may in
lude the new one) is merged as follows:

wmerge(i,j) = wi + wj

µmerge(i,j) = wi

wi+wj
µi +

wj

wi+wj
· µj

Σmerge(i,j) = wi

wi+wj

(

Σi + (µi − µmerge(i,j))(µi − µmerge(i,j))
T
)

+
wj

wi+wj

(

Σj + (µj − µmerge(i,j))(µj − µmerge(i,j))
T
)

(5)1 Subsequently maintaining this 
ost matrix only requires a �xed number of Nmax +1
ost evaluations for ea
h new training example.



We wish to 
hoose a pair of 
omponents to merge in a way that minimizesthe resulting 
hange in the p.d.f. en
oded by the model. The Kullba
k-Leiblerdivergen
e provides a means of assessing the �damage� 
aused by repla
ing aparti
ular pair of 
omponents with a single merged 
omponent. Essentially, theKL divergen
e KL(P ||Q) =
∫∞

−∞
p(x) log p(x)

q(x)dx quanti�es the expe
ted infor-mation loss per sample when an approximating distribution Q is substituted fora true distribution P . For a pair of Gaussian distributions Gp = {µp, Σp} and
Gq = {µq, Σq}, it 
an be 
al
ulated as follows [2℄:
KL(Gp||Gq) =

1

2

(

log
|Σq|

|Σp|
+ Tr(Σ−1

q Σp) + (µp − µq)Σ
−1
q (µp − µq)

T − d

) (6)This allows us to quantify the 
ost of repla
ing 
omponents Gi and Gj (where
i 6= j) with their merged 
ounterpart Gmerge(i,j) by 
al
ulating a weighted
ombination (as proposed by Goldberger and Roweis in [2℄) of their respe
tiveKullba
k-Leibler divergen
es from Gmerge(i,j) as follows:

cost(Gi, Gj) = wiKL(Gi||Gmerge(i,j)) + wjKL(Gj ||Gmerge(i,j)) (7)Updating Pro
edure When a new training example xNEW arrives, a tempo-rary new 
omponent GNmax+1 = { 1
Nex+1 , xNEW , Id · σ2

final} is 
reated, and theweights of existing 
omponents are res
aled by a fa
tor of Nex

Nex+1 , where Nex isthe total number of training examples re
eived before the new one. The 
ostmatrix is augmented with a new row/
olumn for the new 
omponent, and apair of 
omponents is 
hosen su
h that {Gi, Gj} = arg minGi,Gj
(cost(Gi, Gj)).If {Gi, Gj} are both existing 
omponents, then Gi is repla
ed with Gmerge(i,j)and Gj is repla
ed with the new 
omponent; alternatively if Gj is the new 
om-ponent then Gi is simply repla
ed with Gmerge(i,j). The temporary 
omponent

GNmax+1 is then removed, and the merging 
ost matrix C updated a

ordingly.This pro
edure requires a �xed total of Nmax + 1 evaluations of (7) for everynew training example, as the 
ost matrix only needs to be updated for entries
orresponding to merged/new 
omponents.2.2 Classi�
ation ThresholdGiven the proposed density estimation method, an important remaining issueis the 
hoi
e of 
lassi�
ation threshold. A naive approa
h would be to set thethreshold at that the level of the least probable (given the 
urrent model) trainingexample, thereby 
orre
tly 
lassifying all training data as normal. However, it isquite possible that the least probable training example - whi
h will be lo
atedin the most sparsely populated region of training data - may have a probabilityvalue equivalent to that of the outliers we wish to dete
t. To avoid this problem,and to make the method robust to potential outliers in the training set, we setthe threshold at a value that deliberately mis
lassi�es a 
ertain proportion of thetraining data as outliers. In the experiments des
ribed in the following se
tion



we 
hoose a value of 10%, aiming to learn a 
lassi�er that �lters out 90% ofnormal data.3 ExperimentsIn this se
tion we measure the 
lassi�
ation performan
e of the proposed algo-rithm on a variety of datasets, showing how 
lassi�
ation performan
e 
hangesas the model is trained on more training examples. To pla
e the performan
e ofthe proposed algorithm in 
ontext we 
ompare its performan
e to that of thein
remental SVDD algorithm [5℄, making 
omparisons at the point where bothalgorithms have been trained on all training examples in a given dataset.We use a freely available implementation of the in
remental SVDD algorithm,in
svdd, 
ontained in the DDtools MATLAB toolbox [6℄. In all tests we usethe radial basis kernel fun
tion, and optimize the kernel parameter (for thewhole training dataset) using the 
onsistent_o

 fun
tion (also from [6℄) whi
himplements the 
onsisten
y-based model sele
tion 
riterion proposed in [8℄. Weinitially apply this 
riterion to a range of 20 linearly spa
ed values betweenthe shortest and longest Eu
lidean distan
es observed within the dataset; tosear
h for potentially better parameter values on a �ner s
ale, we then run ase
ond parameter optimization for a further 20 values surrounding the optimalparameter from the �rst set. As for the proposed algorithm, we set the SVDDthreshold parameter at a level that aims to reje
t to 10% of the training data.Syntheti
 Dataset An initial experiment was 
arried out on a syntheti
 2 dimen-sional dataset: we de�ned a spiral shaped region whi
h we used to divide a setof uniformly distributed random datapoints into a hypotheti
al normal 
lass ofdatapoints (points in the spiral region) and outliers (all other points). We used2500 spiral points for training the algorithm, and a further 2500 points from thespiral along with 2500 outlier points for testing it, as shown in Figure 1.For this test (as for all subsequent tests) we set the upper limit on the numberof mixture 
omponents Nmax to be 100. The middle se
tion of �gure 1 showsthe 
on�guration of the 100 Gaussian 
omponents before the merging phase
ommen
es, and at the end of the training pro
ess. The resulting model organi-zation appears to a

urately re�e
t the shape of the spiral: indeed, at the endof training the algorithm 
orre
tly 
lassi�es 88.13% of all test data, with a TruePositive rate2 of TP = 86.1% and a False Positive rate3 of FP = 0.0984%. The
TP and FP 
urves shown in the lower left hand se
tion of Figure 1 indi
atethat the 
lassi�
ation performan
e in
reased in a stable fashion as more trainingexamples were pro
essed. In this plot, and in subsequent plots of this type, theverti
al dotted line indi
ates the start of the merging phase.At the end of training, the in
remental SVDD algorithm 
orre
tly 
lassi�ed
79.44% of the test data (with TP = 89.69% and FP = 0.308%), mis
lassifying2 Indi
ating normal examples 
orre
tly identi�ed as normal.3 Indi
ating outliers in
orre
tly 
lassi�ed as normal.



a mu
h larger number of outliers as normal. The ROC4 
urve in the lower righthand se
tion of Figure 1 shows the di�erent TP and FP values obtained as the(training data reje
tion) threshold is varied for ea
h 
lassi�er, indi
ating that theproposed algorithm outperforms in
remental SVDD algorithm a
ross the rangeof possible thresholds. Both plots in Figure 1 show the mean performan
e for 10di�erent random orderings of the training data.Real Datasets A series of subsequent experiments were then 
arried out on threedi�erent real-world datasets obtained from the UCI Ma
hine Learning Reposi-tory5:1. The Wis
onsin Breast Can
er Database, whi
h 
ontains 699 (9-dimensional)datapoints, 
ontaining 458 normal examples and 241 
ases of 
an
er.2. The Letter Re
ognition Database, whi
h 
ontains 20,000 (16-dimensional)parametrizations of examples of printed letters, with 26 
lasses 
orrespondingto the alphabet. We use the 789 examples of the letter 'A' as a hypotheti
alnormal 
lass, and all other 
lasses as outliers.3. The STATLOG Landsat Satellite Database, whi
h 
ontains 6435 (36 dimen-sional) ve
tors 
orresponding multispe
tral images of 6 di�erent types ofground 
overage: we use the 1533 examples of 'red soil' as the normal 
lass.For ea
h of these datasets we use 90% of examples of the 
hosen normal 
lassas training data, and the remaining 10% for testing. All subsequent experimentsare performed for 10 di�erent testing/training permutations of the normal 
lass.Again, we test our algorithm with a maximum 
omplexity level of 100 
om-ponents, and 
ompare it to the 
onsisten
y-optimized in
remental SVDD al-gorithm. The 
lassi�
ation results illustrated by the ROC 
urves in Figure 2,indi
ate that the proposed algorithm 
onsistently outperforms the in
rementalSVDD algorithm, although the performan
e obtained on the Can
er and Satellitedatasets is very similar.Computational Complexity To 
on�rm the assertion that the proposed algorithmhas bounded 
omputational 
omplexity, we re
orded the time taken to train ouralgorithm on ea
h datapoint during the tests on the 36 dimensional Satellitedataset. This is plotted (ex
luding the point where the merging matrix is �rstinitialized) in Figure 3, indi
ating that a �xed pro
essing time per example isindeed rea
hed soon after the merging phase 
ommen
es. Our algorithm takesan average time of 565.56 ± 0.32 se
onds to train on the 1379 examples, whilethe SVDD algorithm takes a signi�
antly shorter time of 6.25 ± 0.34 se
ondsto train, albeit after a parameter optimization step whi
h takes 482.53 ± 60.21se
onds. Evaluation times for the two algorithms are similar: our algorithm takes
2.88±0.02 se
onds to 
lassify 5056 testing examples, while the in
remental SVDDalgorithm takes 2.01 ± 0.102 se
onds to 
lassify the same examples.4 Re
eiver Operating Chara
teristi
5 http://www.i
s.u
i.edu/~mlearn/MLRepository.html
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Figure1. Results for the syntheti
 spiral dataset. See text for des
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Figure2. Results for real datasets. See text for des
ription.



0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

Is the Computational Complexity Really Bounded?

Training examples observed

T
ra

in
in

g
 t

im
e

 p
e

r 
e

xa
m

p
le

 

(s
e

co
n

d
s)

 

 

Satellite dataset − 36 dimensions
(mean results from 10 trials)

plateau

Figure3. Measuring 
omputational 
omplexity.4 Dis
ussionWe have proposed a simple pro
edure for in
rementally training a one-
lass
lassi�er to perform outlier dete
tion, without the need for any time-
onsumingmodel optimization pro
edures. Despite its simpli
ity, the proposed algorithmappears to perform better than the in
remental SVDD algorithm, even thoughthe parameters of the latter were being 
hosen through a lengthy optimizationpro
ess. The fa
t that the optimization pro
ess proposed in [8℄ did not �ndparameters that allowed in
remental SVDD to outperform our algorithm doesnot mean that su
h parameters 
ould not be found in prin
iple: it does, however,illustrate the the key strength of our algorithm - the fa
t that it automati
allygenerates models that a
hieve a useful level of outlier dete
tion performan
e.Referen
es1. R.P.W. Duin. On the 
hoi
e of smoothing parameters for Parzen estimators ofprobability density fun
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