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Incremental One-Class Learning with Bounded
Computational Complexity

Rowland R. Sillito and Robert B. Fisher

School of Informatics, University of Edinburgh, UK

Abstract An incremental one-class learning algorithm is proposed for
the purpose of outlier detection. Outliers are identified by estimating
- and thresholding - the probability distribution of the training data.
In the early stages of training a non-parametric estimate of the train-
ing data distribution is obtained using kernel density estimation. Once
the number of training examples reaches the maximum computationally
feasible limit for kernel density estimation, we treat the kernel density
estimate as a maximally-complex Gaussian mixture model, and keep the
model complexity constant by merging a pair of components for each
new kernel added. This method is shown to outperform a current state-
of-the-art incremental one-class learning algorithm (Incremental SVDD
[5]) on a variety of datasets, while requiring only an upper limit on model
complexity to be specified.

1 Introduction

The problem of one-class learning (also known interchangeably as “outlier /
novelty / anomaly detection”) arises in a wide variety of different application
domains. The fundamental goal of one-class learning is to generate a rule that
distinguishes between examples of a known class of items and examples from
previously-unseen novel classes, on the exclusive basis of training examples from
the known class.

This problem presents itself in cases where one wishes to distinguish between
members of a class for which examples are abundantly available, and members
of another rarely observed class. This often arises when attempting to detect
abnormal activity, eg. jet engine failure, computer network intrusions, disease
symptoms, etc. In each of these domains, anomalous examples may be scarce or
entirely absent during training, but their subsequent identification is of crucial
importance. A wide variety of different methods have been proposed to address
this problem (see [3] for a review). However, almost all existing one-class clas-
sification algorithms require all training examples to be available at once, for a
single “batch” learning step: if a new example is presented, the classifier must be
retrained from scratch.

Since outliers might only be identifiable by their deviation from a normal
model, a key problem in one class learning is the choice of model complexity. In
some cases training data may be well described by the parameters of a single
Gaussian distribution, while in other cases - eg. where the data has multiple

Neural

Networks

?


uhiroeh
Typewritten Text
Sillito, R., & Fisher, B. (2007). Incremental One-Class Learning with Bounded Computational Complexity. In S?, J., Alexandre, L., Duch, W., & Mandic, D. (Eds.), Artificial Neural Networks ? ICANN 2007. (pp. 58-67). (Lecture Notes in Computer Science). Springer Berlin / Heidelberg. doi: 10.1007/978-3-540-74690-4_7


modes or lies on a non-linear manifold - a more complex model is required. It
is important to select the correct level of model complexity: if it is too low, the
learned normal model may also include the anomalies that we wish to detect; if
it is too high, the model may not include the majority of normal examples.

In many cases it would be useful to be able to incrementally train a classi-
fier as data became available, without needing to pre-specify the level of model
complexity. In this paper we propose a new technique for performing incremen-
tal one-class learning, where only an upper limit on model complexity needs
to be specified. While computationally feasible, our algorithm attempts to es-
timate the underlying p.d.f. (probability density function) of the training data
using non-parametric kernel density estimation (with Gaussian kernels), thereby
generating a maximally complex one-component-per-example Gaussian mixture
model. Once a maximum number of mixture components has been reached, it is
kept constant by merging a pair of components for every new component added.
We choose pairs of components for merging based on an information theoretic
merging-cost function originally proposed by Goldberger and Roweis in [2].

Currently, at least two related techniques exist in the literature. In [9] Ya-
manishi et al. propose an unsupervised outlier detection procedure “SmartSifter”
in which a Gaussian mixture model is trained using an on-line adaptation of the
EM (Expectation Maximization) algorithm. A key aspect of their adaptation is
the inclusion of “discounting” parameters which ensure that the effect of older
training examples on the model parameters is rapidly displaced by new exam-
ples. Each new training example is given a score based on the extent to which
it changes the model parameters: a comparatively high score, indicating a large
change in model parameters, indicates the possibility of an outlier. This algo-
rithm seems inappropriate for comparison with the proposed algorithm as it
models a finite window of training data preceding each new example, rather
than attempting to incrementally build a complete normal class description.

A more closely related algorithm has been proposed in [5], where Tax and
Laskov present an incremental training procedure for the SVDD (Support Vector
Data Description) algorithm originally proposed by Tax and Duin in [7]. The
SVDD algorithm attempts to find the smallest hypersphere that encloses the
training data, and allows more complex hyper-volumes (which may fit the data
better) to be obtained by introducing kernel functions which map the training
data to a higher dimensional space [7]. In both batch and incremental forms,
the SVDD algorithm relies crucially on the correct choice of model complexity
parameters. Various methods have been proposed to address this issue in the
absence of example outliers, including: procedures for generating synthetic out-
liers (Tax and Duin [4]) and, more recently, a consistency based approach which
takes the simplest possible classifier and increases its complexity parameter un-
til the proportion of correctly recognized training data starts to fall (Tax and
Muller [8]). The incremental variant of SVDD does not include any on-line model
complexity selection, but it is conceivable that the batch optimization methods
could be applied to a pre-existing dataset to optimally parametrize the classifier
before using it for on-line training.



We provide a detailed description of the proposed algorithm in Section 2, and
then illustrate its performance on a variety of datasets in Section 3, where we also
compare its performance with the incremental SVDD algorithm [5] (optimized
using the consistency criterion proposed in [8]). Our algorithm is shown to yield
equivalent, often better, performance than the incremental SVDD algorithm
without requiring any time-consuming parameter optimization.

2 Algorithm

The proposed algorithm is designed to receive a sequence of labeled multivariate
training data, and to determine - at any stage in the training process - whether
or not new data are outliers. This is achieved by estimating the underlying
probability density function that gave rise to the data, and setting a threshold
on this density: if a new example has a probability lower than the threshold, it
is classified as an outlier.

2.1 Density Estimation

Phase 1: Kernel density estimation Initially the probability density of the
data is determined using Kernel Density Estimation. This technique allows us
to evaluate the probability of a new example by taking a uniformly weighted
combination of a set of Gaussian kernels (with identical covariance matrices X))
centered on each of the training data. Thus, finding the probability of a new
data point z, given a set of N training data X = {x1,...,2n}, simply consists
of evaluating the following function:

g (z Tn) 1(z—wn)
p(z) = —(%)2% + Z 1)

The factor ﬁ (where d refers to the dimensionality of the data) en-
2m)2 | X2
sures that the resulting probability distribution integrates to 1. Training the
model is straight-forward: when a new training example zygw is received, it is
simply added to the set X:

X—-XU {QUNEW} (2)

The only remaining problem is the choice of the covariance matrix X. To
reduce computational cost, we use a uniform covariance matrix X(o) = Id. 52,
which leaves only a single parameter o to be determined. The value of ¢ is chosen
using the “leave-one-out” likelihood criterion proposed by Duin in [1] (recently
shown to be a good model selection criterion for multivariate kernel density
estimation by Zhang et al. in [10]). This technique allows us to find a parameter
that maximizes the likelihood of the dataset, while avoiding the problem of
the data likelihood tending towards infinity as ¢ — 0. For a given value of
o, the “leave-one-out” likelihood function combines the log-likelihoods for every



individual example z,, given a model constructed from all others Vz # z,, as
follows:

N
1 1 1 T
LL(o) = log| —— —— - Va wne_m(wn—ﬂﬂ) (xn—1) 3
Every time the training dataset is updated (during the kernel density estimation

phase) we evaluate (3) for a range of values surrounding the previous o, and
choose 0 = argmax, (LL(0)).

Phase 2: Mixture model merging Since the computational cost of evaluating
(1) scales linearly with the quantity of training data, it eventually becomes
infeasible to estimate the p.d.f. of the data in this fashion. Noting that the kernel
density estimate is essentially a maximally-complex Gaussian mixture model, we
adapt a method proposed by Goldberger and Roweis for reducing the complexity
of Gaussian mixture models in [2]: once the maximum feasible model complexity
has been reached, we keep it constant by merging a pair of components for each
new component added.

Initialization Once the maximum model complexity has been reached N = Ny 42
we initialize a data structure to store a Gaussian mixture model with weights
(initially uniform), and covariances (set to the final value estimated in the kernel
density phase), and means (the training data) as follows:

wi..N =
21N = 'U)%inal (4)
H1.N = T1..N

For each pair of components G, = {w;, p;, 2} and G; = {w;,p;, X;} a

merging cost is then calculated using (7) - explained in the next section - forming
f Nmam(anaz_l)
2

=z

an N x N matrix C. This one-off! calculation o different cost
values is computationally feasible for values of N,,,, where it is still possible to
evaluate (1) in reasonable time.

Merging Strategy In this stage every new training example still contributes a
Gaussian kernel. However the covariance matrix is now fixed to the final estimate
obtained in the preceding stage, and we employ a merging strategy to keep the
number of mixture components constant. For every new component added, a
pair of components (which may include the new one) is merged as follows:

Wmerge(i,j) — Wi + wj

— _wj wj
Hmerge(i,j) = wiFw; pi + witw; Hj (5)
Emerge(i,j) = w;fwj (21 + (/141 - Nmerge(i,j))(ﬂi - Nmerge(i,j))T)

W

+’LU7;+1U]' (Eg + (ﬂj - Mmerge(i,j))(uj - Mmerge(i,j))T)

! Subsequently maintaining this cost matrix only requires a fixed number of Nyqz + 1
cost evaluations for each new training example.



We wish to choose a pair of components to merge in a way that minimizes
the resulting change in the p.d.f. encoded by the model. The Kullback-Leibler
divergence provides a means of assessing the “damage” caused by replacing a
particular pair of components with a single merged component. Essentially, the
KL divergence KL(P||Q) = [ p(z)log %dw quantifies the expected infor-
mation loss per sample when an approximating distribution @ is substituted for
a true distribution P. For a pair of Gaussian distributions G, = {u,, Xy} and

Gq = {pq, X4}, it can be calculated as follows |2]:

1 b)) _ ,
KL(GplIGq) = ) (10g % + Tr(X, 121)) + (p — 1q) Xg 1(Mp - Mq)T - d) (6)
P

This allows us to quantify the cost of replacing components G; and G; (where
i # j) with their merged counterpart G,erge(i,j) by calculating a weighted
combination (as proposed by Goldberger and Roweis in [2]) of their respective
Kullback-Leibler divergences from G erge(i,j) as follows:

COSt(Gi, GJ) = ’LUJCE(GZ‘HGmeTge(iJ)) + ijCE(GjHGmerge(i,j)) (7)

Updating Procedure When a new training example xygw arrives, a tempo-
rary new component Gy, 41 = {ﬁ, eNEw, - UJ%mal} is created, and the
weights of existing components are rescaled by a factor of Nj{ieil, where N, is
the total number of training examples received before the new one. The cost
matrix is augmented with a new row/column for the new component, and a
pair of components is chosen such that {G;,G;} = argming, g, (cost(Gi, Gj)).
If {G;,G;} are both existing components, then G; is replaced with Gergei,j)
and G is replaced with the new component; alternatively if G; is the new com-
ponent then G; is simply replaced with G,,epge(i,;)- The temporary component
GN,,..+1 1s then removed, and the merging cost matrix C' updated accordingly.
This procedure requires a fixed total of Ny,.. + 1 evaluations of (7) for every
new training example, as the cost matrix only needs to be updated for entries
corresponding to merged /new components.

2.2 Classification Threshold

Given the proposed density estimation method, an important remaining issue
is the choice of classification threshold. A naive approach would be to set the
threshold at that the level of the least probable (given the current model) training
example, thereby correctly classifying all training data as normal. However, it is
quite possible that the least probable training example - which will be located
in the most sparsely populated region of training data - may have a probability
value equivalent to that of the outliers we wish to detect. To avoid this problem,
and to make the method robust to potential outliers in the training set, we set
the threshold at a value that deliberately misclassifies a certain proportion of the
training data as outliers. In the experiments described in the following section



we choose a value of 10%, aiming to learn a classifier that filters out 90% of
normal data.

3 Experiments

In this section we measure the classification performance of the proposed algo-
rithm on a variety of datasets, showing how classification performance changes
as the model is trained on more training examples. To place the performance of
the proposed algorithm in context we compare its performance to that of the
incremental SVDD algorithm [5], making comparisons at the point where both
algorithms have been trained on all training examples in a given dataset.

We use a freely available implementation of the incremental SVDD algorithm,
incsvdd, contained in the DDtools MATLAB toolbox [6]. In all tests we use
the radial basis kernel function, and optimize the kernel parameter (for the
whole training dataset) using the consistent occ function (also from [6]) which
implements the consistency-based model selection criterion proposed in [8]. We
initially apply this criterion to a range of 20 linearly spaced values between
the shortest and longest Euclidean distances observed within the dataset; to
search for potentially better parameter values on a finer scale, we then run a
second parameter optimization for a further 20 values surrounding the optimal
parameter from the first set. As for the proposed algorithm, we set the SVDD
threshold parameter at a level that aims to reject to 10% of the training data.

Synthetic Dataset An initial experiment was carried out on a synthetic 2 dimen-
sional dataset: we defined a spiral shaped region which we used to divide a set
of uniformly distributed random datapoints into a hypothetical normal class of
datapoints (points in the spiral region) and outliers (all other points). We used
2500 spiral points for training the algorithm, and a further 2500 points from the
spiral along with 2500 outlier points for testing it, as shown in Figure 1.

For this test (as for all subsequent tests) we set the upper limit on the number
of mixture components N,,q, to be 100. The middle section of figure 1 shows
the configuration of the 100 Gaussian components before the merging phase
commences, and at the end of the training process. The resulting model organi-
zation appears to accurately reflect the shape of the spiral: indeed, at the end
of training the algorithm correctly classifies 88.13% of all test data, with a True
Positive rate? of TP = 86.1% and a False Positive rate® of FP = 0.0984%. The
TP and FP curves shown in the lower left hand section of Figure 1 indicate
that the classification performance increased in a stable fashion as more training
examples were processed. In this plot, and in subsequent plots of this type, the
vertical dotted line indicates the start of the merging phase.

At the end of training, the incremental SVDD algorithm correctly classified
79.44% of the test data (with TP = 89.69% and F'P = 0.308%), misclassifying

? Indicating normal examples correctly identified as normal.
3 Indicating outliers incorrectly classified as normal.



a much larger number of outliers as normal. The ROC* curve in the lower right
hand section of Figure 1 shows the different TP and F'P values obtained as the
(training data rejection) threshold is varied for each classifier, indicating that the
proposed algorithm outperforms incremental SVDD algorithm across the range
of possible thresholds. Both plots in Figure 1 show the mean performance for 10
different random orderings of the training data.

Real Datasets A series of subsequent experiments were then carried out on three
different real-world datasets obtained from the UCI Machine Learning Reposi-
tory®:

1. The Wisconsin Breast Cancer Database, which contains 699 (9-dimensional)
datapoints, containing 458 normal examples and 241 cases of cancer.

2. The Letter Recognition Database, which contains 20,000 (16-dimensional)
parametrizations of examples of printed letters, with 26 classes corresponding
to the alphabet. We use the 789 examples of the letter A’ as a hypothetical
normal class, and all other classes as outliers.

3. The STATLOG Landsat Satellite Database, which contains 6435 (36 dimen-
sional) vectors corresponding multispectral images of 6 different types of
ground coverage: we use the 1533 examples of 'red soil” as the normal class.

For each of these datasets we use 90% of examples of the chosen normal class
as training data, and the remaining 10% for testing. All subsequent experiments
are performed for 10 different testing/training permutations of the normal class.
Again, we test our algorithm with a maximum complexity level of 100 com-
ponents, and compare it to the consistency-optimized incremental SVDD al-
gorithm. The classification results illustrated by the ROC curves in Figure 2,
indicate that the proposed algorithm consistently outperforms the incremental
SVDD algorithm, although the performance obtained on the Cancer and Satellite
datasets is very similar.

Computational Complezity To confirm the assertion that the proposed algorithm
has bounded computational complexity, we recorded the time taken to train our
algorithm on each datapoint during the tests on the 36 dimensional Satellite
dataset. This is plotted (excluding the point where the merging matrix is first
initialized) in Figure 3, indicating that a fixed processing time per example is
indeed reached soon after the merging phase commences. Our algorithm takes
an average time of 565.56 & 0.32 seconds to train on the 1379 examples, while
the SVDD algorithm takes a significantly shorter time of 6.25 4+ 0.34 seconds
to train, albeit after a parameter optimization step which takes 482.53 + 60.21
seconds. Evaluation times for the two algorithms are similar: our algorithm takes
2.88+0.02 seconds to classify 5056 testing examples, while the incremental SVDD
algorithm takes 2.01 4 0.102 seconds to classify the same examples.

* Receiver Operating Characteristic
% http://www.ics.uci.edu/ “mlearn/MLRepository.html
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Figurel. Results for the synthetic spiral dataset. See text for description.
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Is the Computational Complexity Really Bounded?
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Figure3. Measuring computational complexity.

4 Discussion

We have proposed a simple procedure for incrementally training a one-class
classifier to perform outlier detection, without the need for any time-consuming
model optimization procedures. Despite its simplicity, the proposed algorithm
appears to perform better than the incremental SVDD algorithm, even though
the parameters of the latter were being chosen through a lengthy optimization
process. The fact that the optimization process proposed in [8] did not find
parameters that allowed incremental SVDD to outperform our algorithm does
not mean that such parameters could not be found in principle: it does, however,
illustrate the the key strength of our algorithm - the fact that it automatically
generates models that achieve a useful level of outlier detection performance.
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