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Inremental One-Class Learning with BoundedComputational ComplexityRowland R. Sillito and Robert B. FisherShool of Informatis, University of Edinburgh, UKAbstrat An inremental one-lass learning algorithm is proposed forthe purpose of outlier detetion. Outliers are identi�ed by estimating- and thresholding - the probability distribution of the training data.In the early stages of training a non-parametri estimate of the train-ing data distribution is obtained using kernel density estimation. Onethe number of training examples reahes the maximum omputationallyfeasible limit for kernel density estimation, we treat the kernel densityestimate as a maximally-omplex Gaussian mixture model, and keep themodel omplexity onstant by merging a pair of omponents for eahnew kernel added. This method is shown to outperform a urrent state-of-the-art inremental one-lass learning algorithm (Inremental SVDD[5℄) on a variety of datasets, while requiring only an upper limit on modelomplexity to be spei�ed.1 IntrodutionThe problem of one-lass learning (also known interhangeably as �outlier /novelty / anomaly detetion�) arises in a wide variety of di�erent appliationdomains. The fundamental goal of one-lass learning is to generate a rule thatdistinguishes between examples of a known lass of items and examples frompreviously-unseen novel lasses, on the exlusive basis of training examples fromthe known lass.This problem presents itself in ases where one wishes to distinguish betweenmembers of a lass for whih examples are abundantly available, and membersof another rarely observed lass. This often arises when attempting to detetabnormal ativity, eg. jet engine failure, omputer network intrusions, diseasesymptoms, et. In eah of these domains, anomalous examples may be sare orentirely absent during training, but their subsequent identi�ation is of ruialimportane. A wide variety of di�erent methods have been proposed to addressthis problem (see [3℄ for a review). However, almost all existing one-lass las-si�ation algorithms require all training examples to be available at one, for asingle �bath� learning step: if a new example is presented, the lassi�er must beretrained from srath.Sine outliers might only be identi�able by their deviation from a normalmodel, a key problem in one lass learning is the hoie of model omplexity. Insome ases training data may be well desribed by the parameters of a singleGaussian distribution, while in other ases - eg. where the data has multiple
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modes or lies on a non-linear manifold - a more omplex model is required. Itis important to selet the orret level of model omplexity: if it is too low, thelearned normal model may also inlude the anomalies that we wish to detet; ifit is too high, the model may not inlude the majority of normal examples.In many ases it would be useful to be able to inrementally train a lassi-�er as data beame available, without needing to pre-speify the level of modelomplexity. In this paper we propose a new tehnique for performing inremen-tal one-lass learning, where only an upper limit on model omplexity needsto be spei�ed. While omputationally feasible, our algorithm attempts to es-timate the underlying p.d.f. (probability density funtion) of the training datausing non-parametri kernel density estimation (with Gaussian kernels), therebygenerating a maximally omplex one-omponent-per-example Gaussian mixturemodel. One a maximum number of mixture omponents has been reahed, it iskept onstant by merging a pair of omponents for every new omponent added.We hoose pairs of omponents for merging based on an information theoretimerging-ost funtion originally proposed by Goldberger and Roweis in [2℄.Currently, at least two related tehniques exist in the literature. In [9℄ Ya-manishi et al. propose an unsupervised outlier detetion proedure �SmartSifter�in whih a Gaussian mixture model is trained using an on-line adaptation of theEM (Expetation Maximization) algorithm. A key aspet of their adaptation isthe inlusion of �disounting� parameters whih ensure that the e�et of oldertraining examples on the model parameters is rapidly displaed by new exam-ples. Eah new training example is given a sore based on the extent to whihit hanges the model parameters: a omparatively high sore, indiating a largehange in model parameters, indiates the possibility of an outlier. This algo-rithm seems inappropriate for omparison with the proposed algorithm as itmodels a �nite window of training data preeding eah new example, ratherthan attempting to inrementally build a omplete normal lass desription.A more losely related algorithm has been proposed in [5℄, where Tax andLaskov present an inremental training proedure for the SVDD (Support VetorData Desription) algorithm originally proposed by Tax and Duin in [7℄. TheSVDD algorithm attempts to �nd the smallest hypersphere that enloses thetraining data, and allows more omplex hyper-volumes (whih may �t the databetter) to be obtained by introduing kernel funtions whih map the trainingdata to a higher dimensional spae [7℄. In both bath and inremental forms,the SVDD algorithm relies ruially on the orret hoie of model omplexityparameters. Various methods have been proposed to address this issue in theabsene of example outliers, inluding: proedures for generating syntheti out-liers (Tax and Duin [4℄) and, more reently, a onsisteny based approah whihtakes the simplest possible lassi�er and inreases its omplexity parameter un-til the proportion of orretly reognized training data starts to fall (Tax andMuller [8℄). The inremental variant of SVDD does not inlude any on-line modelomplexity seletion, but it is oneivable that the bath optimization methodsould be applied to a pre-existing dataset to optimally parametrize the lassi�erbefore using it for on-line training.



We provide a detailed desription of the proposed algorithm in Setion 2, andthen illustrate its performane on a variety of datasets in Setion 3, where we alsoompare its performane with the inremental SVDD algorithm [5℄ (optimizedusing the onsisteny riterion proposed in [8℄). Our algorithm is shown to yieldequivalent, often better, performane than the inremental SVDD algorithmwithout requiring any time-onsuming parameter optimization.2 AlgorithmThe proposed algorithm is designed to reeive a sequene of labeled multivariatetraining data, and to determine - at any stage in the training proess - whetheror not new data are outliers. This is ahieved by estimating the underlyingprobability density funtion that gave rise to the data, and setting a thresholdon this density: if a new example has a probability lower than the threshold, itis lassi�ed as an outlier.2.1 Density EstimationPhase 1: Kernel density estimation Initially the probability density of thedata is determined using Kernel Density Estimation. This tehnique allows usto evaluate the probability of a new example by taking a uniformly weightedombination of a set of Gaussian kernels (with idential ovariane matries Σ)entered on eah of the training data. Thus, �nding the probability of a newdata point z, given a set of N training data X = {x1, . . . , xN}, simply onsistsof evaluating the following funtion:
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(where d refers to the dimensionality of the data) en-sures that the resulting probability distribution integrates to 1. Training themodel is straight-forward: when a new training example xNEW is reeived, it issimply added to the set X :
X → X ∪ {xNEW } (2)The only remaining problem is the hoie of the ovariane matrix Σ. Toredue omputational ost, we use a uniform ovariane matrix Σ(σ) = Id · σ2,whih leaves only a single parameter σ to be determined. The value of σ is hosenusing the �leave-one-out� likelihood riterion proposed by Duin in [1℄ (reentlyshown to be a good model seletion riterion for multivariate kernel densityestimation by Zhang et al. in [10℄). This tehnique allows us to �nd a parameterthat maximizes the likelihood of the dataset, while avoiding the problem ofthe data likelihood tending towards in�nity as σ → 0. For a given value of

σ, the �leave-one-out� likelihood funtion ombines the log-likelihoods for every



individual example xn given a model onstruted from all others ∀x 6= xn, asfollows:
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) (3)Every time the training dataset is updated (during the kernel density estimationphase) we evaluate (3) for a range of values surrounding the previous σ, andhoose σ = arg maxσ (LL(σ)).Phase 2: Mixture model merging Sine the omputational ost of evaluating(1) sales linearly with the quantity of training data, it eventually beomesinfeasible to estimate the p.d.f. of the data in this fashion. Noting that the kerneldensity estimate is essentially a maximally-omplex Gaussian mixture model, weadapt a method proposed by Goldberger and Roweis for reduing the omplexityof Gaussian mixture models in [2℄: one the maximum feasible model omplexityhas been reahed, we keep it onstant by merging a pair of omponents for eahnew omponent added.Initialization One the maximummodel omplexity has been reahedN = Nmaxwe initialize a data struture to store a Gaussian mixture model with weights(initially uniform), and ovarianes (set to the �nal value estimated in the kerneldensity phase), and means (the training data) as follows:
w1...N = 1

N

Σ1...N = Id · σ2
final

µ1...N = x1...N

(4)For eah pair of omponents Gi = {wi, µi, Σi} and Gj = {wj , µj , Σj} amerging ost is then alulated using (7) - explained in the next setion - formingan N × N matrix C. This one-o�1 alulation of Nmax(Nmax−1)
2 di�erent ostvalues is omputationally feasible for values of Nmax where it is still possible toevaluate (1) in reasonable time.Merging Strategy In this stage every new training example still ontributes aGaussian kernel. However the ovariane matrix is now �xed to the �nal estimateobtained in the preeding stage, and we employ a merging strategy to keep thenumber of mixture omponents onstant. For every new omponent added, apair of omponents (whih may inlude the new one) is merged as follows:

wmerge(i,j) = wi + wj
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(5)1 Subsequently maintaining this ost matrix only requires a �xed number of Nmax +1ost evaluations for eah new training example.



We wish to hoose a pair of omponents to merge in a way that minimizesthe resulting hange in the p.d.f. enoded by the model. The Kullbak-Leiblerdivergene provides a means of assessing the �damage� aused by replaing apartiular pair of omponents with a single merged omponent. Essentially, theKL divergene KL(P ||Q) =
∫∞

−∞
p(x) log p(x)

q(x)dx quanti�es the expeted infor-mation loss per sample when an approximating distribution Q is substituted fora true distribution P . For a pair of Gaussian distributions Gp = {µp, Σp} and
Gq = {µq, Σq}, it an be alulated as follows [2℄:
KL(Gp||Gq) =

1

2
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log
|Σq|
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q Σp) + (µp − µq)Σ
−1
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T − d

) (6)This allows us to quantify the ost of replaing omponents Gi and Gj (where
i 6= j) with their merged ounterpart Gmerge(i,j) by alulating a weightedombination (as proposed by Goldberger and Roweis in [2℄) of their respetiveKullbak-Leibler divergenes from Gmerge(i,j) as follows:

cost(Gi, Gj) = wiKL(Gi||Gmerge(i,j)) + wjKL(Gj ||Gmerge(i,j)) (7)Updating Proedure When a new training example xNEW arrives, a tempo-rary new omponent GNmax+1 = { 1
Nex+1 , xNEW , Id · σ2

final} is reated, and theweights of existing omponents are resaled by a fator of Nex

Nex+1 , where Nex isthe total number of training examples reeived before the new one. The ostmatrix is augmented with a new row/olumn for the new omponent, and apair of omponents is hosen suh that {Gi, Gj} = arg minGi,Gj
(cost(Gi, Gj)).If {Gi, Gj} are both existing omponents, then Gi is replaed with Gmerge(i,j)and Gj is replaed with the new omponent; alternatively if Gj is the new om-ponent then Gi is simply replaed with Gmerge(i,j). The temporary omponent

GNmax+1 is then removed, and the merging ost matrix C updated aordingly.This proedure requires a �xed total of Nmax + 1 evaluations of (7) for everynew training example, as the ost matrix only needs to be updated for entriesorresponding to merged/new omponents.2.2 Classi�ation ThresholdGiven the proposed density estimation method, an important remaining issueis the hoie of lassi�ation threshold. A naive approah would be to set thethreshold at that the level of the least probable (given the urrent model) trainingexample, thereby orretly lassifying all training data as normal. However, it isquite possible that the least probable training example - whih will be loatedin the most sparsely populated region of training data - may have a probabilityvalue equivalent to that of the outliers we wish to detet. To avoid this problem,and to make the method robust to potential outliers in the training set, we setthe threshold at a value that deliberately mislassi�es a ertain proportion of thetraining data as outliers. In the experiments desribed in the following setion



we hoose a value of 10%, aiming to learn a lassi�er that �lters out 90% ofnormal data.3 ExperimentsIn this setion we measure the lassi�ation performane of the proposed algo-rithm on a variety of datasets, showing how lassi�ation performane hangesas the model is trained on more training examples. To plae the performane ofthe proposed algorithm in ontext we ompare its performane to that of theinremental SVDD algorithm [5℄, making omparisons at the point where bothalgorithms have been trained on all training examples in a given dataset.We use a freely available implementation of the inremental SVDD algorithm,insvdd, ontained in the DDtools MATLAB toolbox [6℄. In all tests we usethe radial basis kernel funtion, and optimize the kernel parameter (for thewhole training dataset) using the onsistent_o funtion (also from [6℄) whihimplements the onsisteny-based model seletion riterion proposed in [8℄. Weinitially apply this riterion to a range of 20 linearly spaed values betweenthe shortest and longest Eulidean distanes observed within the dataset; tosearh for potentially better parameter values on a �ner sale, we then run aseond parameter optimization for a further 20 values surrounding the optimalparameter from the �rst set. As for the proposed algorithm, we set the SVDDthreshold parameter at a level that aims to rejet to 10% of the training data.Syntheti Dataset An initial experiment was arried out on a syntheti 2 dimen-sional dataset: we de�ned a spiral shaped region whih we used to divide a setof uniformly distributed random datapoints into a hypothetial normal lass ofdatapoints (points in the spiral region) and outliers (all other points). We used2500 spiral points for training the algorithm, and a further 2500 points from thespiral along with 2500 outlier points for testing it, as shown in Figure 1.For this test (as for all subsequent tests) we set the upper limit on the numberof mixture omponents Nmax to be 100. The middle setion of �gure 1 showsthe on�guration of the 100 Gaussian omponents before the merging phaseommenes, and at the end of the training proess. The resulting model organi-zation appears to aurately re�et the shape of the spiral: indeed, at the endof training the algorithm orretly lassi�es 88.13% of all test data, with a TruePositive rate2 of TP = 86.1% and a False Positive rate3 of FP = 0.0984%. The
TP and FP urves shown in the lower left hand setion of Figure 1 indiatethat the lassi�ation performane inreased in a stable fashion as more trainingexamples were proessed. In this plot, and in subsequent plots of this type, thevertial dotted line indiates the start of the merging phase.At the end of training, the inremental SVDD algorithm orretly lassi�ed
79.44% of the test data (with TP = 89.69% and FP = 0.308%), mislassifying2 Indiating normal examples orretly identi�ed as normal.3 Indiating outliers inorretly lassi�ed as normal.



a muh larger number of outliers as normal. The ROC4 urve in the lower righthand setion of Figure 1 shows the di�erent TP and FP values obtained as the(training data rejetion) threshold is varied for eah lassi�er, indiating that theproposed algorithm outperforms inremental SVDD algorithm aross the rangeof possible thresholds. Both plots in Figure 1 show the mean performane for 10di�erent random orderings of the training data.Real Datasets A series of subsequent experiments were then arried out on threedi�erent real-world datasets obtained from the UCI Mahine Learning Reposi-tory5:1. The Wisonsin Breast Caner Database, whih ontains 699 (9-dimensional)datapoints, ontaining 458 normal examples and 241 ases of aner.2. The Letter Reognition Database, whih ontains 20,000 (16-dimensional)parametrizations of examples of printed letters, with 26 lasses orrespondingto the alphabet. We use the 789 examples of the letter 'A' as a hypothetialnormal lass, and all other lasses as outliers.3. The STATLOG Landsat Satellite Database, whih ontains 6435 (36 dimen-sional) vetors orresponding multispetral images of 6 di�erent types ofground overage: we use the 1533 examples of 'red soil' as the normal lass.For eah of these datasets we use 90% of examples of the hosen normal lassas training data, and the remaining 10% for testing. All subsequent experimentsare performed for 10 di�erent testing/training permutations of the normal lass.Again, we test our algorithm with a maximum omplexity level of 100 om-ponents, and ompare it to the onsisteny-optimized inremental SVDD al-gorithm. The lassi�ation results illustrated by the ROC urves in Figure 2,indiate that the proposed algorithm onsistently outperforms the inrementalSVDD algorithm, although the performane obtained on the Caner and Satellitedatasets is very similar.Computational Complexity To on�rm the assertion that the proposed algorithmhas bounded omputational omplexity, we reorded the time taken to train ouralgorithm on eah datapoint during the tests on the 36 dimensional Satellitedataset. This is plotted (exluding the point where the merging matrix is �rstinitialized) in Figure 3, indiating that a �xed proessing time per example isindeed reahed soon after the merging phase ommenes. Our algorithm takesan average time of 565.56 ± 0.32 seonds to train on the 1379 examples, whilethe SVDD algorithm takes a signi�antly shorter time of 6.25 ± 0.34 seondsto train, albeit after a parameter optimization step whih takes 482.53 ± 60.21seonds. Evaluation times for the two algorithms are similar: our algorithm takes
2.88±0.02 seonds to lassify 5056 testing examples, while the inremental SVDDalgorithm takes 2.01 ± 0.102 seonds to lassify the same examples.4 Reeiver Operating Charateristi5 http://www.is.ui.edu/~mlearn/MLRepository.html
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Figure1. Results for the syntheti spiral dataset. See text for desription.
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Figure2. Results for real datasets. See text for desription.
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