

Edinburgh Research Explorer

Approximate Nearest Neighbor Search to Support Manual Image
Annotation of Large Domain-specific Datasets

Citation for published version:
Boom, BJ, Huang, PX & Fisher, RB 2013, Approximate Nearest Neighbor Search to Support Manual Image
Annotation of Large Domain-specific Datasets. in Proceedings of the International Workshop on Video and
Image Ground Truth in Computer Vision Applications. ACM, New York, NY, USA, pp. 4:1-4:8. DOI:
10.1145/2501105.2501112

Digital Object Identifier (DOI):
10.1145/2501105.2501112

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the International Workshop on Video and Image Ground Truth in Computer Vision Applications

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

https://doi.org/10.1145/2501105.2501112
https://www.research.ed.ac.uk/portal/en/publications/approximate-nearest-neighbor-search-to-support-manual-image-annotation-of-large-domainspecific-datasets(c3d2395e-5099-479e-8bd3-98734b978aee).html

Approximate Nearest Neighbor Search to support Manual
Image Annotation of large domain-specific datasets

Bastiaan J. Boom Phoenix X. Huang
Institute of Perception, Action

and Behaviour
School of Informatics

University of Edinburgh
bboom@inf.ed.ac.uk

Robert B. Fisher

ABSTRACT
The annotation of large datasets containing domain-specific
images is both time-consuming and difficult. However, cur-
rently computer vision and machine learning methods have
to deal with ever increasing amounts of data, where anno-
tation of this data is essential. The annotated images allow
these kind of methods to learn the variation in large datasets
and evaluate methods based on large datasets. This paper
presents a method for annotation of domain-specific (fish
species) images using approximate nearest neighbor search
to retrieve similar fish species in a large set (216,501) of im-
ages. The approximate nearest neighbor search allows us
to find a ranked set of images in large datasets. Present-
ing similar images to users allows them to annotate images
much more efficiently. In this case, our user interface present
these images in such a way that the user does not need to
have knowledge of a specific domain to contribute in the
annotation of images.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Search and Retrieval—Clustering, Information filtering ; H.3.3
[Information Search and Retrieval]: Content Analysis
and Indexing—Indexing methods; H.2.8 [Database Man-
agement]: Database Applications—image databases

Keywords
manual image annotation, approximate nearest neighbor search,
large-scale clustering of fish images

1. INTRODUCTION
Manual annotation of domain specific images is necessary al-
lowing computer vision methods to learn the domain knowl-
edge in the images and to evaluate the performance of these
methods. To annotate these kinds of images often experts
are needed who can determine the appropriate labels. This
paper discusses a method to build a large manually labelled

dataset of images (e.g. underwater images of fish) together
with groundtruth classifications (e.g. fish species) in an ef-
ficient manner without using expert knowledge. In the re-
cent work of [3], clustering supports the annotation of do-
main specific images. Common clustering methods are often
not able to cluster a large-scale dataset (100,000 images) in
small enough portions. The new contributions of this paper
are: First, using approximate nearest neighbors to support
annotation by finding ranked clusters of similar images in
domain-specific (fish species) large-scale datasets. Second,
an approximate nearest neighbor search method that allows
us to retrieve similar fish images for a large-scale datasets
(216,501 fish images). Thirdly, an improved interface that
uses the ranking ability of the approximate nearest neigh-
bor search to allow the domain specific annotation in a more
efficient way.

1.1 Related Work
Previous work in the manual annotation of images includes,
for instance, the ESP Game [17] and LabelMe [13]. Most of
this work focusses on internet images where often multiple
tags can be defined for a single image. These approaches are
suitable in the case of random internet images, but users of-
ten fail to give specific tags especially if domain knowledge
is required. In [20], the problem of annotation of an im-
age database of birds is solve by annotating multiple visual
properties (like the color of tail, wings, beak) in order to
obtain a specific label for the bird. The annotation of mul-
tiple properties might however not be the most efficient way
to assign certain images to a specific class. Several methods
combine user annotation and machine learning to obtain the
groundtruth label, for instance [12]. The methods that are
closest to our methodology are [18] and [3]. In [18], users
can search and annotate images at the same time. This ap-
proach is developed for internet images, where all labels are
defined apriori to the annotation. In [3], clustering is used
to annotate the images, working with a smaller dataset how-
ever it is possible to add new labels. In our methodology,
because nearest neighbor search is used instead of clustering,
we are able to deal with large-scale datasets of images. We
also make use of the fact that images are ranked allowing
us to annotate only the interesting images closely ranked to
the search class example.
In order to quickly search these large datasets, several ap-
proximate nearest neighbor search algorithms can be applied
to solve this problem. Examples of approximate nearest
neighbor search methods are the kd-tree used in [11] and

uhiroeh
Typewritten Text
Boom, B. J., Huang, P. X., & Fisher, R. B. (2013). Approximate Nearest Neighbor Search to Support Manual Image Annotation of Large Domain-specific Datasets. In Proceedings of the International Workshop on Video and Image Ground Truth in Computer Vision Applications. (pp. 4:1-4:8). (VIGTA '13). New York, NY, USA: ACM. doi: 10.1145/2501105.2501112

the inverted file system [8] and Locality Sensitive Hashing
(LSH) [4][2]. LSH allows us to search for combinations of
features, which are probably distinctive. However, the un-
derlying Euclidean distance between feature vectors used in
LSH does not allow us to indicate the importance of certain
features.
There are many improvements for LSH. Semantic hashing is
proposed in [14], where each item in that dataset is repre-
sented by a binary code and a feedforward neural network
is trained to calculate the binary code for a novel input.
Other machine learning approaches are pursued to obtain
compact codes by using Adaboost [10]. Recently, Spectral
Hashing [19] was proposed to obtain optimal bitstrings given
a training set of feature vectors. One problem with image
retrieval is that it is very difficult to obtain a training set
that is representative of the entire dataset. For this reason,
our method uses a different distance measure that does not
rely on training. This work is inspired by the Information
Bottleneck describe in [10] and applied to image clustering
in [5], where sets of features are compared instead of feature
vectors. There is other related work using the Information
Bottleneck for feature selection to cluster videos in [6] and
to improve quantization of the codebook for image retrieval
in [9]. Our approximate nearest neighbor search extends
an approach presented in [5], so it can be used in image re-
trieval, explaining how to obtain binary codes that allow us
to index the images. We show that the Information Bot-
tleneck [5] can be used to perform image retrieval on low
resolution fish images with features (like color, texture and
contours) .
This paper is organised as follows: Section 2 explains the
new user interface for the annotation of fish images. In Sec-
tion 3, the nearest neighbor search methodology to obtained
ranked clusters is described. Section 4 discusses the current
implementation and Section 5 shows the results of the near-
est neighbor search methodology and the number of anno-
tations.

2. USER INTERFACES FOR ANNOTATION
The annotation of thousands of images can be time con-
suming, where [3] already shows that the efficiency can be
improved by clustering the images. In this paper, we im-
prove the efficiency even more by using a ranked group of
images. In our method, two interfaces are being used for the
annotation of the images:
The first interface shown in Figure 1(a) allows users to
remove images that do not belong to the same class as the
representative image on top. In our case, there are two rea-
sons that images have to be removed. The first reason is
that the image belongs to another class while the second
reason is that there is no fish inside the images because of a
failure in the automatic fish detection methods. Clicking on
the images indicate that they are of another class (using red
surrounding around these images) and a checkbox “Bad Im-
age” can be used in cases where the images did not contain
a fish or the fish is not recognisable due to low resolution or
image blur (using black surrounding around these images).
The “Bad Images” are not shown again in the user interface.
The second feature of the first interface is that the
user can decide to stop annotation if lots of images are not
similar to the fish image shown on top (Figure 1(b)). In
our fish database, we have observed a lot of rare fish species
that only appear for instance 20 times in our dataset, the

(a) The first interface to remove images from the
cluster by clicking on the image which makes the sur-
rounding of the image red. Also“bad images”can be
removed by using a checkbox making the surround-
ing black.

(b) The first interface allows in the case of low
ranked images to ignore them after a certain point
making the rest of the images yellow.

(c) The second interface to link the representa-
tive image in the top row to a label by clicking on
one of the gallery images which belong to the same
label or add a new label by pressing the green plus
button.

Figure 1: Interfaces see Section 2 for more details.

nearest neighbor search will find more images, but in that
case these images contain other species which are often of
lower rank. By checking the ignore checkbox, all images
with a lower ranking than the current image (less similarity
to the representative image) are ignored for annotation and
are not linked to the representative images. If under a cer-
tain ranking, more than 50% of the images are incorrect, it
becomes more efficient to either annotate the correct images
individually or to wait for a screen where these images are
better represented, which is exactly what this feature allows
users to do. The area surrounding these images will become
yellow (see Figure 1(b))
The second interface (1(c)) is shown directly after com-
pleting the first interface (different from [3]), where the im-
age on top stays the same. In the first interface, all images
with a similar class are linked to the representative image
on top. In the second interface, this group of images can
be linked to the existing classes or a new class can be de-
fined by linking to this representative images which are also
shown in the first interface. In the case of linking the repre-
sentative image to a class, we click on these representative
images of this class making the surrounding area of the im-
age green. A new label is created by pressing the green plus
button. Currently, we ranked the classes in this interface by
having the most common classes on top while having rarer
classes lower. Experiments with performing ranking based
on appearance of the classes were also performed, but users
indicated that having the same ordering in the second inter-
face is more user-friendly especially with a large amount of
classes allowing them to remember already observed classes.

3. INFORMATION BOTTLENECK APPROX-
IMATE NEAREST NEIGHBOR SEARCH
(IBANN)

The user interface uses an Approximate Nearest Neighbor
Search method to obtain a cluster of ranked images given
a representative image. The Information Bottleneck is the
underlying theory behind our Approximate Nearest Neigh-
bor Search method (IBANN), where it is used as a distance
measure between images. To use this distance measure, we
need to obtain sets of features from the images and models
that can describe the features. Gaussian Mixture Models
obtained from the feature sets allow us to compute the dis-
tance measure between images, which can be used to rank
the images. However, in image retrieval, datasets are often
too large to compute the distance between all images with
a query image. For this reason, hash functions (LSH) are
proposed to compute codewords, which allows fast indexing
of the dataset. Given a query, fast retrieval of a subset of
promising images is then possible, so only the images in the
selected subset are ranked using the Information Bottleneck
distance measure.

3.1 Information Bottleneck
In this work, the Information Bottleneck principle is used
as a distance measure between images. We were inspired
by [5] and use a similar notation in order to explain this
algorithm. Given a joint distribution p(x, y) on the “model”

space X and the “feature” space Y , find a clustering X̂ that
minimizes the information loss I(X;Y) − I(X̂;Y), where
I(X;Y) is the mutual information between X and Y . In
this work, the information loss is used as a distance measure

Figure 2: The color, texture and contour features of
the fish images: In the columns, the segmented fish
images, the magnitude of the Canny edge detector
and the Curvature Scale Space of the contour are
shown respectively.

to obtain the ranking between a queried image and retrieved
images. Given two models x1 and x2, the information loss
due to merging the models is given by:

d(x1, x2) = I(Xbefore;Y)− I(Xafter;Y) (1)

In this case, I(Xbefore;Y) gives the mutual information of
each model describing the feature before merging the models
(Xbefore can be seen as modeling the features with p(y|x1)
and p(y|x2) separately) and I(Xafter;Y) is the mutual in-
formation afterwards (Xafter can be seen as modeling the
features if you combine p(y|x1 ∪ x2)). According to [5], this
gives:

d(x1, x2) =
∑

y,i=1,2

p(xi, y) log
p(xi, y)

p(xi)p(y)

−
∑
y

p(x1 ∪ x2, y) log
p(x1 ∪ x2, y)

p(x1 ∪ x2)p(y)
(2)

=
∑
i=1,2

p(xi)D(p(y|xi)||p(y|x1 ∪ x2)) (3)

In this case, D(f ||g) is the Kullback-Leibler (KL) divergence
and this equation is similar to the Jenson-Shannon diver-
gence and can be used as a distance measure. In the next
section, we will discuss how to obtain both the features and
the models from the fish images.

3.2 Feature Extraction
In order to compare fish images, there are three important
features according to biologists, namely the color of the fish,
the texture of the fish (stripes, spots, etc) and the contour of
the fish. This paper shows that these different features can
be converted into the same representation. We start with
a set of segmented fish images from a fish detection algo-
rithm [15], shown in Figure 2. We compute the coordinates

of the bicone HSL (Hue,Saturation,Light) color space for all
segmented pixel values, which gives a set of color values to-
gether with their image locations. The location values of
the colors are normalized based on the center and size of the
segmentation. For the texture, we compute the Canny edge
detector on all pixel values, giving us a set of magnitude
and orientation values of the edges together with their nor-
malized location values. Given the contour of the fish, we
compute the Curvature Scale Space (CSS) described in [1]
giving us the graph shown in Figure 2 (third column). At
the moment, the fish images are not rotated or flipped in
order to obtain a standard swimming direction, because we
assume that the dataset is large enough to find the same
fish in almost similar swimming direction. These feature
sets are modeled by a mixture of Gaussians like [5]. A set
of features Y π = {y1, ..., yn} is coupled for each different
feature space π i.e. color, texture, contour. For the different
feature spaces, both the dimensions of yi and the number of
values |Y | can be different. For clarity, we give an intuition
of our method on a single feature set and for this reason
leave out π in most equations. We model each set of fea-
tures with a Gaussian Mixture Model (GMM) f(y|x). Using
the Expectation-Maximization described in [22], the GMMs
are computed using the Minimum Description Length to de-
termine the number of Gaussians k.

f(y|x) =

kx∑
j

αx,jN(y, µx,j ,Σx,j) (4)

Equation 4 gives the Gaussian Mixture Model, kx is the
number of mixtures for model x. The variables αx,j , µx,j ,
Σx,j are respectively the weight, the mean and covariance
for each Gaussian, which are estimated from the values Y .
Figure 3 shows the GMMs obtained from the color values

of different fish images. These are however five dimensional
features (color and location values). The second column in
Figure 3 shows the Gaussians as ovals, where the color is
the mean color of that Gaussian at its normalized position.
In the third column in Figure 3, the three dimensional bi-
cone HSL space is shown where we plot an ellipsoid for each
Gaussian with its mean color. For texture, we can perform
the same operation as for color because it is on a pixel ba-
sis, however, converting the CSS into a GMM is not obvious.
For the CSS, the region under the curves are filled (Figure 4
shows that the CSS curves look similar to a Mixture of Gaus-
sians). By sampling from these curves, we obtain a GMM
which models the CSS. Using the GMM, both features Y
and models X are obtained which makes it possible to use
the information loss described in the previous section.
To compute the similarity between fish, we can now com-

pute the similarity between their models x1, x2. This dis-
tance can be written as following:

d(x1, x2) =
∑
i=1,2

D(f(y|xi)||f(y|x1 ∪ x2)) (5)

In this case, we assume uniform prior probability on p(xi)
(see Equation 3) allowing us to leave this term out of Equa-
tion 5. This distance measure can also be used for more than
one image by combining GMMs. This gives the flexibility to
compare sets of images with each other using this distance
measure. In the case of video surveillance, objects are usu-
ally visible in multiple frames which allows us to combine
the appearances of the objects in multiple frames.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 3: The Gaussian Mixture Models of the col-
ors. The fish images are in the first column. The
second column shows the GMMs where the oval in-
dicate the mean and covariance in position combined
with average color of each Gaussian and where the
thickness of the lines indicates the weight αx,j of
the individual Gaussians. The third column shows
the ellipsoid for each Gaussian in the bicone shaped
HSL color space, where the cube corners indicates
the locations of some primary colors.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Figure 4: The Gaussian Mixture Models of the Cur-
vature Scale Space of the fish image (first column).
In the second and third column, the original CSS
representation and the filled curves are shown. The
final column gives the estimated GMMs based on
the filled curves.

To compute the KL divergence between two mixtures of
Gaussians f and g, a Monte-Carlo simulation is used, be-
cause there is no closed-form expression. The KL-divergence
for f and g is given by

D(f ||g) =
1

n

n∑
t=1

log
f(yt)

g(yt)
(6)

where y1, ..., yn are sampled from the GMM f(y). Notice
that this gives the ability to compute a distance between
two feature sets modeled by GMMs. To incorporate multi-
ple feature spaces, the sum is taken over all the distances
between the different sets of features and models. However,
computing the distance between each image in the dataset
is not feasible in a large dataset, so we use Locality Sensitive
Hashing for indexing.

3.3 Codeword extraction
In Locality Sensitive Hashing (LSH), there are multiple ways
to compute a codeword from a feature vector. One of the
most common ways to obtain a single bit given the feature
vector v is h(v) = bav+b

R
c. In this case, both the vector a

and b are randomly chosen for each bit, where a is a vector
with the same dimension as v from a stable distribution
and b is a real number from a uniform distribution over
the range [0, R] and R is the expected range of the feature
vector. In [19], the following requirements for the function
h to compute the bits are given: (1) the function has to be
easily computed for new images, (2) the function requires
small numbers of bits to code the full dataset and (3) similar
items get similar codewords by the function.
In the previous section, a GMM x is computed for every
fish image. Given a random point yr in the feature space
Y , we can compute the probability f(yr|x) > t and together
with a threshold t, this will give us a binary decision. This
already satisfies both requirements (1) and (3). Because the
computation of the probability given a GMM is very easy
and, given similar fish images, we expect that if the GMMs
of these fish images are quite similar that this also gives a
similar probability. A more formal definition of our hash
function is given as follows:

h(f) = log f(yπr
r |xπr) > t (7)

For the hash function h(f), r denotes properties that are
randomly chosen, meaning yπr

r is a single random feature
value of a certain feature set of a randomly chosen feature
space πr (i.e. color, texture, contour) and xπr is the GMM
that models that randomly chosen feature space. In LSH
with a feature vector v, a hash function h(v) is used to
index images allowing the fast retrieval of other feature vec-
tors with a small Euclidean distance. In this method, the
distance between GMMs f is used, so a hash function h(f)
is computed for indexing which allows fast retrieval of po-
tentially similar GMMs. The log of the GMM is used in the
hashing function and the threshold t can be set randomly.
However, better results can be obtained by using a set of
images to obtain a threshold t where h(f) has 50 % chance
of being zero or one, making the bit more efficient which
allows us to satisfy requirement (2).
One of the advantages of this method is that there is a clear
relationship between the bit and the feature space, because
the bit encodes the likelihood that a certain random feature
yr is part of the model x. When using LSH [2], instead of ex-

tracting a single bit, multiple bitstrings are extracted. Sim-
ilar bitstrings mean that multiple features are represented
similarly by the models. Based on L bitstrings each with
length of K, the nearest neighbor search with LSH is per-
formed. Here we give a brief overview of LSH [2]: For each
bitstring, a hash table is created allowing fast retrieval of the
same bitstring. However because images and thus the ob-
tained GMMs are never exactly the same, bitstrings might
be slightly different, so searching L bitstrings enlarges the
chance of finding similar images, where both K and L are
parameters that can be tuned. Given the set of retrieved
images using this algorithm, which is a small subset of the
entire set, we compute information loss given in Equation 5
between all those retrieved images and the query image al-
lowing us to rank the images based on the information loss.

4. CURRENT IMPLEMENTATION OF EN-
TIRE SYSTEM

Currently, the approximate nearest neighbor search and the
website for annotation are still separated, because the near-
est neighbor search is developed in MATLAB which is diffi-
cult to connect to a webserver. To annotate the images, the
nearest neighbors are precomputed for a large subset of rep-
resentative images and stored in a MySQL database. The
website is able to randomly select one of the representative
images and get a sorted list of all the nearest neighbors. Cur-
rently, there are 4,553 representative images in the database
for the 216,501 fish images that we have in total.

5. EXPERIMENTS AND RESULTS
For the experiments and results, we first focus on the results
of the IBANN search method and compare them to some
other methods. Afterwards, the number of annotations cur-
rently performed with this system are given, although more
annotations are expected in the near future.

5.1 Approximate Nearest Neighbor Search
The IBANN search method is compared to two other meth-
ods: the first method is the standard bag-of-features method
using the VLFeat implementation [16] to obtain a normal-
ized histogram of SIFT features. This normalized histogram
is then used as a feature vector into LSH and the Euclidean
distance is computed to determine the ranking. The prob-
lem is however that in low resolution images there are often
only a small number of SIFT features and in some cases
there are no features at all. We decided not to query the
images where no features are detected, while for the other
methods, all the images in the dataset are queried. The sec-
ond method is LSH combined with a feature vector made up
of properties used for fish recognition [7]. In this case, the
shape of the fish is used to determine the head and tail and
align the fish images. Using both more specialised texture
and contour features of the aligned fish and color histograms
in certain regions (head, tail, top, bottom, entire segmenta-
tion), a feature vector is created to describe each fish. This
feature vector is then used in LSH and the Euclidean dis-
tance is used to rank the fish images. For LSH, the bitstring
length and number of hash tables are respectively, K = 24
and L = 30, and are used for both the described methods
above and the IBANN search method.
We created two versions of the IBANN search method for
image retrieval. The first version of this method uses only a

single GMM of color (HSL) values together with their nor-
malized location values in the images. The second version
of this method uses multiple GMMs, which include both
the color values with their normalized location values, tex-
ture (Canny) with normalized location values and contours
(CSS).

5.2 Dataset
The fish image database has an average fish image resolu-
tion of 78 × 82 and the average numbers of pixels of the
segmented fish is 1003. These images are obtained from
underwater cameras which are monitoring a coral reef envi-
ronment. These cameras are recording every day, giving us
a very large database of interesting video material. Back-
ground subtraction together with tracking techniques are
used to extract fish images from the videos [15]. Currently,
1955 trajectories of fish are used to verify performance of the
Approximate Nearest Neighbor Search methods, containing
20074 labeled fish images. Many of these fish images (11310)
are annotated as “Bad Image”, because no fish is present or
blurring effects in the water make it impossible to determine
the exact species. There are 43 different fish species in this
database, where the distribution of species varies greatly.
A couple of species appear very often (e.g. clownfish), but
there are also around 20 very rare species. The entire dataset
is in reality much larger than the 20074 fish images, but this
number of images is annotated and verified by us again to
guarantee the quality of the annotation.

5.3 Methodology of Experiments
In this paper, we are interested in the number of similar fish
which can be found by querying with a certain fish image.
In our method, the fish images are ranked, where we like to
obtain images of the same species in the highest ranks if we
search for a certain species. There are also many “bad im-
ages” in the database, so if we search for a “bad image”, we
would like to retrieve “bad images” instead of fish allowing
us to discard these images. To evaluate these algorithms, we
query these search methods with all the images of a given
trajectory in the entire dataset, where we perform a leave-
one-out experiment removing all images of that trajectory
from the dataset. Notice that automatic fish detection meth-
ods are used to obtain fish images for videos, where the fish
is followed in multiple frames giving us a trajectory. Query-
ing with all images of a trajectory makes all methods more
robust against the very uncontrolled movements of the fish.
To compute the distances of the multiple fish images in the
trajectory, we sum over the individual distances for all meth-
ods. The mean average precision curves are calculated for
all methods and are plotted in Figure 5, which shows the
average precision in retrieval given the best k ranked images
for different values of k. The ideal retrieval function has pre-
cision 1.0 for all values of k. In Figure 6, the results of the
queries (10 best ranked images) for a single fish image are
shown, where there are both query results on fish images
(first two and last two rows) and a “bad image” (middle).
The annotation of “bad image” is important, because not all
images are useful for species classification and this allows us
to estimate which images are good enough. The clown fish
appears very often in our dataset, which is why the retrieved
images look very similar to the query image, although they
are from different trajectories. The similarity arises because:
1) many fish, 2) fixed camera, 3) typical fish behaviour, 4)

10 20 30 40 50 60 70 80 90 100
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

K Nearest Neighbors (Best Ranked Images)

M
ea

n
A

ve
ra

ge
P

re
ci

si
on

Bag of Features

Domain Specific Feature Vector

Information Bottleneck (only color)

Information Bottleneck (all features)

Figure 5: The mean average precision of all meth-
ods, where the IBANN search method with all fea-
tures performs best.

location based feature model. The two fishes at the bottom
of Figure 6 are less common.

5.4 User Interface and Obtained Data
Figure 5 shows that the IBANN search method on all fea-
tures performs better than the other methods. It also shows
that the precision for the first 100 neighbors is higher than
50%, which means that in the user interface less than 50%
of the images have to be removed by the users. This has
a direct effect on the efficiency of the users (already shown
in [3] that good clustering results improve user efficient, al-
lowing users to perform the same taske in a third of the
time), although this is hard to measure exactly, because
our users perform the annotation often in combination with
other tasks. This makes a dedicated time measure of how
long it takes to complete a screen impossible. However, our
user interface presents ranked clusters, improving both the
amount of images in the clusters and the quality of presenta-
tion of the clusters (making it probably even more efficient).
Currently, we have 23 users who performed 408,871 anno-
tations with a minimum of 66 annotations and maximum
of 90,466 annotation per user. 91,894 images are annotated
where a lot of images are labelled as “bad images”, because
no fish was present, low resolution, etc. For 28,264 images,
we have obtained a species label, however these numbers are
still increasing. An image with a species label is annotated
by multiple users as the same fish species, where an agree-
ment of 2 persons is necessary. More complex ways of de-
termine user agreement can be used [21], however our main
focus was on the creation of a large dataset of fish images
for training and evaluation of our fish recognition methods.

6. CONCLUSION
A methodology is presented to annotate images more effi-
ciently using Approximate Nearest Neighbor search. For a
domain-specific dataset, we show that IBANN search meth-
ods gives good results (first 100 neighbors is higher than 55%
precision) and performs better than other search methods on
a subset of our dataset. Together with Approximate Near-
est Neighbor search, a user interface is presented that makes
use of both clusters and rankings obtained from the near-

Figure 6: Some results given the query images on the left hand side: The first rows shows the 10 neighbors
of the clown fish image in order of similarity to the query image (there are many images of clown fish in our
database). The third row show results of querying with a “bad image”. The final row shows that incorrect
fish images are also sometimes found (column 5,7,8 and 9).

est neighbor search. This method allows to efficiently and
without much domain knowledge annotated the fish images
by linking them to a fish species. This framework can also
be used in other domains and with different nearest neigh-
bor search methods. It allows users to create large datasets
of groundtruth data for domain specific image recognition.
These large datasets can be used to learn classifiers and ver-
ify performance of existing classifiers.

6.1 Future Work
The future plans are a full integration of both the Approxi-
mate Nearest Neighbor search and the website allowing for
even more flexibility in labelling data, where in the case of
observering an interesting fish species, the user can indicate
that in the next screen he/she would like to have that im-
age as the representative image. Also, integration of [21] on
how to reach user agreements by making use of the user’s
performance compared to other users labelling similar im-
ages. Finally, we are investigating creation of a mechanism
to filter out well-known classes while focussing on the rare
classes in the dataset.

6.2 Acknowledgements:
This research was funded by the European Commission (FP7
grant 257024) and the Taiwan National Science Council (grant
NSC100-2933-I-492-001) and undertaken in the Fish4Knowledge
project (www.fish4knowledge.eu).

7. REFERENCES
[1] S. Abbasi, F. Mokhtarian, and J. Kittler. Curvature

scale space image in shape similarity retrieval.
Multimedia Syst., 7(6):467–476, Nov. 1999.

[2] A. Andoni and P. Indyk. Near-optimal hashing
algorithms for approximate nearest neighbor in high
dimensions. Commun. ACM, 51(1):117–122, Jan. 2008.

[3] B. Boom, P. Huang, J. He, and R. Fisher. Supporting
ground-truth annotation of image datasets using

clustering. In Pattern Recognition (ICPR), 2012 21st
International Conference on, pages 1542–1545, 2012.

[4] A. Gionis, P. Indyk, and R. Motwani. Similarity
search in high dimensions via hashing. In Proceedings
of the 25th International Conference on Very Large
Data Bases, VLDB ’99, pages 518–529, San Francisco,
CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[5] J. Goldberger, S. Gordon, and H. Greenspan.
Unsupervised image-set clustering using an
information theoretic framework. IEEE Trans. on
Image Processing, 15(2):449–458, Feb. 2006.

[6] W. H. Hsu and S.-F. Chang. Visual cue cluster
construction via information bottleneck principle and
kernel density estimation. In Proceedings of the 4th
international conference on Image and Video
Retrieval, CIVR’05, pages 82–91, Berlin, Heidelberg,
2005. Springer-Verlag.

[7] P. X. Huang, B. J. Boom, and R. B. Fisher.
Underwater live fish recognition using a
balance-guaranteed optimized tree. In K. Lee,
Y. Matsushita, J. Rehg, and Z. Hu, editors, Computer
Vision - ACCV 2012, volume 7724 of Lecture Notes in
Computer Science, pages 422–433. Springer Berlin
Heidelberg, 2013.

[8] H. Jégou, M. Douze, and C. Schmid. Improving
bag-of-features for large scale image search. Int. J.
Comput. Vision, 87(3):316–336, May 2010.

[9] S. Lazebnik and M. Raginsky. Supervised learning of
quantizer codebooks by information loss minimization.
IEEE Trans. Pattern Anal. Mach. Intell.,
31(7):1294–1309, July 2009.

[10] Y. Liang, J. Li, and B. Zhang. Learning
vocabulary-based hashing with adaboost. In
Proceedings of the 16th international conference on
Advances in Multimedia Modeling, MMM’10, pages
545–555, Berlin, Heidelberg, 2010. Springer-Verlag.

[11] D. G. Lowe. Object recognition from local

scale-invariant features. In Proceedings of the
International Conference on Computer Vision-Volume
2 - Volume 2, ICCV ’99, pages 1150–, Washington,
DC, USA, 1999. IEEE Computer Society.

[12] V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez,
C. Florin, L. Bogoni, and L. Moy. Learning from
crowds. J. Mach. Learn. Res., 99:1297–1322, 2010.

[13] B. Russell, A. Torralba, K. Murphy, and W. Freeman.
Labelme: A database and web-based tool for image
annotation. Int J of Computer Vision, 77:157–173,
2008.

[14] R. Salakhutdinov and G. Hinton. Semantic hashing.
Int. J. Approx. Reasoning, 50(7):969–978, July 2009.

[15] C. Spampinato, D. Giordano, R. Di Salvo, Y.-H. J.
Chen-Burger, R. B. Fisher, and G. Nadarajan.
Automatic fish classification for underwater species
behavior understanding. In Proceedings of the first
ACM international workshop on Analysis and retrieval
of tracked events and motion in imagery streams,
ARTEMIS ’10, pages 45–50, New York, NY, USA,
2010. ACM.

[16] A. Vedaldi and B. Fulkerson. Vlfeat: an open and
portable library of computer vision algorithms. In
Proceedings of the international conference on
Multimedia, MM ’10, pages 1469–1472, New York,
NY, USA, 2010. ACM.

[17] L. von Ahn and L. Dabbish. Labeling images with a
computer game. In Proc of the SIGCHI conf on
Human factors in computing systems, CHI ’04, pages
319–326, 2004.

[18] X.-J. Wang, L. Zhang, F. Jing, and W.-Y. Ma.
Annosearch: Image auto-annotation by search. In
CVPR 2006, volume 2, pages 1483 – 1490, 2006.

[19] Y. Weiss, A. Torralba, and R. Fergus. Spectral
hashing. In Neural Information Processing Systems
Conference, pages 1753–1760, 2008.

[20] P. Welinder and P. Perona. Online crowdsourcing:
Rating annotators and obtaining cost-effective labels.
In CVPR Workshops 2010, pages 25 –32, june 2010.

[21] J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, and J. R.
Movellan. Whose vote should count more: Optimal
integration of labels from labelers of unknown
expertise. In NIPS, pages 2035–2043, 2009.

[22] Z. Zivkovic and F. van der Heijden. Recursive
unsupervised learning of finite mixture models. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 26(5):651–656, May 2004.

