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Scene recovery from many randomly distributed single pixel cameras

R. B. Fisher
University of Edinburgh - rbf@inf.ed.ac.uk

Abstract

This paper examines two scene recovery problems arising when interpreting data from massive numbers of randomly
distributed single pixel cameras. Assuming that the camera positions and orientations are approximately known, the paper
shows that both distant and nearby scenes can be reconstructed, and analyzes how recovery performance varies with sensor
parameters.

Keywords: distributed sensing, sensor self-organization, scene recovery

1. Introduction

Hypothesize the existence of a solid state sensor consisting of a photodiode single pixel camera, fixed lens, photovoltaic
power supply and local communication system (e.g. radio or optical). The ‘camera’ measures the intensity of light arriving
within a fixed angle from its optical axis. These devices are feasible with current technology and could be manufactured
cheaply. Potentially, a collection of these devices could form the framework for low-cost dense-coverage survey and surveil-
lance systems in restricted access applications. Thousands of devices could be randomly dropped from an air vehicle to
cover a potential surveillance zone. Planetary spacecraft landing sites, military battlefield surveillance, police surveillance
and exclusion zone surveillance are possibilities for these multi-sensor systems.

There is much research on distributed traditional camera systems, where each camera records an array of light. What has
not been considered much is the self-organization and interpretation of multiple single-pixel sensors, i.e. photocell sensors
reporting a gray level value. There are two fundamental vision problems arising in this scenario: 1) determining where the
sensors are and 2) making sense of their collective observed light intensity. This paper presents results on the latter problem.

The research presented here shows that it is possible to reconstruct both nearby and distant scene structure from a
collection of thousands of such sensors.

2. Background

There is no prior art known to us on this vision problem when using single pixel sensors. For the past 5 years or so, there
has started to be good work on networks of traditional cameras. When working with multiple full cameras with overlapping
fields of view, standard camera calibration methods are possible using autocalibration from feature point correspondences
[6], observed calibration targets [16], special viewpoints [7] or multiple views of moving objects [15]. When cameras do not
overlap, then persistence of the tracked target’s properties have been used to establish the topological relationships between
cameras, in particular their linked entry and exit zones [13, 4, 11, 12]. By making assumptions about target motions, then
metrical relationships can be used to infer the relative camera positions [3, 8, 14]. The closest known research self-organizes
randomly placed single-bit sensors into a network, using peer-to-peer signal strength decay to estimate relative distances
between sensors [2].

This paper is about scene reconstruction, given the sensors and their positions. If the sensors were regularly placed, then
methods inspired by CT/MRI image reconstruction might be possible, but here the sensors are irregularly distributed. A space
carving-like method (e.g. [9]) can be used for nearby scene recovery and a plenoptic-like algorithm (e.g. [10]) is possible for
distant scene recovery, but the previous literature uses standard cameras.
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Figure 1. Binary and gray level scenes as projected onto the ground plane.3. Sensor and Distribution Models

All sensors are identical, reporting a single gray-level value based on integrating light arriving within a cone of angle α

about the sensor’s optical axis. These are essentially ‘raxal’ cameras [5], here characterized by their position ~c, optical axis
orientation ~a and aperture half-angle α.

The sensor positions are random, uniformly distributed over the scene, within a bounded radius e.g. r = 1 about the
scene center. We have assumed that they lie on a plane, but this is not an important point. Sensor orientations are random,
uniformly distributed over the viewsphere. We ignore sensors whose optical axes are less than 0.35 radians above the ground
plane as these provide little usable data.

4. Distant Scene Recovery

Distant scene recovery is based on the realisation that only sensor orientation matters - not sensor location on the ground
plane. In the text below, we first model the sensor observation and then show how to invert the process by back-projection,
much as in a simplified version of MRI or CT back-projection or plenoptic view recovery [10].

The ith sensor is at position ~ci and its optical axis ~ai (a unit vector). Each sensor integrates light from rays within angle α

of its optical axis. We assume a sensor response function fα(θ) that weights the ray’s contribution as a function of the angle
θ away from the optical axis, up to the maximum aperture α. fα(θ) = 0 for θ > α. Define the set of all unit vector rays ~r

within angle α of direction ~x: Tα(~x) = {~r | ~r · ~x ≥ cos(α)}. Let fα(θ) satisfy
∫
~r∈Tα(~x)

fα(cos−1(~x · ~r)) = 1. With this
aperture function, each sensor i observes intensity Vi =

∫
~r∈Tα(~ai)

I~rfα(cos−1(~r ·~ai)) where I~r is the intensity of ray ~r from
the background to the sensor.

From the set {Vi}, estimate Î~r for each direction ~r. There might be multiple sensors that have observed this direction, and
also some directions without an observation. The intensity in direction ~r is computed from all sensors whose axis vectors are
within angle α of the observed direction ~r. Define the set of all sensors that see direction ~r: S(~r) = {i | ~ai · ~r ≥ cos(α)}.
The estimated intensity is:

Î~r =

∑
i∈S Vif

∗

α(cos−1(~ai · ~r))∑
i∈S f∗

α(cos−1(~ai · ~r))

where f∗

α(fα(x)) = 1. In the experiments below we use the constant sensor function fα(x) = 1
πα2 (α in radians here).

4.1. Experiments

Figure 1 shows a binary and a gray-level scene. The binary scene has two overlapping black rectangles on a white
background. The gray-level scene is of an illuminated apple segment skewered by a stick. The viewpoint is a little unusual
- here the image is distant, so it lies on a hemisphere at infinity. To display this, we have rendered a scaled orthographic
projection onto the ground plane. Figure 2 shows the reconstructed images, using N = 6000 sensors, with aperture cone
angle α = 2 degrees. We can clearly see that reconstruction is possible.

We varied the number of sensors from 1000 - 10000 in steps of 1000, and aperture α for 2, 3 and 4 degrees. Figure 3
shows the percentage of distant scene not observed. The mean (1.1) and standard deviation (23) of the reconstructed pixel
value errors are largely constant above 2000 sensors.

From elementary geometry, we can show the area of the unit hemisphere observed by a sensor with aperture angle α (in
radians) is 2π(1 − cos(α))

.
= πα2 for small α. Therefore, the percentage p of the hemisphere above 0.35 radians observed

by each sensor is pα = 2π(1−cos(α))
2π(1−cos( π

2
−0.35))

.
= 0.76α2. Since sensor placement is random, the average hemisphere coverage
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Figure 2. Reconstruction with N = 6000 sensors and aperture cone angle α = 2. The black dots are
where no reconstruction occurred.
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Figure 3. Pixels of scene image not recovered. All curves are for 1000-10000 sensors (horizontal
axis) for apertures α = 2 (top curves), α = 3 (middle curves) and α = 4 (bottom curves).

by N sensors is 1 − (1 − p)N . For the values of α used, the estimated minimum number of sensors needed to obtain 99.9%
coverage is:

α (degrees) 1 2 3 4 5
N 29834 7456 3313 1864 1192

The curves in Figure 3 shows that this is a reasonable estimate as the percentage of non-observed scene is largely stabilized
when more sensors than the threshold number given in the table are used.

5. Nearby Scene Recovery

The general principle behind recovery of nearby scenes is like a mixture of stereo triangulation and CT/MRI reconstruc-
tion. The algorithm presented below is a variant of the space carving approach [9]. The stereo aspect is straightforward: since
we know where the sensors are, we could intersect matching rays to deduce the 3D target point’s position (if we knew the
corresponding rays). In standard feature-based stereo algorithms, the camera epipolar geometry and local intensity descrip-
tions constrain the potential matches between feature points (e.g. those found by the Harris corner finder). Unfortunately, we
do not know the corresponding rays. All we have initially are single intensity samples which are highly ambiguous.

The algorithm works in two stages: 1) Hypothesize the background, using the method of Section 4. 2) Hypothesize nearby
surfaces by a space-carving process. The second stage is described here.

5.1. Volumetric Recovery

As we initially have no hypotheses about which rays observe foreground surfaces and which observe background, we
effectively intersect all rays. We do this using a form of space carving algorithm, over a voxel space that represents where
surface points are in the 3D space over the sensors.

To hypothesize the surface efficiently, space near to the ground plane is partitioned into an array of W × W × H voxels.
The reconstruction algorithm is based on back-projection of the rays into the voxels. The core of the algorithm uses this
array for counting the number of sensor observations that pass through each voxel. Thus, rather than having to do an O(N 2)
intersection algorithm for N sensors, we need only an O(HN) vote casting algorithm. As N is big and H small, this is more
efficient.

If there is an observable surface lying in a voxel, then that surface patch would be observed by any sensor ray that passes
through the voxel. The observed intensity of each of the sensor rays will be the same (if we ignored noise and the actual
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Figure 4. Bottom original view of nearby plane in front of a distant scene (a) and its reconstruction
from below (b) and the side (c).
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Figure 5. Variation of a) number of true voxels missed, b) number of false voxels created. The top
curves are for α = 4, the middle for α = 3, 3 and the bottom for α = 1.

sensor aperture) as they are observing the same surface. Note that: 1) many rays won’t intersect any of the surface voxels
because of their random orientations, 2) each surface voxel could be observed by many nearby rays and 3) each ray will be
averaging different surface patch intensities because of the aperture α.

1. Find the set Sj of all rays that observe the voxel j at position ~vj . Given a sensor position ~ci and axis direction ~ai, the
voxel is observed if (~v −~ci) ·~ai ≥ cos(α). This set is found by projecting each sensor ray through the voxel array and
then examining the sets Sj .

2. Hypothesize the presence of a surface and its lightness based on Sj . If there are 0 or 1 values in Sj , then there is no
evidence that there is a surface at voxel j.

3. If there is a surface corresponding to the sensors in Sj , then the sensors should observe approximately the same
intensity. We compute the standard deviation of the observed intensities in Sj and only accept this as a surface voxel if
the standard deviation is below a threshold. The mean of the observed intensities is the estimated surface intensity.

4. To reduce spurious surface detections, we eliminate voxels that only have 0 or 1 face-connected neighbors.

5.2. Experiments

Figure 4a shows a scene with a surface (the rectangle with a grating reflectance pattern) parallel to the ground plane
against a distant background (a portion of the ‘mandrill’ image). The viewpoint is the same as before. Figure 4b shows the
corresponding reconstructed image and Figure 4c shows the reconstructed space projected onto the side of the voxel cube.
Here N = 10000 sensors, with aperture cone angle α = 3 degrees. We used W × W × H = 40 × 40 × 10 voxels covering
80% of the sensor field. We can clearly see that reconstruction is possible, and there are few spurious points inferred.

We varied the number of sensors from 1000 - 10000 in steps of 1000, and also the aperture α for 2, 3 and 4 degrees. Figure
5 shows some measurements that help characterize this distributed sensor.

Figure 5a shows the number of surface voxels unrecovered by the process. As the number of sensors increases, more of
the surface is found, until the number of spurious observations in each voxel starts to increase, which causes the voxel to be
rejected. Figure 5b shows the number of spurious surface voxels infered. Here, the peak in the middle occurs because there
are always spurious correspondences. For low numbers of sensors, few spurious correspondences occur. For large numbers
of sensors, many spurious correspondences occur, but the variations in gray levels in the correspondences becomes more
more extreme so the false voxels are rejected by the consistency checking. In between, more correspondences occur, but not
enough at each voxel to eliminate them. The mean intensity (2) and depth reconstruction (0) errors stablize when using more
than 3000 sensors. The different sensor aperture sizes explored here had little effect on the results, probably because of the
averaging effects over the whole sensor’s field of view.

Three types of noise were considered: a) error in the estimated optical axis direction, b) error in the estimated ground plane
position of the sensor and c) error in the measured intensity. In these experiments, we fixed the number of sensors N = 10000
and sensor aperture α = 3. We observed the mean and standard deviation of the gray level and depth reconstruction, the
number of surface voxels not recovered and the number of false surface voxels created.

Figure 6 shows the number of surface voxels that were not recovered as the standard deviation of noise in the a) sensor
axis orientation, b) sensor position increases. The effect of the introduced noise is that corresponding sensor rays will no
longer intersect thus the increase in missed voxels. The curves for intensity noise error are similar. Altogether there are about
600 true surface voxels with up to 250 voxels lost as noise increases.
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Figure 6. Number of surface voxels unrecovered as a function of a) optical axis orientation error, b)
sensor position noise.

6. Discussion and Conclusions

Sections 4 and 5 have shown that it is possible to recover both distant and nearby scene structure from large numbers of
randomly distributed single pixel sensors.

Recovery requires estimates of the position and orientation of the sensor. We will report on how they can be estimated in
another publication, but a process based on temporal signal correlation is producing preliminary results that suggest that pose
recovery is feasible.

As for the results presented here, further effort could be put into reducing the number of spurious voxel recoveries. In
particular, using probabilistic voting [1] and exploiting surface continuity may allow refining both the foreground target and
background outlier voxels. One of the next steps would be to experiment with real data, but we have not yet found a practical
way to acquire 10000 randomly distributed observations (e.g. using a traditional camera) where the sensor location is known.
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