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ENERGY-CONSERVING FINITE DIFFERENCE SCHEMES FOR TENSION-MODULATED
STRINGS

Stefan Bilbao

Sonic Arts Research Centre / Department of Music, Queen’s University Belfast

ABSTRACT

The timbre of certain stringed instruments is strongly dependent
on large-amplitude vibration, in which case linear models (such as
the 1D wave equation), which are often used for sound synthesis
purposes, are unsatisfactory. We discuss here a nonlinear gener-
alization of the wave equation, sometimes called the Kirchhoff-
Carrier Equation, which models large amplitude vibration through
a modulation of string tension. In particular, we look at a finite dif-
ference scheme for the Kirchhoff-Carrier Equation which is both
efficient, and has excellent stability properties (this is often diffi-
cult to ensure for nonlinear difference schemes). The key to this
stability property is the close attention paid to the energetic behav-
ior of the model and its analogue in the finite difference scheme;
such a difference scheme is capable of discrete energy conserva-
tion to machine precision. Implementation details are discussed,
and simulation results are presented.

1. INTRODUCTION

There has recently been an increase in interest in modelling of non-
linear systems in the context of realistic musical sound synthesis.
One such system, the so-called tension-modulated string has been
modelled using digital waveguides [1, 2, 3]. One problem that can
be encountered in any numerical simulation (by digital waveguides
or any other method) is that of maintaining stability. This problem
is especially acute for highly nonlinear systems such as the string
under large amplitude vibration conditions. In this paper, we re-
turn to the equation of motion describing such a string, sometimes
called the Kirchhoff-Carrier Equation [4, 5, 6], and show how the
energy method [7] may be applied to prove stability of a nonlin-
ear finite difference scheme; in essence, if one is able to show that
the model system enforces an energy conservation property, and
also that the finite difference scheme inherits this property, then
the scheme is numerically stable. This is indeed the case for the
Kirchhoff-Carrier Equation. The energy method of stability veri-
fication is distinct from spectral analysis techniques (such as Von
Neumann analysis [8]) which cannot be usefully applied to non-
linear systems.

In Section 2, we revisit simple finite difference schemes for
the linear 1D wave equation with an emphasis on energetic be-
havior, and review the energy method of stability verification. In
Section 3, we present the Kirchhoff-Carrier equation, as well as
a difference scheme which possesses energetic properties which
mirror those of the model system itself. Implementation details
are discussed in Section 4, and some simulation results are given
in Section 5.

2. THE WAVE EQUATION AND CENTERED FINITE
DIFFERENCE SCHEMES

For a string undergoing transverse motion, the 1D wave equation
is a crude first approximation. It can be written simply as

ρ
∂2u

∂t2
= T0

∂2u

∂x2
(1)

Here,t ≥ 0 is a time variable,x ∈ [0, L] is a space variable, and
u(x, t) is the transverse string displacement.ρ is the linear mass
density of the string, andT0 is the tension applied to the string;
both are assumed constant. Given two initial conditions,u(x, 0)
and ∂u

∂t
(x, 0), and appropriate boundary conditions, the solution

to the wave equation exists and is unique for all future timest >
0. The wave equation can be complemented by additional linear
terms which model loss and dispersion[9]. For large amplitude
displacement, however, the wave equation no longer holds, and
must be generalized. We will describe one such generalization,
applicable to stiff strings, in Section 3.

For analysis purposes, and for the development of numeri-
cal methods (such as finite difference schemes) [8], it is useful
to rewrite the wave equation as a first-order system, i.e.,

∂p

∂t
= c0

∂q

∂x

∂q

∂t
= c0

∂p

∂x
c0 =

√
T0

ρ
(2)

where we have introduced the new variablesp =
√

ρ ∂u
∂t

, andq =√
T0

∂u
∂x

. Both have units of root energy density. This system is of
the form of the transmission line, or telegrapher’s equations [10].

2.1. Energetic Analysis

Since the wave equation, (or the equivalent first-order system) is
linear and shift-invariant, it is possible to perform a complete anal-
ysis and arrive at solutions using spectral techniques, such as Laplace
and Fourier transforms [8, 7]. As we would like to be able to
be able to generalize the analysis to the nonlinear case, we will
make use of non-spectral techniques, and in particular, the energy
method [7]. In the linear case, one can perform an energetic anal-
ysis as follows: multiply the first of (2) by the variablep, and the
second byq, and add the two equations. This yields

∂

∂t

(
1

2
p2 +

1

2
q2

)
= c0

∂(pq)

∂x

Integrating over the rangex ∈ [0, L] gives

d

dt

∫ L

0

(
1

2
p2 +

1

2
q2

)
dx = c0

∫ L

0

∂(pq)

∂x
dx = pq|L0



Under a simple choice of boundary condition such asp = 0 or
q = 0 at both boundariesx = 0 andx = L, we can then write

E(t) =
1

2
‖p‖2 +

1

2
‖q‖2 = constant (3)

where we have used the notation‖f‖ =
(∫ L

0
f2dx

)1/2

for square-

integrable functionsf ∈ L2(0, L). Here,E(t) has the interpre-
tation of the total string energy; the term‖p‖2/2 represents the
kinetic energy, and the term in‖q‖2/2 the potential energy. As
the wave equation does not model effects of loss, this energy must
remain constant (and equal to the initial energy present in the sys-
tem). In a numerical setting, it is useful to have such a energy con-
servation property (i.e., a positive definite function of the state),
as it can be used to ensure numerical stability, as we will show
shortly.

Before proceeding to a difference scheme for the transmission
line equations, we provide here some basic facts about grid func-
tions [8] and difference operators.

2.2. Grid Functions

A real-valued grid functionfn
i , employed in a 1D finite differ-

ence scheme, is to be viewed as an approximation to a continuous
time/space variablef(x, t), at the coordinatesx = ih, t = nk, for
integeri andn; hereh is the grid spacing, andk is the time-step
(both assumed constant here). In this section, for simplicity we
assume that the spatial domain is unbounded, i.e.,x ∈ [−∞,∞].
We will consider boundary conditions in Section 4.

The forward time difference operatorδt and time-averaging
operatorµt are defined by

δtf
n
i =

1

k
(fn+1

i − fn
i ) µtf

n
i =

1

2
(fn+1

i + fn
i )

The identities

(µtf
n
i )(δtf

n
i ) =

1

2
δt(f

n
i )2 (4)

µtδtf
n
i =

1

2k
(fn+2

i − fn
i ) (5)

follow immediately from the definitions above. Forward and back-
ward spatial difference operatorsδx andδ−1

x are defined by

δxfn
i =

1

h
(fn

i+1 − fn
i ) δ−1

x fn
i =

1

h
(fn

i − fn
i−1)

The operatorsδt, µt, δx, andδ−1
x all commute.

For the subsequent energetic analysis of difference schemes, it
is useful to define an inner product between two real-valued grid
functionsfn

i andgn
i by

〈fn, gn〉 =

∞∑
i=−∞

hfn
i gn

i

An L2 norm, for square-summable sequences, then follows as

‖fn‖ = 〈fn, fn〉1/2

(These definitions can be easily modified for problems defined
over a bounded spatial domain, in which case the summation above
is finite.)

The useful identity

〈fn, δ−1
x gn〉 = −〈δxfn, gn〉 (6)

is the discrete analogue of integration by parts.

2.3. A Finite Difference Scheme for the Transmission-Line
Equations

The transmission-line equations (2) are amenable to simple inter-
leaved finite difference schemes of the Yee variety [11, 12]. The
variablesp andq are approximated at alternating spatial locations

and time-steps. We thus define grid functionspn
i andq

n+ 1
2

i+ 1
2

, both

for integeri andn. p is calculated at coordinatesx andt at even
multiples ofh/2 andk/2, respectively, andq at odd multiples.

A difference scheme corresponding to (2) is then

δtp
n−1
i = c0δ

−1
x q

n− 1
2

i+ 1
2

(7a)

δtq
n− 1

2
i+ 1

2
= c0δxpn

i (7b)

which can be rewritten as

pn
i = pn−1

i + λ

(
q

n− 1
2

i+ 1
2
− q

n− 1
2

i− 1
2

)
(8a)

q
n+ 1

2
i+ 1

2
= q

n− 1
2

i+ 1
2

+ λ (pn
i+1 − pn

i ) (8b)

We have introduced here the important parameterλ = c0k/h,
sometimes called the Courant number, which plays an important
role in the stability analysis to follow. This scheme is consistent
with system (2), and second order accurate, by virtue of the inter-
leaving of grid quantities.

2.4. The Energy Method and Numerical Stability

Analysis of the system (7) can be carried out as follows. First,
multiply (7a) byµtp

n−1
i , to get

(µtp
n−1
i )(δtp

n−1
i ) = c0(µtp

n−1
i )(δ−1

x q
n− 1

2
i+ 1

2
)

and by applying identity (4), we arrive at

1

2
δt(p

n−1
i )2 = c0(µtp

n−1
i )(δ−1

x q
n− 1

2
i+ 1

2
)

We then sum overi and multiply byh, to get

1

2
δt‖pn−1‖2 = c0〈µtp

n−1, δ−1
x qn− 1

2 〉

and, continuing,

1

2
δt‖pn−1‖2 = −c0〈δxµtp

n−1, qn− 1
2 〉

= −c0〈µtδxpn−1, qn− 1
2 〉

= −〈µtδtq
n− 3

2 , qn− 1
2 〉

= − 1

2k
〈qn+ 1

2 − qn− 3
2 , qn− 1

2 〉

where the above steps follow from identity (6), commutativity of
the operatorsµt andδx, (7b), and identity (5) respectively. It is
easy to conclude that

1

2
δt‖pn−1‖2 = −1

2
δt〈qn− 1

2 , qn− 3
2 〉 (9)

and then, from (8b), that

1

2
δt‖pn−1‖2 = −1

2
δt

(
‖qn− 1

2 ‖2 − λh〈qn− 1
2 , δxpn−1〉

)
(10)



From this last equation we may define the quantityEn by

En =
1

2

(
‖pn‖2 + ‖qn+ 1

2 ‖2 − λh〈qn+ 1
2 , δxpn〉

)
(11)

which, from (10), remains constant as the recursion progresses.En

is very nearly the discrete-time equivalent of the continuous-time
energy as defined in (3). It remains to find the conditions under
whichEn is positive definite (so that it can be used as a numerical
stability guarantee).

Clearly, we have, from the Cauchy-Schwartz and triangle in-
equalities [13], that

〈qn+ 1
2 , δxpn〉 ≤ ‖qn+ 1

2 ‖‖δxpn‖ ≤ 2

h
‖qn+ 1

2 ‖‖pn‖

which implies that

En ≥ 1

2

(
‖pn‖2+‖qn+ 1

2 ‖2−2λ‖qn+ 1
2 ‖‖pn‖

)

=
1

2

(
(‖pn‖−‖qn+ 1

2 ‖)2+(2−2λ)‖qn+ 1
2 ‖‖pn‖

)

Finally, we can then say that

En ≥ 0 if λ ≤ 1

and clearly, for the more strict conditionλ < 1, En = 0 only when
p andq vanish identically. This is the familiar CFL condition onλ
for explicit numerical schemes for hyperbolic systems [8, 7].

3. THE KIRCHHOFF-CARRIER EQUATION

A nonlinear generalization of the wave equation (1) to model large-
amplitude vibration in stiff strings was first put forth by Kirchhoff
in 1883 [4], and subsequently rediscovered by Carrier [5]. It can
be written as

ρ
∂2u

∂t2
=

(
T0 +

EA

2L

∫ L

0

(
∂u

∂x

)2

dx

)
∂2u

∂x2
(12)

whereE is Young’s modulus, andA is the string cross-sectional
area. Essentially, the tension in the string consists of the applied
tensionT0 plus an additional contribution due to the significant
change in length of the string under large-amplitude conditions.

Like the wave equation, (12) can be written as a first order
system

∂p

∂t
= c0

(
1 + B

∫ L

0

q2dx

)
∂q

∂x
(13a)

∂q

∂t
= c0

∂p

∂x
(13b)

whereB = EA/2LT 2
0 , and the variablesp and q are defined

as before. A simple energy analysis similar to that applied to the
wave equation yields a conservation law

EKC(t) =
1

2
‖p‖2 +

1

2
(1 +

B

2
‖q‖2)‖q‖2 = constant

under the assumption ofp = 0 or q = 0 at both boundary points.
This is again a positive definite function of the state variablesp
andq. It is thus desirable to design a difference scheme for which
a discrete version of this energy is preserved through each step in
the recursion.

3.1. An Energy-Conserving Scheme

System (13) can also be approximated using an interleaved differ-
ence scheme like (7), but now of the form

δtp
n−1
i = c0g

n− 1
2 δ−1

x q
n− 1

2
i+ 1

2
(14a)

δtq
n− 1

2
i+ 1

2
= c0δxpn

i (14b)

We againconsider the problem defined on an infinite spatial do-
main; we return to a discussion of boundary conditions in he next
section. Here, the functiongn− 1

2 is some second-order accurate
approximation to the quantity1 + B

∫∞
−∞ q2dx; notice, in partic-

ular, that it is not a grid function, as it depends only on time. We
leave its exact form unspecified for the moment, and will return to
it shortly.

The energetic analysis of this system is identical to that carried
out in Section 2.4, except for the extra factor ofgn− 1

2 , up until the
form given in (9). Now, however, we have

1

2
δt‖pn−1‖2 = −1

2
gn− 1

2 δt〈qn− 1
2 , qn− 3

2 〉

and cannot proceed further to a conservation law until the form of
gn− 1

2 is specified. One possible choice for such an approximation
is

gn− 1
2 = 1 + Bµt〈qn− 1

2 , qn− 3
2 〉

and we arrive, through a further application of identity (4), at

1

2
δt‖pn−1‖2 = −1

2
δt〈qn− 1

2 , qn− 3
2 〉 − B

4
δt〈qn− 1

2 , qn− 3
2 〉2

from which we can derive an energyEn
KC

En
KC = En +

B

4
〈qn− 1

2 , qn− 3
2 〉2 = constant

Notice that it is defined in terms of the energy function (11) for the
difference scheme for the transmission line equations. The impor-
tant point is that it islarger than this energy, and thusEn

KC will be
positive definite forλ < 1. This is now only a sufficient condi-
tion for stability; the nonlinear multiplier in the difference scheme
apparently has a stabilizing effect on the difference scheme. A
necessary condition will be derived in a later work.

The above stabilizing effect is probably related to the fact that,
due to our choice ofgn− 1

2 , the difference system (14) is now
implicit[8]. As we will show in the following section, this implicit
character does not engender a huge increase in computational re-
quirements; this is primarily due to the fact that the nonlinearity
is not spatially-varying (i.e., in the Kirchhoff-Carrier model the
tension is averaged over the entire string).

4. IMPLEMENTATION DETAILS

For a finite length string, defined over the intervalx ∈ [0, L],
we will choose the grid spacing such thatM = L/h is an inte-
ger. Since the difference scheme (14) is interleaved, we should
also align our grid functions accordingly. Since we will take fixed
boundary conditionsp(0, t) = p(L, t) = 0, it is natural to choose
the grid functionpn

i to lie on the boundary itself. In this case,pn
i

need only be updated at theM − 1 locationsi = 1, . . . , M − 1.



The grid functionq
n+ 1

2
i+ 1

2
will necessarily be updated at theM lo-

cationsi = 0, . . . , M −1. It is useful to define the vectorspn and
qn+ 1

2 by

pn = [pn
1 , . . . , pn

M−1]
T qn+ 1

2 = [q
n+ 1

2
1
2

, . . . , q
n+ 1

2
M− 1

2
]T

Defining the vectorsan− 1
2 andbn−1 and the scalarγn− 1

2 by

an− 1
2 = λ

√
B

2
h

3
2 [δxq

n− 1
2

1
2

, . . . , δxq
n− 1

2
M− 1

2
]

γn− 1
2 =

√
2

Bh

(
1 + Bh(qn− 1

2 )T qn− 1
2

)
+ (an− 1

2 )T pn−1

bn−1 = pn−1 + γn− 1
2 an− 1

2

then (14a) can be written, in explicit form, through an application
of the matrix inversion lemma [13] as

pn =

(
IM−1 − an− 1

2 (an− 1
2 )T

1 + an− 1
2 (an− 1

2 )

)
bn−1

whereIM−1 is theM − 1 × M − 1 identity matrix. Oncepn

has been updated,qn+ 1
2 may be calculated explicitly using (14b)

(using, in this case, boundary valuespn
0 = pn

M = 0).

5. NUMERICAL EXPERIMENTS

The Kirchhoff-Carrier model is lossless, and thus not a complete
model for sound synthesis purposes. The difference scheme we
have proposed is merely a first step towards such a synthesis algo-
rithm. It does, however, possess a useful stability property, which
is dependent, as in the linear case, only on the value of the Courant
number. During a simulation, the discrete energy functionEKC

remains invariant to machine precision. We simulated a string of
length 0.65 m, made of steel (of linear densityρ = 6 × 10−4

kg/m and with Young’s ModulusE = 2 × 1011N/m2), of cross-
sectional areaA = 3.6×10−8m2, and under tensionT0 = 120N1.
At a sample rate of 44 100 Hz, and with an initial string profile of
a raised cosine of height 5 cm, width 13 cm, centered on the string,
EKC = 25.169736984700 J, which remains constant, to 12 deci-
mal places, throughout the 1 s duration of the simulation.

On the other hand, though perfectly lossless, this difference
scheme suffers, as is to be expected, from severe parasitic oscilla-
tions; this is often the case for difference schemes of the centered
variety [8, 7]. The usual cure is some form of artificial dissipation
(also called artificial viscosity); we will examine this technique,
and its consequences in terms of the conservation property of the
scheme in a subsequent work.

6. CONCLUSIONS

We have shown how perfectly energy-conserving difference schemes
for a nonlinear string equation may be derived, and how this prop-
erty leads to a numerical stability condition. Such robustness of
a difference scheme is extremely useful in the context of musi-
cal sound synthesis, where the algorithm must be able to handle a
large variety of possible excitations; here, stability depends only

1Thanks to Cumhur Erkut at the Helsinki University of Technology for
providing these values.

on the Courant number, not on any initial conditions applied. On
the other hand, this scheme suffers from severe parasitic oscilla-
tions, so it is not yet ready to be used for synthesis purposes. We
remark that digital waveguides [1, 2, 3] have been proposed as a
means of simulating a tension-modulated string; here, the solution
is modelled in terms of travelling waves of variable speed (leading
to variable-length digital delay lines), so parasitic oscillations are
presumably not an issue. The Kirchhoff-Carrier Equation, how-
ever, does not admit such travelling-wave solutions, so the digital
waveguide technique must be considered as an approximation this
system. On the other hand, the Kirchhoff-Carrier Equation itself
is an approximation; there are obviously many issues which need
clarification, not least of which is the relative perceptual signifi-
cances of such approximations in sound synthesis applications.
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