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ABSTRACT

In the quest for more realistic string sound synthesis, non-
linear (large-amplitude) effects have recently come under
scrutiny. Though a mathematical description of the coupled
longitudinal/transverse motion of such a string is straight-
forward, the development of numerical methods (and thus
synthesis algorithms) is complicated due to stability con-
siderations; frequency domain analysis cannot be fruitfully
applied when nonlinearities are present. We present here a
finite difference scheme for a nonlinear string whose stability
can be guaranteed, not through frequency domain analysis,
but through an exact discrete energy conservation property.
Under certain simple conditions, the so-called energy method
leads to bounds on the solution size in terms of initial con-
ditions, and, thus, to a stability guarantee. Implementation
details and numerical results are presented.

1. INTRODUCTION

In recent years, the problem of the numerical simulation of
nonlinear (large-amplitude) string vibration for sound syn-
thesis applications has seen increased attention; the timbre
of many stringed instruments (such as, e.g., the Finnish
kantele [1, 2] and piano [3, 4]) is dependent to a lesser or
greater degree on fundamentally nonlinear effects. Whereas
digital waveguides [5] offer an admirably efficient alterna-
tive to general numerical schemes for the simulation of lin-
ear (small-amplitude) string vibration, they do not extend
readily to the nonlinear case. Given the increase in compu-
tational power over recent years, the solution of such sys-
tems by direct numerical means has become a possibility.
Finite difference schemes have long been applied to linear
string vibration [6, 7], and have been extended, to a lim-
ited degree, to certain nonlinear forms [8, 4, 9]. In recent
work, this author [10] has discussed finite difference schemes
for transverse nonlinear string vibration as modelled by the
Kirchhoff-Carrier equation [11]. Such schemes are of energy-
conserving type [12], and offer global, energy-based stability
conditions that the earlier attempts do not.

The Kirchhoff-Carrier string vibration model, while non-
linear, is unsatisfying in that longitudinal motion is averaged
out. In this article, we extend finite difference schemes to
deal with a more complete model of nonlinear string vibra-
tion for which the longitudinal and transverse coupling re-
mains. As we will show, a properly-chosen difference scheme
possesses a conserved discrete energy analogous to the en-
ergy conserved by the model system, and leads to a simple
global stability condition.

2. A MODEL SYSTEM

A general model of nonlinear string vibration [13, 14], includ-
ing coupled longitudinal and transverse motion in a single

polarization, is given as follows:

ρξ̈ = EAξ′′ − (EA− T )

0
@ 1 + ξ′q

(1 + ξ′)2 + (η′)2

1
A
′

(1a)

ρη̈ = EAη′′ − (EA− T )

0
@ η′q

(1 + ξ′)2 + (η′)2

1
A
′

(1b)

Here, ξ(x, t) and η(x, t) describe the deviation of a point on
the string as a function of time t ≥ 0 and distance along the
string x ∈ [0, L]. ξ corresponds to longitudinal motion, and η
to transverse motion in a single transverse polarization, and
note that the two types of motion are coupled by the last
terms in both equations. Dots and primes indicate partial
differentiation with respect to time and space, respectively.
The parameters E, A, ρ and T are Young’s modulus, cross-
sectional area, linear mass density, and nominal tension for
the string, all assumed constant.

Introducing the variables

pξ = ξ̇ qξ = ξ′ pη = η̇ qη = η′

and making use of a series approximation to the nonlinearity,
we obtain

ρṗξ = EAq′ξ +
EA− T

2

�
q2
η

�′
(2a)

ρṗη = Tq′η +
EA− T

2

�
q3
η + 2qηqξ

�′
(2b)

q̇ξ = p′ξ (2c)

q̇η = p′η (2d)

We note that this system is slightly different from the third-
order system normally seen in the literature [13, 15], due
to exclusion of certain terms, based on the fact that ξ is of
the same order as η2 [16, 13]. We will consider two types of
boundary conditions: for analysis purposes, we will examine
so-called periodic boundary conditions of the form

ξ(0, t) = ξ(L, t) η(0, t) = η(L, t) (3)

and then those of the fixed type, i.e.,

ξ(0, t) = ξ(L, t) = 0 η(0, t) = η(L, t) = 0 (4)

2.1 Energetic Analysis

To facilitate the development and analysis of finite differ-
ence schemes, we now derive a conserved energy for system
(2). Multiplying the first and second equations by pξ and pη
respectively, and integrating over the range x ∈ [0, L] gives
Z L

0

ρpξṗξdx =

Z L

0

pξ

�
EAqξ +

EA− T
2

q2
η

�′
dx

Z L

0

ρpη ṗηdx =

Z L

0

pη

�
Tqη +

EA− T
2

(q3
η + 2qξqη)

�′
dx



Using integration by parts, boundary conditions (3) or (4),
as well as definitions (2c) and (2d), we can write

Z L

0

ρpξṗξdx = −
Z L

0

q̇′ξ

�
EAqξ − EA− T

2
q2
η

�
dx

Z L

0

ρpη ṗηdx = −
Z L

0

q̇′η

�
Tqη − EA− T

2
(q3
η + 2qξqη)

�
dx

We can then conclude that

d

dt
H = 0 =⇒ H = constant

for the scalar quantity H defined by

H =
ρ

2

�‖pξ‖2 + ‖pη‖2
�

+
T

2

�‖qξ‖2 + ‖qη‖2
�

(5)

+
EA− T

8
‖q2
η + 2qξ‖2

In the above expression, we have used the notation ‖f‖ =

(
R L

0
f2dx)1/2, signifying a spatial 2-norm over x ∈ [0, L].
H is non-negative for EA ≥ T , and under this condition

we can then arrive at the useful bounds

‖pξ‖, ‖pη‖ ≤
r

2H
ρ

‖qξ‖, ‖qη‖ ≤
r

2H
T

(6)

which hold at all times t ≥ 0. Essentially, the state of the
system is bounded in terms of the initial energy H.

3. FINITE DIFFERENCE SCHEMES

In this section, we present some basic facts about grid func-
tions and difference operators, and then turn immediately to
a particular finite difference scheme for system (2).

A grid function fni over a bounded domain, as employed
by a finite difference scheme, is defined for integers n ≥ 0
and i ∈ [0, . . . , N − 1] and is an approximation to a function
f(x, t) at the coordinates x = ih and t = nk. Here, k is
the time step, and h is the grid spacing. It is also useful

to define grid functions such as g
n+1/2

i+1/2 , for the same range

of integers i and n; such a grid function takes on values at
spatial locations and time instants which are interleaved [17]
with respect to those at which fni is defined.

The forward time difference operator δt+ is defined by

δt+f
n
i =

1

k
(fn+1
i − fni )

and forward, backward, and centered time-averaging opera-
tors µt+, µt− and µt0 are defined by

µt+f
n
i =

1

2
(fn+1
i + fni ) µt−f

n
i =

1

2
(fni + fn−1

i )

µt0f
n
i =

1

2
(fn+1
i + fn−1

i )

Forward and backward spatial difference operators δx+ and
δx− are defined by

δx+f
n
i =

1

h
(fni+1 − fni ) δx−f

n
i =

1

h
(fni − fni−1)

For periodic boundary conditions, the spatial indices of the
grid function are to be taken modulo N . For instance,
δx+f

n
N−1 = 1

h
(fn0 − fnN−1). We note that all the operators

defined above commute with one another.

The discrete spatial l2 inner product at time step n be-
tween two real-valued grid functions fni and gni , and the
associated norm are defined by

〈fn, gn〉 =

N−1X
i=0

hfni g
n
i ‖fn‖ = 〈fn, fn〉1/2

The inequality

‖δx−fn‖ ≤ 2

h
‖fn‖ (7)

follows immediately from an application of the Cauchy-
Schwartz and triangle inequalities [18].

Integration by parts may be transferred to the discrete
case, for periodic boundary conditions, as

〈fn, δx−gn〉 = −〈δx+f
n, gn〉 (8)

One finite difference scheme for system (2) (and there
are obviously many such choices) is given by

ρδt+p
n−1
ξ,i = EAδx−q

n−1/2

ξ,i+1/2 (9a)

+
EA− T

2
δx−

�
q
n−1/2

η,i+1/2µt0q
n−1/2

η,i+1/2

�

ρδt+p
n−1
η,i = Tδx−q

n−1/2

η,i+1/2 (9b)

+
EA− T

2
δx−

�
(q
n−1/2

η,i+1/2)2µt0q
n−1/2

η,i+1/2

�

+
EA− T

2
δx−

�
q
n−1/2

η,i+1/2µt+µt−q
n−1/2

ξ,i+1/2

�

δt+q
n−1/2

ξ,i+1/2 = δx+p
n
ξ,i (9c)

δt+q
n−1/2

η,i+1/2 = δx+p
n
η,i (9d)

Notice that it is interleaved, i.e. the grid functions pnξ,i, p
n
η,i

and q
n−1/2

ξ,i+1/2, q
n−1/2

η,i+1/2 are calculated for integer n and i only.

It is clearly not the simplest possible such algorithm, in that
it is implicit [19], and an implementation will require the so-
lution of a sparse linear system at each time step. It does,
however, possess a conserved quantity analogous to an en-
ergy which we will examine presently.

3.1 Energetic Analysis

In order to derive a conserved quantity from (9), we carry
out steps similar to those performed in Section 2.1. Consider,
for the moment, equation (9a). Taking the inner product of
both sides of this equation with µt+p

n−1
i gives

0 = δt+
ρ

2
‖pn−1
ξ ‖2 − EA〈µt+pn−1

ξ , δx−q
n−1/2
ξ 〉

−EA− T
2

〈µt+pn−1
ξ , δx−

�
qn−1/2
η µt0q

n−1/2
η

�
〉

where we have used the fact that 〈µt+pn−1
ξ , δt+p

n−1
ξ 〉 =

δt+‖pn−1
ξ ‖2/2. Continuing, we have

0 = δt+
ρ

2
‖pn−1
ξ ‖2 + EA〈µt+δx+p

n−1
ξ , q

n−1/2
ξ 〉

+
EA− T

2
〈µt+δx+p

n−1
ξ , qn−1/2

η µt0q
n−1/2
η 〉

= δt+
ρ

2
‖pn−1
ξ ‖2 + EA〈µt+δt+qn−3/2

ξ , q
n−1/2
ξ 〉

+
EA− T

2
〈µt+δt+qn−3/2

ξ , qn−1/2
η µt0q

n−1/2
η 〉

= δt+

�
ρ

2
‖pn−1
ξ ‖2 +

EA

2
〈qn−3/2
ξ , q

n−1/2
ξ 〉

�
(10)

+
EA− T

2
〈µt+δt+qn−3/2

ξ , qn−1/2
η µt0q

n−1/2
η 〉



where in first two steps above we have used integration by
parts (8) and commutativity of the operators µt+ and δx+,
definition (9c), respectively.

After a similar series of steps, applied to the inner prod-
uct of (9b) with µt+p

n
η,i, we arrive at

0 = δt+

�
ρ

2
‖pn−1
η ‖2 +

T

2
〈qn−3/2
η , qn−1/2

η 〉
�

(11)

+
EA− T

2
〈µt+δt+qn−3/2

η , (qn−1/2
η )2µt0q

n−1/2
η 〉

+
EA− T

2
〈µt+δt+qn−3/2

η , qn−1/2
η µt+µt−q

n−1/2
ξ 〉

Taking the sum of (10) and (11) above, and performing ad-
ditional manipulations, we arrive, finally, at

δt+Hn−1 = 0 =⇒ Hn = constant

where Hn is defined by

Hn =
ρ

2

�‖pnξ ‖2 + ‖pnη‖2
�

+
EA

2
〈qn+1/2
ξ , q

n−1/2
ξ 〉+

T

2
〈qn+1/2
η , qn−1/2

η 〉

+
EA− T

8

�
‖qn+1/2
η qn−1/2

η + 2µt+q
n−1/2
ξ ‖2

−4‖µt+qn−1/2
ξ ‖2

�

Hn is thus a conserved quantity for scheme (9), and can be
thought of as a discrete counterpart to the energy H for the
model system (2) as defined by (5).

3.2 Numerical Stability

A conserved energy-like quantity in a difference scheme is
not enough to show numerical stability; we must also find
the conditions under which it is positive for all possible
choices of the state. To this end, we introduce the vari-

ables q̃nξ,i+1/2 = µt+q
n−1/2

ξ,i+1/2 and q̃nη,i+1/2 = µt+q
n−1/2

η,i+1/2. Hn
can then be rewritten as

Hn =
1

2

�
ρ‖pnξ ‖2 − EAk2

4
‖δx+p

n
ξ ‖2 + T‖q̃nξ ‖2

�

+
1

2

�
ρ‖pnη‖2 − Tk2

4
‖δx+p

n
η‖2 + T‖q̃nη ‖2

�

+
EA− T

8
‖(q̃nη )2 + 2q̃nξ − k2

4
(δx+p

n
η )2‖2

Given (8), we may then write

Hn ≥ 1

2
(ρ− EAα2)‖pnξ ‖2 +

T

2
‖q̃nξ ‖2

+
1

2
(ρ− Tα2)‖pnη‖2 +

T

2
‖q̃nη ‖2

+
EA− T

8
‖(q̃nη )2 + 2q̃nξ − k2

4
(δx+p

n
η )2‖2

where we have defined α = k/h. Under the conditions

α ≤
r
ρ

T
,

r
ρ

EA
EA ≥ T (12)

then all five terms in the above expression for Hn are non-
negative, and we have Hn ≥ 0, for any choices of the state
variables. (The conditions above on α, the time-step/space-
step ratio, should be familiar as the Courant-Friedrichs-Lewy

condition [19].) Under these conditions, we can conclude
that

‖pnξ ‖ ≤
r

2Hn
ρ− EAα2

‖pnη‖ ≤
r

2Hn
ρ− Tα2

(13)

and also, from the relationship between q̃nξ,i+1/2, q̃nη,i+1/2 and

q
n−1/2

ξ,i+1/2,q
n−1/2

ξ,i+1/2, that

‖qnξ ‖ ≤
r

2Hn
T

�
1 + α

r
T

ρ− EAα2

�
(14a)

‖qnη ‖ ≤
r

2Hn
T

�
1 + α

r
T

ρ− Tα2

�
(14b)

Bounds (13) and (14) are our guarantee of numerical stability
for scheme (9), when conditions (12) are satisfied.

3.3 Implementation Details

For the sake of simplicity, the results in the previous sections
were derived under the assumption of periodic boundary con-
ditions, as given by (3). We have shown, in previous work
[10] that the results also hold in the case of fixed boundary
conditions, as specified by (4). In this case, under the as-
sumptions pnξ,0 = pnη,0 = pnξ,N = pnη,N = 0, and writing the
vectors

pnξ = [pnξ,1, . . . , p
n
ξ,N−1]T

pnη = [pnη,1, . . . , p
n
η,N−1]T

q
n−1/2
ξ = [q

n−1/2

ξ,1/2 , . . . , q
n−1/2

ξ,N−1/2]T

qn−1/2
η = [q

n−1/2

η,1/2 , . . . , q
n−1/2

η,N−1/2]T

scheme (2) may be written as

�
pnξ
pnη

�
=

�
pn−1
ξ

pn−1
η

�
+ 2

ρ

EA− T (An−1/2)−1

�
D− 0
0 D−

�
fn−1/2

"
q
n+1/2
ξ

q
n+1/2
η

#
=

"
q
n−1/2
ξ

q
n−1/2
η

#
+ 2

ρ

EA− T
�
D+ 0
0 D+

� �
pnξ
pnη

�

where

fn−1/2 =

"
EAq

n−1/2
ξ + EA−T

2
(q
n−1/2
η )?2

Tq
n−1/2
η + EA−T

2
((q

n−1/2
η )?3 + 2q

n−1/2
ξ ? q

n−1/2
η )

#

An−1/2 =

"
I −D−diag(q

n−1/2
η )D+

−D−diag(q
n−1/2
η )D+ I−D−diag(q

n−1/2
η )?2D+

#

D+ =
α

2

r
EA− T

ρ

2
66664

1
−1 1

. . .
. . .
−1 1

−1

3
77775

D− = −DT
+

where the ? indicates element-by-element vector multiplica-
tion or exponentiation. It is worth noting that although
scheme (9) is implicit, it may be solved uniquely at every

time-step. In addition, a direct inversion of An−1/2 is un-
necessary, it suffices to solve a linear system.



4. NUMERICAL RESULTS

As a simple test of this numerical method, we consider
a string of length 0.65 m, made of steel (of linear den-
sity ρ = 6 × 10−4 kg/m and with Young’s Modulus E =
2×1011N/m2), of cross-sectional area A = 3.6×10−8m2, and
under tension T = 120N. For accurate simulation results, a
sample rate of 1 MHz is used. We subject the string to struck
conditions, with an initial velocity distribution of the form
of a raised cosine centered at the string center—snapshots
of the time evolution of the string profile are shown, across
the rows, in Figure 1, for three different strike velocities, 10
m/s, 500 m/s and 1000 m/s. In the first case, the string is
essentially linear, while for the higher velocities, the nonlin-
ear behaviour is evident, leading in particular to harmonic
generation and an increase in the propagation speed of the
disturbance. In all three cases, energy is conserved to ma-
chine arithmetic for the duration of the simulation.
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Figure 1: Time evolution (vertically across the rows) of the
profile of a string described by system (2), under the applica-
tion of difference scheme (9), for a variety of velocities (down
the columns). Distances are given in metres on both axes.

5. CONCLUDING REMARKS

The primary result in this paper is the proof of stability
of a finite difference scheme for a general nonlinear string
system; we reiterate that frequency domain ideas have not
been applied here; stability is proved via energetic analysis.
This would appear to be a substantial benefit, especially in
the area of musical sound synthesis. We do note, however,
that such analysis is a delicate tool—as we have seen, in
order for it to be applicable, we require (a) that the model
system itself possess a positive energy function, (b) that the
difference scheme be conservative, and (c) that the discrete
conserved energetic quantity be positive; these conditions
are frequently not met by schemes used in practice. One
response to these observations is that such a technique is
overly restrictive; another is that perhaps it would do well to
follow the “suggestions” that an energetic viewpoint offers.
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