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Conservative numerical methods for nonlinear strings
Stefan Bilbaoa�

Sonic Arts Research Center, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom

�Received 8 February 2005; revised 2 July 2005; accepted 2 August 2005�

In this article, a class of numerical schemes for the simulation of nonlinear coupled longitudinal/
transverse string vibration is presented. Though there are various ways of arriving at such schemes,
special attention is paid here to energy conservation in nonlinear model systems and its transfer to
an analogous discrete quantity in a difference scheme. Such exact numerical energy conservation
can lead to simple global stability conditions, which can be otherwise difficult to ascertain for
nonlinear difference schemes—in particular, such conditions may be arrived at without any reliance
on frequency domain concepts �i.e., Fourier or Laplace transforms�, which are of only moderate
utility in the analysis of nonlinear systems. Implementation details are discussed and numerical
results are presented. © 2005 Acoustical Society of America. �DOI: 10.1121/1.2046787�

PACS number�s�: 43.75.�z, 43.40.Ga, 43.40.Cw �JBS� Pages: 3316–3327
I. INTRODUCTION

Work on nonlinear string vibration has been ongoing for
more than a century, and the field has, in some respects,
reached maturity. There are various partial differential equa-
tion �PDE� models which describe the large amplitude vibra-
tion of a nonlinear string, and in particular the coupling be-
tween longitudinal and transverse motion, to varying degrees
of complexity. Though a complete summary is impossible in
this short article, it is worth mentioning that there are two
discernible families of such models: �1� general forms for
which the nonlinearity is pointwise dependent on the string
state,1,2 and �2� simplified forms �referred to here as
Kirchhoff-Carrier type models� for which the longitudinal
motion is “averaged out” to yield a nonlinear system in the
transverse motion alone, with the nonlinearity intervening in
a distributed, but not spatially varying way.3–6 It is to be
noted that the formulation and study of such models is of
fundamental importance, as the nonlinear string is perhaps
the simplest distributed nonlinear system occurring in nature.
The reader is referred to the text by Morse and Ingard1 and
the work of Vallette7 for an overview. Nonlinear string mod-
els are intimately related to �and can often be viewed as
special cases of� various models of beam vibration, and in
particular, the so-called “geometrically-exact” formulation of
Simo and Vu-Quoc.8,9

Though there do exist various established PDE models
for nonlinear string dynamics, when it comes to numerical
solution techniques, the situation is far less clear, and this
aspect has been given relatively little attention in the litera-
ture. This is surprising, given the utility of numerical results
as a means of comparing theory and measured data. Though
there have been a few cursory descriptions of numerical
schemes for nonlinear strings,10–12 these are usually simple
extensions of schemes for the linear wave equation; in par-
ticular, the important question of numerical stability is not
addressed. �Two exceptions are the work of Furihata,13 who
employs a technique loosely related to that to be presented
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here to a simplified transverse-only nonlinear string model,
and Rubin’s work on numerical methods based on the theory
of a Cosserat point;14 in neither case is any numerical stabil-
ity analysis carried out.�

In previous work, this author has described finite differ-
ence schemes for a Kirchhoff-Carrier string model in a single
transverse polarization.15–17 These schemes mirror not only
the dynamics of the continuous string model, but also pos-
sess a conserved quantity analogous to an energy—this con-
servation property may then be used to find useful global
stability conditions �i.e., stability which is independent of
initial conditions�, through analysis often referred to as the
energy method,18–21 which relies on concepts in functional
analysis.22 Stability verification for nonlinear difference
schemes is otherwise difficult, and, in particular, cannot be
arrived at definitively through Fourier or spectral analysis
techniques �often referred to as von Neumann analysis in this
context23,24�. �The text by Gustaffson, Kreiss, and Oliger18

discusses the ranges of applicability of spectral techniques in
great detail.� Energy-based analysis and construction of nu-
merical schemes has seen quite a bit of increased activity in
recent years, and has been applied to various types of solid
systems �see, e.g., Ref. 25�.

Kirchhoff-Carrier type models, however, are but simpli-
fied representations of nonlinear string dynamics, and the
numerical results in previous work by this author15 exploit
the spatially averaged character of the nonlinearity �the same
can be said of extended digital waveguide type approaches to
solutions of the so-called “tension-modulated” string26–28 as
well as quasimodal descriptions of nonlinear strings,29,30

which lead to highly accurate energy conserving methods17

of the spectral type31,32�. Furthermore, as mentioned earlier,
longitudinal motion is not explicitly modeled. In more real-
istic nonlinear string models, however, the pointwise nonlin-
ear coupling between the transverse and longitudinal motion
persists; such models are the subject of this article, and are
related to so-called “geometrically exact” beam vibration
formulations mentioned earlier. The case of planar motion is
discussed here—an extension to full three-dimensional mo-

tion �see, e.g., Ref. 33� is immediate.
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The techniques earlier applied to Kirchhoff-Carrier
models are here extended to the much more general case of
pointwise nonlinear string equations of various types, which
are given along with an energetic analysis in Sec. II. Several
commonly encountered approximate forms of the nonlinear
string equations are presented �see Table I�, only one of
which �S4

*� is suitable for energy-based stability analysis. In
Sec. III, some basic facts regarding grid functions and finite
difference operators are presented, followed by finite differ-
ence schemes of the interleaved type for the string system S4

*

described in Sec. II. A discussion of conservation properties
ensures, and a particular scheme for which numerical stabil-
ity may be guaranteed is presented �scheme s4

*,�c�, given in
Table II�. The section is concluded with a cursory look at
boundary conditions and implementation issues. Numerical
results follow in Sec. IV.

As a note, the author wishes to add that a latent goal of
the present study is to develop a general methodology for the
robust analysis and synthesis of sound for stringed musical
instruments; such schemes are the only rigorous means of
generating synthetic sound for those musical instruments
whose timbre is inextricably linked to nonlinear effects �so-
called “phantom partials” in piano tones10,34 and pitch glides
in plucked instruments such as the Finnish kantele26,27 being
two notable examples�. Though this article is intended for a
more general readership, the numerical examples are chosen
so as to hint at the possibilities for musical sound synthesis.

II. MODEL EQUATIONS

A general model of nonlinear string dynamics, described
by Morse and Ingard1 and which can be related to the geo-
metrically exact theory of beams,35 is given by the following
set of equations:

��̈ = EA�� − �EA − T0�� 1 + ��
��1 + ���2 + ����2��

, �1a�

��̈ = EA�� − �EA − T0�� ��
��1 + ���2 + ����2��

. �1b�

Here, ��x , t� and ��x , t� describe, respectively, the longitudi-
nal and transverse deviation of a point on the string as a
function of time t�0 and distance along the string x
� �0,L�. Such a point, located at Cartesian coordinates �x ,0�
when the string is at rest, will have dynamic coordinates �x
+� ,��. E, A, �, and T0 are Young’s modulus, cross-sectional
area, linear mass density, and nominal tension for the string,
all assumed constant here. Dots and primes indicate partial
differentiation with respect to time and space, respectively.
System �1� may be generalized further in various ways, in-
cluding through the introduction of linear terms modeling
loss and dispersion, as well as excitations, and to include
motion in both transverse polarizations; all of the results on
finite difference schemes which follow are affected only in a
minor way by such generalizations. It may also be general-
ized to include more subtle higher order effects, as per the
work of Narasimha;2 such improved models may fall outside
the range of the techniques presented here, and their consid-

eration is left to a future work.
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Two types of boundary conditions are be considered
here. For analysis purposes, most useful are so-called peri-
odic boundary conditions18 of the form

��0,t� = ��L,t�, ��0,t� = ��L,t� �2�

As a more realistic case, conditions of the fixed type, i.e.,

��0,t� = ��L,t� = 0, ��0,t� = ��L,t� = 0 �3�

are briefly examined as well.
System �1� requires the specification of four initial con-

ditions, namely ��x ,0�, �̇�x ,0�, ��x ,0�, and �̇�x ,0�.

A. A transmission-line form

It is useful to rewrite system �1� as a system of four
first-order equations. Defining the variables

p� = �̇, q� = ��, p� = �̇, q� = �� �4�

it then follows that

�ṗ� = EAq�� − �EA − T0�� ��

�q�
��

,

�ṗ� = EAq�� − �EA − T0�� ��

�q�
��

,

�S�

q̇� = p��, q̇� = p�� �Auxiliary System� , �5�

where the quantity ��q� ,q�� �representing a contribution to
the potential energy density of the string due to the nonlin-
earity� is defined by

� = ��1 + q��2 + q�
2 + a + a�q� + a�q� �6�

for arbitrary constants a, a�, and a� �note that these constants
have no effect on the solutions of system �1��. System S
�signifying “string”�, accompanied by the auxiliary system
�5�, can be viewed as a pair of nonlinearly coupled transmis-
sion lines, one in the variables p� ,q�, and the other in the
variables p� ,q�. The coupling occurs through the terms con-
taining ��q� ,q��.

B. Series approximations and simplifications

Slightly more tractable forms, as presented in Table I,
may be obtained through the use of Taylor series approxima-
tions about q�=q�=0 �employing the choices a=a�=−1 and
a�=0� to the function ��q� ,q��, given in the following to
fourth order:

� = 1
2q�

2 − 1
2q�q�

2 + 1
2q�

2q�
2 − 1

8q�
4 + ¯ . �7�

As discussed in the following, the energetic behavior of the
resulting system depends critically on the type of approxima-
tion made. The standard series approximation, found, e.g., in
Morse,1 is given by truncating this series approximation to
fourth order, yielding the system S4. Truncation of � to third
order is also sometimes employed,10,11 giving the form S3,
and truncation to second order uncouples the longitudinal
and transverse motion completely �see form S2�.

The approximation �4
*, employed by Anand,5 and given
by
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�4
*�q�,q�� = 1

2q�
2 − 1

2q�q�
2 − 1

8q�
4 �8�

is correct to third order, but lacks one of the fourth-order
terms of �, and leads to the system S4

*. One might well ask
in what sense the use of system S4

* is justified. One answer
follows from the energetic properties to be discussed in the
next section; another relates to the relative orders of magni-
tude of q� and q� in system S. As noted by Anand5 and
Morse,1 q� is of the same order of magnitude as q�

2 , and it is
perhaps more natural, then, to use a homogeneous approxi-
mation, truncated to powers of, say, q�. Given that the term
q�

2q�
2 is clearly of sixth order in q�, it is then justified to

neglect it with respect to the term in q�
4 .

As a useful nonlinear test problem for finite difference
schemes, it is also worthwhile to consider the transverse-only
system �i.e., assuming p�=q�=0� under a fourth-order non-
linearity, given as ST,4 in Table I.

C. Energetic analysis

The procedure by which one may extract a conserved
energy-like quantity from a system is similar to that which
was applied to a Kirchhoff-Carrier system by this author in
Ref. 15. A condensed treatment is provided here.

As a notational preliminary, it is worth recalling here the
definition of the spatial L2 inner product of two real-valued
functions f�x , t� and g�x , t� over the interval x� �0,L�, as
well as the associated norm:

�f ,g	 = 

0

L

fgdx, �f�· ,t�� = �f , f	1/2. �9�

Consider first system S. Multiplying the first and second
equations by p� and p�, respectively, and integrating over the
range x� �0,L� gives


L

�p�ṗ�dx = 
L

p��EAq� − �EA − T0�
��

�q�
��

dx ,

TABLE I. Approximations to system S, as well as the associated expressio

Defining equations �aux�

S4 �ṗ�=EAq��+
EA−T0

2
�q�

2�1−2q����

�ṗ�=T0q�� +
EA−T0

2
�q�

3 +2q�q��1−q����

S4
*

�ṗ�=EAq��+
EA−T0

2
�q�

2��

�ṗ�=T0q�� +
EA−T0

2
�q�

3 +2q�q���
q̇�= p��

S3 �ṗ�=EAq��+
EA−T0

2
�q�

2��

q̇�= p��

�ṗ�=T0q�� +
EA−T0

2
�2q�q���

S2 �ṗ�=EAq��

�ṗ�=T0q��

ST,4 �ṗ�=T0q�� +
EA−T0

2
�q�

3��
q̇�= p��
0 0
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0

L

�p�ṗ�dx = 

0

L

p��EAq� − �EA − T0�
��

�q�
��

dx .

Using integration by parts on the right-hand side of these
equations, and either of the boundary conditions of Eq. �2� or
Eq. �3�, as well as the auxiliary equations �5� gives



0

L

�p�ṗ�dx = − 

0

L

q̇��EAq� − �EA − T0�
��

�q�
�dx ,



0

L

�p�ṗ�dx = − 

0

L

q̇��EAq� − �EA − T0�
��

�q�
�dx .

Finally, applying the definition of the norm as per Eq. �9�
and summing the resulting equations gives

d

dt
HS = 0 ⇒ HS = TS + VS = constant �10�

with

TS =
�

2
��p��2 + �p��2� ,

VS =
EA

2
��q��2 + �q��2� − �EA − T0�


0

L

�dx .

Thus HS is a scalar conserved quantity of system S; in par-
ticular, it behaves as an energy �H signifies “Hamiltonian”�,
with a kinetic part TS dependent on p� and p� and a potential
part VS dependent on q� and q�.

The systems S4, S4
*, S3, and S2 all result from series

approximations to �, and as such, also possess conserved
quantities. The kinetic energy terms remain the same in all
cases, and the potential energy is given by the above-
presented expression for VS, with � replaced by the series
truncated form. The resulting expressions are denoted by VS4

,
*

r kinetic and potential energy.

Kinetic energy Potential energy

VS4
=

T0

2
��q��2+ �q��2�

+
EA−T0

8
��q�

2 +2q��2− �q�q��2�

VS4
* =

T0

2
��q��2+ �q��2�

TS=
�

2
��p��2+ �p��2� +

EA−T0

8
�q�

2 +2q��2

VS3
=

EA

2
�q��2+

T0

2
�q��2

+
EA−T0

2
�q� ,q�

2	

VS2
=

EA

2
�q��2+

T0

2
�q��2

TST
=

�

2
�p��2 VST,4

=
EA

2
�q��2+

EA−T0

8
�q�

2�2
ns fo
VS4
, VS3

, and VS2
, respectively, and appear at the right in
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Table I. For the simplified nonlinear transverse-only system
ST,4, the kinetic and potential energies are denoted by TST
and VST,4

; explicit expressions for these are also given in
Table I.

D. Bounds on solution size

As a prelude to an energetic analysis of finite difference
schemes, it is useful to compare the above-mentioned ap-
proximations to the system S, especially insofar as the con-
served quantities mentioned earlier lead to global bounds on
the size of the solution.

Consider system S2, which, it is to be recalled, is the
linearized form of the string equation. From the expressions
given in Table I, it is clearly true that TS�0 and VS2

�0,
implying HS2

�0 and, furthermore,

�p��,�p�� ��2HS2

�
, �11�

�q�� ��2HS2

EA
, �q�� ��2HS2

T0
. �12�

As HS2
is constant and equal to its value at time t=0, there

are thus global bounds on the size of the solution of system
S2 at all future times.

In contrast, for the commonly encountered approximate
systems S3 and S4, such global conditions do not exist, as the
energy function is not necessarily positive for all possible
choices of the string state; choosing, for instance, q�

=sgn�T0−EA�q�
2 , then VS4

and VS3
are negative and un-

bounded in the limit as q� becomes large. Because the solu-
tions themselves cannot be bounded, it is unreasonable to
expect to find finite difference schemes which are provably
numerically stable under general conditions; systems S3 and

TABLE II. Finite difference schemes of the interleaved type for the system

Defining equa

s2 ��t+p�,i
n−1=EA�x−

��t+p�,i
n−1=T0�x−

s4
*,�a�

��t+p�,i
n−1=EA�x−q�,i+1/2

n−1/2 +
EA

��t+p�,i
n−1=T0�x−q�,i+1/2

n−1/2 +
EA−T0

2
�x−�

s4
*,�b�

��t+p�,i
n−1=EA�x−q�,i+1/2

n−1/2 +
EA

��t+p�,i
n−1=T0�x−q�,i+1/2

n−1/2 +
EA−T0

2
�x−���q

s4
*,�c�

��t+p�,i
n−1=EA�x−q�,i+1/2

n−1/2 +
EA−T

2
��t+p�,i

n−1=T0�x−q�,i+1/2
n−1/2 +

EA−T0

2
�x−��q�,i+1/2

n−1/2

sT,4
�a�

��t+p�,i
n−1=T0�x−q�,i+1/2

n−1/2 +
EA

sT,4
�b�

��t+p�,i
n−1=T0�x−q�,i+1/2

n−1/2 +
EA−T0

2
�

S4 are not considered henceforth in this article, though it
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should be emphasized that they do possess a conserved
energy-like quantity which can be transferred to discrete
time.

System S4
*, however, is well-behaved in this sense, under

the restricted condition

EA � T0. �13�

This is indeed the case for many systems of practical �and
also musical� interest. TS and VS4

* are both non-negative, and
it follows immediately that

�p��,�p�� ��2HS4
*

�
, �q��,�q�� ��2HS4

*

T0
. �14�

It is probably possible to tighten the above-mentioned
bounds through further analysis.

For the simplified system ST,4, the energy HST,4
=TST

+VST,4
is non-negative, again under condition �13�, leading to

bounds

�p�� ��2HST,4

�
, �q�� ��2HST,4

EA
. �15�

III. FINITE DIFFERENCE SCHEMES

In the following, finite difference schemes for the vari-
ous nonlinear string systems discussed in Sec. II are intro-
duced. Stability conditions which are based on discrete en-
ergy conservation, when available, are then derived. A good
tutorial treatment of the energy method for finite difference
schemes is given by Vu-Quoc and Li.36,37 The reader is re-
minded that frequency-domain concepts are nowhere em-

S4
*, and ST,4 as given in Table I.

�Auxiliary�

/2
2

/2

�x−�q�,i+1/2
n−1/2 �2

1/2
/2 �3+2q�,i+1/2

n−1/2 q�,i+1/2
n−1/2 � �t+q�,i+1/2

n−1/2 =�x+p�,i
n

�x−�q�,i+1/2
n−1/2 �2

�t+q�,i+1/2
n−1/2 =�x+p�,i

n

2�2+2q�,i+1/2
n−1/2 �	t0q�.i+1/2

n−1/2 �

q�,i+1/2
n−1/2 	t0q�,i+1/2

n−1/2 �

q�,i+1/2
n−1/2 +q�,i+1/2

n−1/2 	t+	t−q�,i+1/2
n−1/2 �

�x−�q�,i+1/2
n−1/2 �3 �t+q�,i+1/2

n−1/2 =�x+p�,i
n

�,i+1/2
n−1/2 �2	t0q�,i+1/2

n−1/2 �
s S2,

tions

q�,i+1
n−1/

q�,i+1
n−1/2

−T0

2
�q�,i+

n−1

−T0

2

�,i+1/
n−1/2

0
�x−�

�2	t0

−T0

2

x−��q
ployed in this method.
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A. Preliminaries

In order to approximate a real-valued function such as
f�x , t� which appears as a dependent variable in a PDE, a first
step is to introduce a grid function f i

n, which serves as an
approximation at the coordinates x= ihx, t=nht, for i and n
integer. Here hx and ht are the grid spacing and time step,
respectively. In view of the use of such grid functions in
initial boundary value problems such as the string, the re-
strictions n�0 and i=0, . . . ,N−1, where N=L /hx, are also
imposed. As the difference schemes to be discussed here are
of the interleaved or finite-difference time domain
variety,38,39 it is also helpful to define grid functions such as
gi+1/2

n+1/2, again for integer n and i=0, . . . ,N−1, representing an
approximation to a continuously variable function g�x , t� at
time t= �n+1/2�ht and at location x= �i+1/2�hx.

The forward time difference operator �t+ and time-mean
operators 	t+, 	t−, and 	t0 are defined by

�t+f i
n =

1

ht
�f i

n+1 − f i
n� ,

	t+f i
n = 1

2 �f i
n+1 + f i

n� 	t−f i
n = 1

2 �f i
n + f i

n−1� ,

	t0f i
n = 1

2 �f i
n+1 + f i

n−1�

and forward and backward spatial difference operators �x+

and �x− by

�x+f i
n =

1

hx
�f i+1

n − f i
n�, �x−f i

n =
1

hx
�f i

n − f i−1
n � .

For periodic boundary conditions, the spatial indices of the
grid function are to be taken modulo N. For instance,
�x+fN−1

n = �1/hx��f0
n− fN−1

n �.
All the discrete operators defined earlier are pairwise

commutative. �The symbols � and 	 are intended as mne-
monics for “difference” and “mean,” respectively.�

The identities

�	t+f i
n���t+f i

n� = �t+� 1
2 �f i

n�2� , �16�

	t+�t+f i
n =

1

2ht
�f i

n+2 − f i
n� , �17�

�	t0f i
n��	t+�t+f i

n−1� = 	t+�t+� 1
2 �f i

n−1�2� �18�

follow immediately from the above-presented definitions.
It is useful to define an inner product at time step n

between two real-valued grid functions f i
n and gi

n �and the
associated norm� by

�fn,gn	 = �
i=0

N−1

hxfi
ngi

n, �fn� = �fn, fn	1/2.

�The grid function gi
n above may be replaced by a grid func-

tion gi+1/2
n+1/2, interleaved with respect to f i

n without affecting
the above-presented definition.� It then follows that

�fn,rn,gn	 = �fnrn,gn	 �19�

for any three grid functions f , g, and r.

Recall also the triangle inequality,
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�fn + gn� � �fn� + �gn� �20�

which implies, in particular, that

��x−fn� �
2

hx
�fn� . �21�

The useful identity

�fn,�x−gn	 = − ��x+fn,gn	 �22�

holds for periodic boundary conditions and is the discrete
analogue of integration by parts.

B. Interleaved schemes

In developing difference schemes, it is perhaps simplest
to begin from the uncoupled linear system S2. Due to this
lack of coupling, it is permissible to examine the two sys-
tems, one in p� and q�, the other in p� and q�, in isolation. A
centered finite difference scheme, here called s2, can then be
written as shown in the first row of Table II. Here, the grid
functions p�,i

n and p�,i
n , approximations to p��x , t� and p��x , t�

are interleaved in time and space with respect to the grid
functions q�,i+1/2

n−1/2 and q�,i+1/2
n−1/2 , which are approximations to

q��x , t� and q��x , t�.
To see this interleaving property clearly, it is helpful to

rewrite system s2 in update form. For the uncoupled system
in p�,i

n and q�,i+1/2
n−1/2 ,

p�,i
n = p�,i

n−1 +
T0

�

�q�,i+1/2

n−1/2 − q�,i−1/2
n−1/2 � ,

q�,i+1/2
n+1/2 = q�,i+1/2

n−1/2 + 
�p�,i+1
n − p�,i

n � ,

where the important parameter 
 is defined by


 = ht/hx. �23�

If the updates are performed in the order in which they are
presented above, the scheme is fully explicit. The other sub-
system in p�,i

n and q�,i+1/2
n−1/2 is of the same form.

As a first example of a nonlinear difference scheme,
consider the simplified transverse-only nonlinear system
ST,4, which depends only on p� and q�. There are plainly
many ways to approximate the nonlinearity. Perhaps the
most straightforward choice is scheme sT,4

�a� , given in Table II.
This finite difference scheme, like system s2, is again inter-
leaved and can be updated explicitly; unfortunately, it does
not possess a simple conserved quantity analogous to HST,4

,
and its stability properties are difficult to ascertain. Another
choice of difference scheme is given by sT,4

�b� . Many other
choices are possible, but as discussed presently, scheme sT,4

�b�

possesses a simple conserved energy which allows for a con-
venient global stability condition. It should be noted, how-
ever, that scheme sT,4

�b� is not fully explicit, i.e., it requires the
solution of a sparse linear system at each time step. More
details are provided in Sec. III F.

Returning now to the full coupled system of interest, S4
*,

in Table II are presented, for the sake of comparison, three
distinct schemes, all of the interleaved type: s4

*,�a�, s4
*,�b� and

s4
*,�c�. Scheme s4

*,�a� is explicit, and schemes s4
*,�b� and s4

*,�c� are
*,�b� *,�c�
implicit. Both s4 and s4 possess conserved energy-like
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quantities, but as will be seen shortly, only for scheme s4
*,�c�

may the energy function be constrained to be positive, and
thus provably stable.

By virtue of the centering of difference operators, all the
schemes shown in Table II are second-order accurate23 in
both hx and ht.

C. Conserved quantities

A good place to embark on a study of the conservation
properties of the algorithms given in Table II is certainly the
linear scheme s2; as mentioned earlier, it is composed of two
uncoupled systems, one in p�,i

n ,q�,i+1/2
n−1/2 , and the other in

p�,i
n ,q�,i+1/2

n−1/2 . Considering only the transverse subsystem, take
the inner product of the second equation of system s2 with
	t+p�,i

n−1 to get

��	t+p�
n−1,�t+p�

n−1	 = T0�	t+p�
n−1,�x−q�

n−1/2	 .

Using identity �16�, this may be rewritten as

0 = �t+��

2
�p�

n−1�2� − T0�	t+p�
n−1,�x−q�

n−1/2	 .

Using summation by parts Eq. �22�, and commutativity of
the operators �x+ and 	t+ gives

0 = �t+��

2
�p�

n−1�2� + T0�	t+�x+p�
n−1,q�

n−1/2	

and finally, using the transverse auxiliary equation, and iden-
tity �17�,

0 = �t+��

2
�p�

n−1�2 +
T0

2
�q�

n−1/2,q�
n−3/2	� . �24�

By symmetry, one may obtain, for the longitudinal sub-
system,

0 = �t+��

2
�p�

n−1�2 +
EA

2
�q�

n−1/2,q�
n−3/2	� �25�

and combining Eqs. �24� and �25�, finally, one arrives at

�t+Hs2

n−1 = 0 ⇒ Hs2

n = Hs2

0 = constant �26�

for the scalar function Hs2

n defined by

Hs2

n = Ts
n + Vs2

n

with

Ts =
�

2
��p�

n�2 + �p�
n�2� ,

Vs2
=

EA

2
�q�

n+1/2,q�
n−1/2	 +

T0

2
�q�

n+1/2,q�
n−1/2	 .

The quantity Hs2

n is clearly analogous to HS2
for the model

system S2; it is a conserved quantity of difference scheme s2,
but is not necessarily positive. The determination of condi-
tions under which Hs2

n is positive is related to stability con-
ditions for scheme s2. Such stability conditions will be de-

rived in the next section.
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As a first example of energetic analysis applied to a
nonlinear difference scheme, consider schemes for the
transverse-only system ST,4. Two such schemes are presented
in Table II, sT,4

�a� and sT,4
�b� . The first of these is purely explicit,

and certainly the simpler form. Unfortunately, it does not
possess a conserved energy-like quantity, and thus stability
conditions are not immediately forthcoming. The implicit
scheme, sT,4

�b� , on the other hand, does. In general, implicit
schemes for nonlinear equations are very problematic, in that
existence and uniqueness are not easy to show �though, in-
terestingly, through energy-based analysis, one may often
show that if a solution does exist, it will be stable13�. As is
shown in Sec. III F, the schemes to be discussed here do not
cause these difficulties, as the implicit character of the
schemes intervenes in an essentially linear way.

Beginning from sT,4
�b� , again take an inner product with

	t+pi
n−1, to get

0 = ��	t+p�
n−1,�t+p�

n−1	 − T0�	t+p�
n−1,�x−q�

n−1/2	

−
EA − T0

2
�	t+p�

n−1,�x−��q�
n−1/2�2	t0q�

n−1/2�	 .

Applying the same steps as for system s2, one obtains

0 = �t+��

2
�p�

n−1�2 +
T0

2
�q�

n−1/2,q�
n−3/2	�

+
EA − T0

2
�	t+�t+q�

n−3/2,�q�
n−1/2�2	t0q�

n−1/2	

= �t+��

2
�p�

n−1�2 +
T0

2
�q�

n−1/2,q�
n−3/2	�

+
EA − T0

2
��	t0q�

n−1/2��	t+�t+q�
n−3/2�,�q�

n−1/2�2	

= �t+��

2
�p�

n−1�2 +
T0

2
�q�

n−1/2,q�
n−3/2	�

+
EA − T0

4
�	t+�t+�q�

n−3/2�2,�q�
n−1/2�2	 = �t+��

2
�p�

n−1�2

+
T0

2
�q�

n−1/2,q�
n−3/2	 +

EA − T0

8
��q�

n−3/2�2,�q�
n−1/2�2	�

where, in the final three steps above, the identities �19�, �18�,
and �17�, respectively, have been used. Clearly, then,

HsT,4
�b�

n = TsT,4

n + VsT,4
�b�

n = constant, �27�

where TsT,4

n and V
s
T,4
�b�

n
are as given in Table III.

Finally, consider the three schemes for the full coupled
transverse/longitudinal system, as discussed in the previous
section, and as given in Table II. Scheme s4

*,�a� is explicit, but
again, does not possess a conserved energy. Schemes s4

*,�b�

and s4
*,�c� are implicit, and conservative; manipulations simi-

lar to those performed earlier may be applied in order to
arrive at kinetic and potential energies. These are presented

without further comment for both schemes in Table III.
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D. Numerical stability

Given the conserved forms shown in Table III, it is rela-
tively straightforward to arrive at bounds on the solution,
provided that discrete energy may be shown to be positive.
Beginning from the conserved energy for scheme s2, first
note that

�q�
n+1/2,q�

n−1/2	 = �	t+q�
n−1/2�2 −

ht
2

4
��x+p�

n�2,

�q�
n+1/2,q�

n−1/2	 = �	t+q�
n−1/2�2 −

ht
2

4
��x+p�

n�2.

The total conserved energy for the scheme can then be re-
written as

Hs2

n =
1

2
���p�

n�2 −
EAht

2

4
��x+p�

n�2 + EA�	t+q�
n−1/2�2�

+
1

2
���p�

n�2 −
T0ht

2

4
��x+p�

n�2 + T0�	t+q�
n−1/2�2� .

Using inequality �21�, one then has

Hs2

n �
1

2
�� − EA
2��p�

n�2 +
EA

2
�	t+q�

n−1/2�2

+
1

2
�� − T0
2��p�

n�2 +
T0

2
�	t+q�

n−1/2�2.

Under the conditions


 � ��/EA, 
 � ��/T0 �28�

the energy is strictly positive, and, furthermore, the follow-

TABLE III. Discrete kinetic and potential energies for the schemes given i
scheme is not conservative.

Kinetic energy

s2 Ts
n=

�

2
��p�

n�2+ �p�
n�2�

s4
*,�a� �

s4
*,�b�

Ts
n=

�

2
��p�

n�2+ �p�
n�2� V

s
4
*,�b�

n
=

T0

2
��q�

n+1/2 ,q�
n−

s4
*�c�

Ts
n=

�

2
��p�

n�2+ �p�
n�2� V

s
4
*,�c�

n
=

EA

2
�q�

n+1/2 ,q�
n−

sT,4
�a� �

sT,4
�b�

Ts4

n =
�

2
�p�

n�2
ing bounds may be obtained:
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�p�
n� �� 2Hs2

0

� − EA
2 , �p�
n� �� 2Hs2

0

� − T0
2 , �29�

�	t+q�
n−1/2� ��2Hs2

0

EA
, �	t+q�

n−1/2� ��2Hs2

0

T0
. �30�

It is simple to translate the above mentioned bounds on
�	t+q�

n−1/2� into a more direct bound on �q�
n−1/2�, by using the

fact that q�,i+1/2
n−1/2 =	t+q�,i+1/2

n−1/2 + �ht /2��x+p�,i
n , and an application

of the triangle inequality �21�. A similar statement holds for
�	t+q�

n−1/2�.
Similar stability bounds can be course be obtained in

this linear case by using von Neumann �Fourier� methods;23

Vu-Quoc and Li37 applied such analysis to energy-
conserving schemes for the Klein-Gordon equation under
linear conditions.

Consider now the conserved energy for the nonlinear
transverse-only scheme sT,4

�b� , again given in Table III. It can
be expressed as

HsT,4
�b�

n =
1

2
�p�p�

n�2 −
T0ht

2

4
��x+p�

n�2 + T0�	t+q�
n−1/2�2�

+
EA − T0

8
��q�

n+1/2�2,�q�
n−1/2�2	

�
1

2
�� − T0
2��p�

n�2 +
T0

2
�	t+q�

n−1/2�2

+
EA − T0

8
��q�

n+1/2�2,�q�
n−1/2�2	 .

Under condition �13� and the second of Eq. �28�, all terms

le II; their sum will be conserved. The closed circle ��� indicates that the

Potential energy

Vs2

n =
EA

2
�q�

n+1/2 ,q�
n−1/2	+

T0

2
�q�

n+1/2 ,q�
n−1/2	

�

�q�
n+1/2 ,q�

n−1/2	�+
EA−T0

8
��q�

n+1/2�2+2q�
n+1/2 , �q�

n−1/2�2+2q�
n−1/2	

T0

2
�q�

n+1/2 ,q�
n−1/2	+

EA−T0

8
��q�

n+1/2q�
n−1/2+2	t+q�

n−1/2�2−4�	t+q�
n−1/2�2�

�

T0

2
�q�

n+1/2 ,q�
n−1/2	+

EA−T0

8
��q�

n+1/2�2 , �q�
n−1/2�2	
n Tab

1/2	+

1/2	+

V
s
T,4
�b�

n
=

are positive, leading to similar bounds

Stefan Bilbao: Conservative numerical methods for nonlinear strings

ontent/terms. Download to IP:  129.215.72.197 On: Sun, 17 Nov 2013 14:25:01



 Redistrib
�p�
n� �� 2HsT,4

�b�
0

� − T0
2 , �	t+q�
n−1/2� ��2HsT,4

�b�
0

T0
.

The coupled scheme s4
*,�c� can be dealt with similarly.

Rewriting the expression for conserved energy as earlier, and
applying similar manipulations, one arrives at

Hs4
*,�c�

n
�

1

2
�� − EA
2��p�

n�2 +
T0

2
�	t+q�

n−1/2�2

+
1

2
�� − T0
2��p�

n�2 +
T0

2
�	t+q�

n−1/2�2

+
EA − T0

8
�q�

n+1/2q�
n−1/2 + 2	t+q�

n−1/2�2,

which is positive under conditions �28� and �13�. Bounds on
the solution size follow as before:

�p�
n� �� 2Hs4

*,�c�
0

� − EA
2 , �p�
n� �� 2Hs4

*,�c�
0

� − T0
2 ,

�	t+q�
n−1/2�,�	t+q�

n−1/2� ��2Hs4
*,�c�

0

T0
.

In contrast, scheme s4
*,�b� does not allow such bounds on

the solution size. From the form of the potential energy Vs
4
*,�b�

given in Table III, it is clear that the last term, of highest
order in the state variables, is not necessarily positive, in
contrast with scheme s4

*,�c�. In fact, for certain choices of the
state variables, it can become unbounded and negative. Thus
conservative behavior in a difference scheme is not sufficient
for stability. Further comments on this topic appear in Sec.
IV.

The simplicity of the nonlinear stability results presented
here are a direct consequence of the series-approximated
form of the nonlinearity, in which case various algebraic
symmetries may be exploited. The stability analysis here is
thus less general than in a case for which the form of the
nonlinearity is not as simple �e.g., that carried out by Li and
Vu-Quoc36 for the nonlinear Klein-Gordon equation, with a
nonlinear term of unspecified form, which is much more in-
volved�.

E. Boundary conditions

In all the above-presented analysis, periodic boundary
conditions of the form of Eq. �2� have been assumed; simple
fixed conditions, as given in Eq. �3� change virtually none of
this analysis. These are simply incorporated into any of the
schemes presented in Table II, which are used as written for
i=1, . . . ,N−1. At i=0, one may simply set p�,0

n = p�,0
n =0, and

the computations of �x+p�,N−1
n and �x+p�,N−1

n may still be per-
formed using periodicity, under this constraint. A fuller dis-
cussion of the distinction between periodic and fixed bound-
ary conditions in the case of energetic analysis of difference
schemes for strings appears in previous work by this

15
author.
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F. Implementation details

As mentioned earlier, the schemes of most interest,
namely sT,4

�b� and s4
*,�c� for which numerical stability bounds

can be shown, are implicit. As such, it is worth discussing a
computer implementation in detail. Fixed boundary condi-
tions, as discussed in the previous section, are assumed here.

The implicit character of scheme sT,4
�b� results directly

from the inclusion of the term 	t0q�,i+1/2
n−1/2 . Noting that

	t0q�,i+1/2
n−1/2 = q�,i+1/2

n−1/2 +
ht

2

2
�x+�t+p�,i

n−1

scheme sT,4
�b� may be rewritten as

��t+p�,i
n−1 = T0�x−q�,i+1/2

n−1/2 +
EA − T0

2
�x−�q�,i+1/2

n−1/2 �3

+
ht

2�EA − T0�
4

�x−��q�,i+1/2
n−1/2 �2�x+�t+p�,i

n−1� . �31�

Introducing vectors p�
n and q�

n−1/2, defined as

p�
n = �p�,1

n , . . . ,p�,N−1
n �T, q�

n−1/2 = �q�,1/2
n−1/2, . . . ,q�,N−1/2

n−1/2 �T

�32�

system sT,4
�b� may be rewritten, in vector-matrix form, as

p�
n = p�

n−1 + �An−1/2�−1D−bn−1/2, �33a�

q�
n+1/2 = q�

n−1/2 + D+p�
n , �33b�

where

An−1/2 = IN−1 − D−��n−1/2�2D+,

bn−1/2 = �T0

�
IN + 2��n−1/2�2�q�

n−1/2,

�n−1/2 =
�

2
diag�q�

n−1/2� ,

� =�EA − T0

�
�34�

and the N �N−1� matrix D+, which incorporates the fixed
boundary condition constraints, is defined by

D+ = 

1

− 1 1

� �

− 1 1

− 1
� . �35�

The matrix D− is defined by D−=−D+
T, and IM is the M

M identity matrix. Clearly, in order to solve Eq. �33a�, it is
not necessary to invert the matrix An−1/2, but merely to solve
a sparse linear system �note that An−1/2 is tridiagonal�, which
can be done in O�N−1� operations, at each time step, which
is comparable to the cost for an explicit scheme.

Difference scheme s4
*,�c� may be treated similarly. Defin-

ing the vectors p�
n and q�

n−1/2 in analogy with Eq. �32�, it may

be written as
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�p�
n

p�
n � = �p�

n−1

p�
n−1� + �An−1/2�−1�D− ·

· D−
�bn−1/2,

where

An−1/2 =  IN−1 −
�2

�
D−�n−1/2D+

−
�2

�
D−�n−1/2D+ IN−1 − D−��n−1/2�2D+

� ,

bn−1/2 =  EA

�
��n−1/2

2��n−1/2 2��n−1/2�2 ��q�
n−1/2

q�
n−1/2�

and �n−1/2 and D− are as defined in Eqs. �34� and �35�.
It is important to note that these algorithms preserve

energy exactly in exact machine arithmetic; in a finite preci-
sion machine, it will necessarily fluctuate, due to round-off
error. In this respect, an important concern will be the means
of solution of the linear systems mentioned earlier. Typically,
this must be done using an iterative method of some sort,
perhaps a variant of the conjugate gradient method;23 if the
matrix defining the linear system is poorly conditioned, con-
vergence may be slow and, worse still, unconverged results
can lead to large energy fluctuations and finally instability.
More comments on this topic are to be found in Sec. IV.

Initialization of any of the above-mentioned interleaved
algorithms is complicated, marginally, by the fact that the
grid variables are not computed simultaneously. In general,
grid variables p and q must be set at time steps 0 and 1/2,

FIG. 1. Snapshots of the time evolution of the profile of a plucked string,
=2.11011 N/m2 and density 7850 kg/m3�, under tension T0=120 N, of
plucked at the center, according to the amplitudes given in the left-mos
energy-conserving scheme sT,4

�b� is used; the conserved energy, in joules, is al
scheme sT,4

�a� is used. In all cases, a value of 
=0.85�� /T0 and a sample rat
respectively. Given initial conditions p��x ,0� and q��x ,0�,
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one may clearly set p�,i
0 = p��ihx ,0�; q�,i+1/2

1/2 requires slightly
more care—from the auxiliary equation, it may be set ac-
cording to a one-sided difference formula as q�,i+1/2

1/2

=q��ihx ,0�+ �ht /2��x+p�,i
0 . The initialization of p�,i

0 and
q�,i+1/2

1/2 is similar. Other initialization strategies are also pos-
sible.

IV. NUMERICAL EXPERIMENTS

As a test of the various schemes presented in this article,
several simulation results are here discussed. First, consider
the test system ST,4, and the associated difference schemes
sT,4

�a� and sT,4
�b� . For a string of parameters as given in Fig. 1,

simulation results are given under triangular initial displace-
ment or “center-plucked” conditions, of various amplitudes.
For the energy-conserving scheme, the discrete energy is
conserved to machine accuracy �values given adjacent in the
figure�; recall that this scheme is stable for any initial condi-
tions, provided EA�T0 �which is true in this case�, and for

��� /T0. The value 
=0.85�� /T0 has been chosen for all
simulations presented in the figure. The scheme is implicit,
and the stabilized biconjugate gradient method has been used
in order to solve the linear system which arises, as discussed
in the previous section. In the first case, for an initial dis-
placement amplitude of 0.01 m, the problem is essentially
linear, but for higher amplitudes of 0.05 and 0.08 m, nonlin-
ear effects may be observed, in particular the increase in the
propagation speed, in a gross sense. For the nonconservative,
explicit scheme sT,4

�a� , an instability develops �bottom right
panel of Fig. 1�, which quickly diverges—this behavior oc-

rding to the test model ST,4. The string is assumed made of steel �with E
th L=0.65 m, and of cross-sectional area A=3.610−8 m2. The string is
mn. For the first three simulations �shown in the first three rows�, the

ven for each simulation, in the left-most column. For the fourth simulation,
00 kHz are used. Plot units are in m.
acco
leng

t colu
so gi
curs even under the relatively small amplitude of
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0.021 52 m. Though this instability may be weakened
through the use of lower values of 
 �at the expense of
reduced efficiency�, conditions under which it will not arise
are not forthcoming.

In order to examine the results of application of scheme
s4

*,�c� for the coupled longitudinal/transverse system M4
*, and

for the sake of variety, the results of several initial velocity,
or striking simulations are presented in Fig. 2, where string
and striking parameters are as given in the accompanying
caption. Again, energy is conserved to machine accuracy,
and the scheme is globally stable, even for large strike am-
plitudes as shown. Note, again, the gross change in wave
speed as strike velocity is increased, as well as the distinctive
nonlinear distortion for high velocities—this is not a result of
any kind of numerical dispersion of spurious oscillations in
the numerical scheme �which was run at 1 MHz�.

In analogy with the results presented in Fig. 1, it would
be possible to demonstrate instability in the simple explicit
scheme s4

*,�a�, even under relatively low striking velocities.
More interesting, however, is the case of scheme s4

*,�b�, which
is conservative, but not globally stable. In general, this
scheme performs better than the explicit scheme �i.e., over a
wider range of velocities�, but suffers from another weak-
ness, namely poor conditioning of the linear system which
must be solved. This is an important issue which cannot be
explored in any depth in this short article, but in essence, if
the linear system is not adequately solved at each time step,
the conservation guarantee fails, eventually leading to insta-
bilities of the form seen when using, e.g., scheme s4

*,�a�. Both
types of instability take the form of explosive oscillatory

FIG. 2. Snapshots of the time evolution of the profile of a plucked string
=2.11011 N/m2 and density 7850 kg/m3�, under tension T0=120 N, of le
at the center, according to a raised-cosine velocity distribution, of width 0.1 m
all three simulations, the energy-conserving scheme s4

*,�c� is used; the conser
In all cases, a value of 
=0.9�� /EA and a sample rate of 1 MHz are used.
behavior, similar in character to those which occur in the last
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row of panels in Fig. 1; for this reason, simulation results are
not presented here. As for the previous transverse-only sys-
tem, decreasing 
 has an ameliorating effect on any stability
concerns, for either of these two schemes.

V. CONCLUSION

Many interrelated issues have been raised here regarding
model and difference scheme choice for nonlinear string vi-
bration simulation. It is worth stepping back to view the
main considerations, which all stem from an insistence on
energy conservation, and rely in no way on frequency do-
main techniques. As far as model choice goes, in order to be
able to arrive at difference schemes which are provably
stable under an energetic criterion, the following constraints
must be obeyed:

�1� The model should possess a conserved energy-like quan-
tity.

�2� The conserved quantity should be a positive function of
the state variables.

The first follows from good modeling of the system itself
�though in certain models it is violated10�; the second condi-
tion is also a very natural one, though it is not satisfied by
several series-approximated forms which appear in the litera-
ture �system S4 in particular�. As discussed in this article,
form S4

* does satisfy the second condition above, and is thus
a more suitable candidate for the creation of a stable scheme.
�A related question is: How should series approximations to
nonlinearities be carried out, so as to respect the second con-

ording to the test model S4
*. The string is assumed made of steel �with E

L=1 m, and of cross-sectional area A=3.1410−6 m2. The string is struck
d of peak velocity 10, 50, and 100 m/s �in the three rows, respectively�. For
nergy, in joules, is also given for each simulation, in the left-most column.
units are in m.
, acc
ngth

, an
ved e
straint listed above? As was discussed earlier, an examination
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 Redistrib
of the relative orders of magnitude of the dependent vari-
ables is a key to this issue, but further amplification is nec-
essary.�

If the above-mentioned conditions are observed, and a
difference scheme is constructed, then the following con-
straints are also to be observed:

�1� The difference scheme should possess a conserved
energy-like quantity.

�2� The conserved quantity should be a positive function of
the discrete grid functions.

This second pair of constraints does not follow immediately
for a given difference scheme, even if it is constructed from
a model system which obeys the first set. In particular, often
the most obvious choice of scheme �such as the explicit
schemes discussed given in Table II� satisfies neither; a
scheme which satisfies both of the above-mentioned condi-
tions s4

*,�c� has been presented. It is interesting that even if the
first of these conditions is satisfied, and the continuous
model problem itself satisfied the first set of conditions men-
tioned earlier, this is still insufficient for global stability;
scheme s4

*,�b� is an example of such a scheme. As is often the
case for Lyapunov-type stability analysis �the present case of
the nonlinear string being one example�, it is not at all clear
that there is a systematic framework for constructing a
scheme which is energy conserving; trial and error, informed
by experience and intuition appear to be the only tools avail-
able to the algorithm designer, as exemplified by other
energy-based methods for related systems which appear in
the literature.13,36 Given that the number of discretization
possibilities for nonlinear systems is vast, more work is
clearly necessary, and an investigation of the related sym-
plectic integration techniques40 for Hamiltonian-type sys-
tems may be of some value.

In the present case of the string, one might ask whether
difference schemes for the model system S may be ap-
proached directly using energy-based methods. Certain re-
sults in the literature point to an affirmative answer,13 but the
resulting schemes are either �a� explicit, and without a posi-
tivity guarantee on the discrete energy, or �b� implicit, and
lacking any guarantee of existence or uniqueness of
solutions.21 For the series-truncated forms discussed here, it
has been shown here that relatively simple, computationally
efficient implicit globally stable schemes are available, and
that existence/uniqueness issues do not arise, as the solution
may always be arrived at through the solution of a linear
system. This is a distinct advantage, and one that would ap-
pear to have wide applicability not merely to string vibration
problems, but to other nonlinear systems of similar form
which appear throughout solid mechanics �simulation of
nonlinear plate vibration being a prime example�.

1P. Morse and U. Ingard, Theoretical Acoustics �Princeton University Press,
Princeton, NJ, 1968�.

2R. Narasimha, “Nonlinear vibration of an elastic string,” J. Sound Vib. 8,
134–146 �1968�.

3G. Kirchhoff, Vorlesungen über Mechanik �Tauber, Leipzig, 1883�.
4G. F. Carrier, “On the nonlinear vibration problem of the elastic string,” Q.
Appl. Math. 3, 157–165 �1945�.

5
G. Anand, “Large-amplitude damped free vibration of a stretched string,”

3326 J. Acoust. Soc. Am., Vol. 118, No. 5, November 2005

ution subject to ASA license or copyright; see http://acousticalsociety.org/c
J. Acoust. Soc. Am. 45, 1089–1096 �1969�.
6J. Johnson and A. Bajaj, “Amplitude modulated and chaotic dynamics in
resonant motion of strings,” J. Sound Vib. 128, 87–107 �1989�.

7C. Vallette, “The mechanics of vibrating strings,” in Mechanics of Musical
Instruments, edited by A. Hirschberg, J. Kergomard, and G. Weinreich
�Springer, New York, 1995�, pp. 116–183.

8J. Simo and L. Vu-Quoc, “On the dynamics of flexible beams under large
overall motions—The plane case: Part I,” ASME J. Appl. Mech. 53, 849–
854 �1986�.

9J. Simo and L. Vu-Quoc, “On the dynamics of flexible beams under large
overall motions—The plane case: Part II,” ASME J. Appl. Mech. 53,
855–863 �1986�.

10B. Bank and L. Sujbert, “Modeling the longitudinal vibration of piano
strings,” in Proceedings of the Stockholm Musical Acoustics Conference,
Stockholm, Sweden, August 2003, pp. 143–146.

11B. Bank and L. Sujbert, “A piano model including longitudinal string
vibration,” in Proceedings of the Digital Audio Effects Conference,
Naples, Italy, October 2004, pp. 89–94.

12C. Gough, “The nonlinear free vibration of a damped elastic string,” J.
Acoust. Soc. Am. 75, 1770–1776 �1984�.

13D. Furihata, “Finite difference schemes for nonlinear wave equation that
inherit energy-conservation property,” J. Comput. Appl. Math. 134, 37–57
�2001�.

14M. Rubin and O. Gottlieb, “Numerical solutions of forced vibration and
whirling of a nonlinear string using the theory of a cosserat point,” J.
Sound Vib. 197, 85–101 �1996�.

15S. Bilbao and J. O. Smith III, “Energy conserving finite difference
schemes for nonlinear strings,” Acustica 91, 299–311 �2005�.

16S. Bilbao, “Energy-conserving finite difference schemes for tension-
modulated strings,” in Proceedings of the IEEE International Conference
on Acoustics, Speech, Sig. Proc., Montreal, Canada, May 2004.

17S. Bilbao, “Modal-type finite difference schemes for nonlinear strings with
an energy-conservation property,” in Proceedings of the Digital Audio
Effects Conference, Naples, Italy, October 2004, pp. 119–124.

18B. Gustaffson, H.-O. Kreiss, and J. Oliger, Time Dependent Problems and
Difference Methods �Wiley, New York, 1995�.

19R. Richtmyer and K. Morton, Difference Methods for Initial Value Prob-
lems �Wiley, New York, 1967�.

20J. Sanz-Serna, “An explicit finite-difference scheme with exact conserva-
tion properties,” J. Comput. Phys. 47, 199–210 �1982�.

21D. Greenspan, “Conservative numerical methods for ẍ= f�x�,” J. Comput.
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