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Via computer simulations, we provide evidence that the shear rate induced red blood cell tumbling-
to-tank-treading transition also occurs at quite high volume fractions, where collective effects are
important. The transition takes place as the ratio of suspension stress to the characteristic cell
membrane stress exceeds a certain value, independent of volume fraction and cell deformability.
This value coincides with that for a transition from an orientationally less ordered to a highly
ordered phase. The average cell deformation does not show any signature of the transition, but
rather follows a simple scaling law independent of volume fraction.

I. INTRODUCTION

Despite the large interest in a better understanding of
the circulatory system and related diseases, there are still
many open issues regarding the microscopic mechanisms
which ultimately determine the rheology of suspensions
of red blood cells (RBCs), the major particulate con-
stituent of blood. Focusing on purely mechanical aspects,
a RBC can be considered as a thin and flexible incom-
pressible biconcave membrane which encloses an inter-
nal fluid (haemoglobin solution) and resists shearing and
bending.

Depending on the ambient shear rate γ̇, viscosity con-
trast (ratio between internal and external fluid viscosi-
ties), membrane viscoelasticity and other parameters,
one observes tumbling, swinging, or tank-treading mo-
tion of isolated RBCs [1–4]. While in the case of sin-
gle vesicles the dynamical phase space has been inves-
tigated thoroughly [5–11], there are only few studies of
dense suspensions of deformable particles or RBCs [12–
15]. These studies investigate the influence of concentra-
tion, deformabilty and aggregation tendency on suspen-
sion rheology.

In the present work, we focus on a dynamic phe-
nomenon in dense RBC suspensions. Via computer sim-
ulations, we provide evidence for the transition from a
tumbling to a tank-treading-like state (henceforth called
TB-TT transition) upon increasing the capillary num-
ber Ca. The capillary number is defined as the ratio of
fluid stress to the characteristic membrane stress, where
the latter is related to the shear elasticity of the cell.
Transcending previous studies, we find that the TB-TT
transition occurs not only in the well-known case of a di-
lute suspension, but up to haematocrit values as high as
Ht = 65% (haematocrit, or volume fraction, is the ratio
of the volume occupied by RBCs to the total suspension
volume). It is shown that—for all studied shear rates, cell
deformabilities, and volume fractions—this transition is
characterised by an effective capillary number Ca∗ (ratio
between effective suspension stress and the characteris-

tic membrane stress) rather than by the bare capillary
number Ca. A detailed analysis of the average RBC in-
clination angle θ̄ (a measure of average cell orientation)
and the corresponding order parameter Q> is also pro-
vided. When plotted versus Ca∗, all values for Q> and
θ̄ tend towards a master curve as Ca∗ exceeds a certain
threshold value Ca∗cr which, remarkably, coincides with
that for the onset of the TB-TT transition for a single
cell.

Our results provide evidence that the change from
tumbling to tank-treading-like dynamics is accompanied
by a phase transition from weak to strong orientational
ordering of the cells. Interestingly, the average defor-
mation of a cell, quantified by the Taylor deformation
parameter Da changes continuously in the investigated
parameter range, without any signature of the observed
transition.

The article is organised as follows. The setup of the
simulations is discussed in section II. Section III contains
the results and discussions of the TB-TT transition (sec-
tion III A), the orientational order (section III B), and
the RBC deformation (section III C). We conclude our
work and provide an outlook in section IV.

II. SIMULATION SETUP

A. Numerical model

A hybrid immersed-boundary-lattice-Boltzmann-
finite-element model has been used [16, 17]. The liquid
phase is fully considered and solved by the lattice-
Boltzmann method [18, 19], while the fluid-particle
interaction is realised by the immersed-boundary
method [20]. The red blood cells are represented by a
finite-element mesh consisting of 1620 triangular facets.
Physically, the cell membrane is made of a lipid bilayer
(being essentially an incompressible 2D fluid), giving
rise to a finite resistance against bending and changes of
surface area, and a cytoskeleton, leading to a finite shear
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FIG. 1 (a) Snapshot of a simulation with average
haematocrit (volume fraction) Ht = 55% and capillary
number Ca = 0.011. The bottom (top) wall is located at
z = 0 (z = Lz = 160) and moves to the left (right) with
velocity ±uw (black arrows). (b) Layer-resolved
haematocrit, Ht, shear stress, σxz, and flow velocity, ux, for
the same control parameters as in panel (a). Each curve is
obtained as average over steady state and independent runs.
In the central region (grey, from Lz/4 to 3Lz/4), the volume
fraction is nearly constant, the velocity profile is linear (red
solid line), and the stress is constant.

resistance [21–23]. The ensueing effects on the collective
and rheological properties of the RBC suspension can
be captured by assuming a total membrane energy of
the form

E = ES + EB + EA + EV , (1)

where

ES =

∮
dA
[κS

12
(I21 + 2I1 − 2I2) +

κα
12
I22

]
(2)

describes the energy penalty against shear and area dila-
tion,

EB =
κB
2

∮
dA
(
H −H(0)

)2
(3)

is energy change due to bending, while

EA =
κA
2

(A−A(0))2

A(0)
(4)

and

EV =
κV
2

(V − V (0))2

V (0)
(5)

penalize changes of membrane surface area A and cell
volume V over their undeformed counterparts, A(0) and
V (0), respectively. Eq. (2) represents Skalak’s energy
density [24] with κS and κα being the shear and area
resistance, respectively. I1 and I2 denote the in-plane
strain invariants, which are related to the local mem-
brane deformation tensor (see Krüger et al. [16] for more
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FIG. 2 Relative suspension viscosity η/η0 as function of
bare capillary number Ca = η0γ̇r/κS. η0 is the reference
viscosity of the suspending fluid without red blood cells. For
all volume fractions, the suspension is shear thinning.
Additionally, the viscosity increases with increasing volume
fraction. One observes that the data for soft and hard RBCs
overlap, when plotted versus Ca. Error bars are of the order
of the symbol size. It is also noteworthy that the viscosities
can be approximated by a Herschel-Bulkley law (dashed
lines) of the form η/η0 = a+ b× Cac with the parameters
(a, b, c) = (0, 2.0, 0.78) for 35%, (0.004, 2.4, 0.73) for 45%,
(0.015, 3.4, 0.72) for 55%, and (0.043, 5.0, 0.71) for 65%.
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FIG. 3 Cross-section through an undeformed red blood cell
(red) together with its equivalent inertia ellipsoid (black). r
is the large RBC radius (dotted), a, b are the two large
semiaxes (a = b = 1.1r) and c is the small semiaxis
(c = 0.36r) of the inertia ellipsoid. The vector ô is
perpendicular to the a-b-plane and is given by the
normalized eigenvector of the inertia ellipsoid corresponding
to the smallest eigenvector (i.e., the shortest semiaxis, c).

The intrinsic membrane orientation vector î, on the other
hand, is computed from the positions of the vertices of the
RBC mesh and connects the centre of masses (green dots) of
the top and bottom halfs of the undeformed membrane. The
identity of a mesh vertex of being in the “top” or “bottom”
half remains unaltered during the course of the simulation,
making î an intrinsic measure of the RBC orientation that is
not available from the inertia tensor.

details). Note that both the parameters κα and κA pe-
nalize changes in the membrane surface area (physically,
κα is related the cytoskeleton, while κA arises from the
incompressibility of the the liquid bilayer). The bending
energy in Eq. (3) has the classical Helfrich form [25], of
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which a simplified version

EB =

√
3κB
2

∑
〈i,j〉

(
θij − θeqij

)2
(6)

is employed in the simulations[26]. Here, κB is the bend-
ing modulus and the sum runs over all pairs of neigh-
bouring facets of the tessellated RBC surface with mu-
tual equilibrium normal-to-normal angles θeqij . We re-
mark that, in the present case, the biconcave shape of
the RBC is not a result of the minimization of the bend-
ing energy subject to the constraint of fixed volume[23],
but rather specified as input to the simulation via the
construction of the membrane mesh (and ensured by the
presence of the θeqij in Eq. (6)).

In our simulations, a fixed number (494, 635, 776, and
917) of neutrally buoyant RBCs with equilibrium shape
of a biconcave disk of radius of r = 9 (all quantities in
lattice units) and equal internal and external viscosities
have been distributed throughout a fixed fluid volume
(Lx × Ly × Lz = 100 × 100 × 160) resulting in volume
fractions Ht = 35, 45, 55, and 65%, respectively. To im-
prove numerical stability and avoiding particle overlap,
a repulsive force inspired by Feng and Michaelides [27] is
introduced. It is zero for distances larger than one lat-
tice constant and behaves like 1/r2 for smaller distances.
The effect of the membrane energy, Eq. (1), is realized in
terms of local forces derived from the principle of virtual
work[16].

The shear flow (periodic in x- and y-directions) has
been realised by moving the bottom and top walls at
z = 0 and z = 160 in opposite directions along the x-
axis with velocities ±uw, giving rise to an average shear
rate of γ̇ = 2uw/Lz. Inertia is neglected. One layer of
RBCs has been stuck to each wall to avoid slip. A typical
simulation snapshot illustrating the geometry is shown in
Fig. 1(a).

Two different RBC rigidities have been consid-
ered. The softer RBCs, (κS, κB, κα, κA, κV) =
(0.02, 0.004, 1, 1, 1), correspond to healthy RBCs.
The more rigid RBCs obey (κS, κB, κα, κA, κV) =
(0.06, 0.012, 1, 1, 1). The former are denoted ‘s’, the
latter ‘r’. The choice of κα = κA = κV = 1 ensures that
local area and volume deviations are restricted to a few
percent.

In order to improve the statistics, all simulations have
been repeated with various random initial RBC config-
urations. Ten and five independent runs have been per-
formed for the softer and more rigid RBCs, respectively.
All reported observables are averaged over independent
runs and time in the steady state. Due to the absence of
thermal fluctuations in the present model, all observed
effects are shear-induced.

B. Characterisation of the flow

Since we are interested in bulk properties rather than
wall-induced effects, we first examine RBC concentra-
tion, suspension velocity, and shear stress profiles to see
whether a bulk-like behavior may be expected.

Fig. 1(b) reveals that, within the inner 50% of the vol-
ume between the walls (henceforth called the central re-
gion), the volume fraction is nearly constant and the ve-
locity is linear, defining a constant shear rate. The shear
stress is confirmed to be constant throughout the entire
volume as expected for simple shear flow [17]. Thus, an
effective bulk shear viscosity η can be defined as the ra-
tio of shear stress and shear rate using the data in the
central region (Fig. 2). For the present purposes, the
viscosity is needed to define an effective capillary num-
ber (see eq. (10) below), which will turn out to be the
central quantity governing the cell dynamics. A detailed
investigation of the rheology will be presented in another
publication. The results analysed in the central region
are expected to be characteristic of the bulk properties
of the system. In the following, system properties will
thus be determined in the central region where all stud-
ied observables have been found to be rather independent
of the transverse position z.

III. RESULTS AND DISCUSSION

A. Transition from tumbling to tank-treading-like
dynamics

We investigate the average RBC tumbling (rigid body-
like) frequency ω̄ by tracking the orientation of the cells’
inertia tensor in time. We recall the average tumbling
frequency of a single rigid ellipsoid in a simple viscous
shear flow,

ω̄

γ̇
=

1

p+ 1/p
, (7)

where p = a/c (a ≥ b ≥ c are the semi-axes of the el-
lipsoid, a and c are aligned with the shearing plane, see
Fig. 3) [28]. For a rigid sphere (p = 1), the tumbling
frequency is ω/γ̇ = 1

2 . One finds for the inertia ellipsoid
of an undeformed RBC a = b = 1.1r and c = 0.36r, and
Jeffery’s solution [28] predicts ω̄/γ̇ = 0.30. On the con-
trary, for purely tank-treading cells, the average is ω̄ = 0,
as they do not show any tumbling activity.

Additionally, we define the instantaneous reduced an-
gular velocity of a RBC as

ω̄∗

γ̇
:=

Ly
acγ̇

, (8)

where ac is approximately the RBC cross-sectional area
in the shearing plane and

L =
1

A

∮
dA (r× v) (9)
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FIG. 4 Reduced (a) angular velocity ω̄∗/γ̇ and (b) tumbling frequency ω̄/γ̇ versus effective capillary number Ca∗. The
legend applies to both panels. The grey area denotes the TB-TT transition. As seen in panel (b), for Ca∗ > 0.1, the average
tumbling frequency of a single isolated cell is zero, whereas ω̄/γ̇ approximately decays like ω̄/γ̇ ∝ Ca∗−3 (inclined solid line)
in the dense suspensions. Contrarily, the angular membrane velocity in (a) is rather independent of Ca∗. Note that ω̄∗/γ̇ and
ω̄/γ̇ are nearly identical for Ca∗ . 0.1. The analytic values of ω̄/γ̇ for a rigid sphere and ellipsoid with aspect ratio
p = a/c = 1.1/0.36 are also shown in (b).

(a)γ̇ t = 0 (b)γ̇ t = 1.25 (c)γ̇ t = 2.5

(d)γ̇ t = 3.75 (e)γ̇ t = 5 (f)γ̇ t = 6.25

(g)γ̇ t = 7.5 (h)γ̇ t = 8.75 (i)γ̇ t = 10

FIG. 5 This sequence shows the time evolution of the
rotational behavior of a single RBC in an external shear flow
with rate γ̇. The cross-section is parallel to the shearing
plane, and the vorticity of the shear flow is clockwise. The
evolution as function of dimensionless time γ̇t is shown for
three different capillary numbers, Ca = 0.1 (loosely dashed
line), 0.2 (densely dashed line), and 0.5 (solid line). For the
smallest value (Ca = 0.1), the RBC performs a tumbling
motion since it is not sufficiently deformed to undergo a
tank-treading motion. However, already for Ca = 0.2, the
RBC can rotate without tumbling, but shape oscillations are
still observed. The tank-treading motion is fully developed
for the highest capillary number (Ca = 0.5). Note that in
the dilute limit Ca∗ ≈ Ca holds.

(a) tumbling rotation (b) tank-treading-like rotation

FIG. 6 Exemplary cross-sections of a rotating RBC in a
45%-suspension at (a) Ca∗ = 0.05 and (b) Ca∗ = 0.49. The
cross-sections correspond to the shearing plane and run
through the cell centre. The shear flow is in clockwise
direction. In the left panel, a flipping event (rigid body-like
rotation) is shown (temporal order: red, blue, green; time
difference between snapshots is 0.14/γ̇). The right panel
illustrates the irregular tank-treading-like rotation (temporal
order: red, blue, green; time difference between snapshots is
0.35/γ̇). Shape fluctuations due to collisions with
neighbouring particles are clearly visible. Arrows indicate
the local surface velocity.

is the surface-averaged rotational component of the mem-
brane velocity (r and v are location and velocity of a
RBC surface element relative to the current RBC centre,
respectively, and A is the RBC surface area). Note that
ω̄∗ is sensitive to any form of membrane rotation, even
if the cell’s inertia tensor is not rotating in space (i.e., if
there is no tumbling).

A first evidence for the onset of the TB-TT transition is
provided in Fig. 4 where the reduced angular membrane
velocity ω̄∗/γ̇ and the reduced tumbling frequency ω̄/γ̇
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FIG. 7 Ratio of the number of flips (i.e., half-turns) of the
inertia ellipsoid, Nflips,IE, and intrinsic cell orientation vector
(see Fig. 3), Nflips,orient, of RBCs in a suspension at different
haematocrit values. At low effective capillary numbers, both
inertia ellipsoid and orientation vector flip at the same rate
(the flip number ratio being close to unity), characteristic
for tumbling-like motion. In contrast, at high Ca∗ only the
intrinsic orientation vector performs flips, while the flip rate
of the inertia ellipsoid is strongly reduced, indicating
tank-treading-like motion.

are plotted versus the effective capillary number

Ca∗ =
ηγ̇r

κS
(10)

which gives the relative strength of the suspension stress
σxz = ηγ̇, acting on the cells and the characteristic mem-
brane stress, κS/r. The approximately constant behavior
of ω̄∗ in panel (a) indicates that rotational motion is al-
ways present in the studied Ca∗-range. Despite this fact,
we observe a rather sharp decrease of the tumbling fre-
quency at Ca∗cr ' 0.2 in panel (b). This clearly shows
that, for Ca∗ > Ca∗cr, a type of rotational motion is
dominant which allows for a non-rotating tensor of in-
ertia. Tank-treading-like dynamics provides such an al-
ternative. Interestingly, for an isolated RBC we see a
TB-TT transitionin the same region (Fig. 5), which is in
qualitative agreement with previous works [29–31]. Fur-
thermore, at σ ≈ 0.4 Pa, which corresponds to Ca∗ ≈ 0.2
for healthy RBCs, the transition has been observed ex-
perimentally for single RBCs [10]. Note that all data for
Ca∗ > Ca∗cr collapse onto a single master curve, which is
not the case when plotted as function of the bare capil-
lary number Ca (not shown). The decay of the tumbling
frequency in the region Ca∗ ≈ 0.2–0.3 can be captured

by a simple power law, ω̄/γ̇ ∝ Ca∗
−3

.
The picture of a TB-TT transition characterized by

a critical capillary number independent of haematocrit
is further supported by a survey of the dynamics at the
level of the individual cells. Fig. 6 exemplifies the typical
temporal behaviour of an individual RBC in a moder-
ately dense suspension, from which one can clearly iden-
tify tumbling motion at low effective capillary numbers,
whereas tank-treading is performed at large Ca∗. Inter-
estingly, even at this comparatively large value of haema-

tocrit (45%), the typical rotational motion of an indi-
vidual cell does not appear to be significantly different
from that of a single cell, apart from occasional hydro-
dynamical collisions with its neighbours. While a more
detailed analysis of these aspects will be presented in a
separate work, we point out here that a comparison of
the rate of flips [32] of the equivalent inertia ellipsoid on
the one hand and of a suitable intrinsic membrane orien-
tation vector[40] on the other hand provides an indepen-
dent means to distinguish tumbling from tank-treading
behaviour. This is demonstrated in Fig. 7, where we plot
the ratio of the total number of flips (obtained by inte-
grating the flip rate over several decades in inverse shear
rate) of the two orientation vectors. Consistent with the
expectations from the analysis of the angular velocities,
we find that for low effective capillary numbers, both
the inertia ellipsoid and intrinsic membrane orientation
vector flip at the same rate, indicative of tumbling-like
motion. In contrast, at higher Ca∗, only the intrinsic
membrane orientation vector performs flips while the ori-
entation of the inertia ellipsoid remains virtually fixed, as
would be expected for tank-treading-like motion.

It deserves special notice that, while the TB-TT transi-
tion is fairly well understood in terms of flow gradient ef-
fects and cell deformability (it is expected to occur when
the fluid stress is strong enough to push the cells through
the maximum of the elastic energy)[2], its occurrence in
a dense suspension, where collective effects play a major
role, is a more complex phenomenon. Our results suggest
that, even at a haematocrit of Ht = 65%, RBCs can per-
form a tank-treading-like motion in an effective medium
whose viscosity is no longer the viscosity of the ambi-
ent fluid but the significantly higher effective suspension
viscosity. It has also to be noted that, due to RBC colli-
sions and related complicated dynamics, an unperturbed
swinging or tank-treading motion for Ca & Ca∗cr is not
expected. Instead, the cells’ inclination and deformation
fluctuate about their time averages, which can also be
inferred from Fig. 6. Therefore, the term tank-treading-
like is used to emphasise that the cells are not tumbling,
but neither show a perfect, unperturbed tank-treading
motion.

B. Cell alignment and orientational ordering

The onset of the TB-TT transition seems to be ac-
companied by a transition in the orientational order pa-
rameter Q> of the system which is defined as the largest
eigenvalue of the order tensor [34]

Qαβ :=
1

2
〈3ôαôβ − δαβ〉, α, β ∈ {x, y, z}. (11)

The RBC orientation vector ô is defined as the inertia
tensor eigenvector corresponding to the shortest semi-
axis c (see Fig. 3). The related eigenvector of Q is called
the director n indicating the average orientation of the
cells.
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FIG. 8 (a) Order parameter and (b) average inclination angle versus effective capillary number Ca∗. The curves obtained
for one single cell are also shown. The grey area denotes the TB-TT transition. The legend applies to both panels. (c)
Inclination angle probability distribution for the softer cells with Ht = 55% and selected values of Ca∗. The analytic curve for
a single rigid ellipsoid (aspect ratio p = a/c = 1.1/0.36) is also shown. The single cell in panel (b) approaches 90◦ for
decreasing Ca∗, as expected from the analytical solution.
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(b) deformation with maximum probability

FIG. 9 (a) Deformation probability distribution for the softer cells at Ht = 55% for different effective capillary numbers
Ca∗. For each curve, an ellipsoid is shown whose deformation parameter equals Dmax

a , the deformation parameter with
maximum probability. (b) Dmax

a versus Ca∗. The power-law fit, a/b|max − 1 = 0.89×Ca∗0.9, is shown as dashed line. There is
a one-to-one correspondence between a/b and Da. The grey area denotes the TB-TT transition. Note the excellent agreement
with the experimental data obtained for young RBCs reported in Fig. 2 in Pfafferott et al. [33] (we converted the shear stress
reported therein to Ca∗ by assuming a shear elasticity of κS = 5µN/m [23]).

As illustrated in Fig. 8, both Q> and the average in-
clination angle θ̄ (average angle between the director and
the flow axis) change rapidly at Ca∗ ∼ Ca∗cr. We have
also investigated the time evolution and spatial depen-
dence of n and Q>. Both quantities show only slight
fluctuations about their averages. Note that RBC order-
ing at high shear rates has been observed experimentally
[1]. Similarly to the behavior of the tumbling frequency,
all simulated data follow a master curve for Ca∗ ≥ Ca∗cr
and can be described by one single rather than by two
independent parameters (Ca∗ instead of Ca and Ht).

A typical distribution of inclination angles is shown in
Fig. 8(c). For comparison, the probability of finding the
rigid inertia ellipsoid of an RBC (aspect ratio p = a/c)

with a given orientation angle in shear flow is

P (θ) ∝
p+ 1

p

p cos2 θ + 1
p sin2 θ

. (12)

This relation can be extracted from the known expression
for the angular velocity of the ellipsoid [28].

As γ̇ increases, the centre of P (θ) is shifted towards
larger angles and its shape becomes narrower. While
the former results in an increase of θ̄, the latter leads
to a higher orientational order Q> since deviations from
a given cell orientation become restricted to a narrower
range. It is striking that, for Ca∗ & Ca∗cr, the average in-
clination angle equals that of the isolated cell (Fig. 8(b)).
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C. Deformation behavior

In Fig. 9(a), some typical deformation probability dis-
tributions P (Da) are shown. Here,

Da :=
a/a0 − b/b0
a/a0 + b/b0

(13)

is the Taylor deformation parameter as a measure for
the RBC asymmetry in the a-b-plane, where the index
zero refers to the undeformed state and a0 = b0 holds
for an RBC. Using this data, we determine Dmax

a , the
deformation parameter with maximum probability. It is
found (Fig. 9(b)) that the data on Dmax

a collapse onto a
single master curve when plotted as a function of Ca∗ for
all studied values of control parameters.

In marked contrast to the behavior of tumbling fre-
quency and orientational order parameter, Dmax

a shows
no signature of the TB-TT transition. A similar observa-
tion for dilute RBC suspensions has been reported before
[10]. The entire observed range of capillary numbers can
be parameterised by a simple power law, a/b|max − 1 ∝
Ca∗

0.9
, as shown in Fig. 9(b).

IV. CONCLUSIONS AND OUTLOOK

The focus of the present study is on the tumbling-
to-tank-treading transition (TB-TT transition) in sus-
pensions of aggregation-free red blood cells in the limit
of high volume fractions where collective effects become
dominant. We provide evidence that this transition oc-
curs when the ratio of the suspension stress to the charac-
teristic membrane stress exceeds a threshold value Ca∗cr,
independent of volume fraction and cell deformability.
For a single cell, Ca∗cr corresponds to the stress where
the cell is driven through the maximum of its elastic en-
ergy, thus allowing tank-treading-like dynamics.

Another interesting observation is the rather rapid de-
cay of average tumbling frequency with Ca∗ at the onset

of the TB-TT transition, ω̄/γ̇ ∝ Ca∗
−3

. Such a non-
linear relation is presumably related to the collective na-
ture of the observed phenomenon. As yet however, we are
not aware of any theoretical prediction of this relation.

The value of Ca∗cr coincides with that for a transi-
tion from a less ordered cell orientation distribution to

a highly ordered phase. Contrarily, the average cell de-
formation changes continuously in the investigated pa-

rameter range following a scaling law, ∝ Ca∗
0.9

, without
any signature of the observed transition.

The above findings support the following conclusions:
(i) The cell dynamics is dominated by Ca∗ and therefore
the suspension stress. The cells in the tank-treading-
like state behave more like isolated particles experiencing
their environment only via the suspension stress. (ii) The
large degree of orientational ordering at Ca∗ ≥ Ca∗cr is
related to the onset of tank-treading-like dynamics. (iii)
Cell deformation alone does not seem to be a relevant
factor for the TB-TT transition.

During tank-treading, particles explore a smaller vol-
ume as compared to tumbling, thus providing a less
strong hindrance to the motion of other particles. The
suspension viscosity is, therefore, expected to reduce as
the number of tank-treading particles increases [1, 10, 14,
35]. Hence, the present work suggests that RBC models
which inherently exclude the TB-TT transition will sys-
tematically underestimate the shear thinning character
of the suspension. At the same time, it opens a route
to equipping coarse-grained blood models [36, 37] with
proper constitutive laws for the tumbling/tank-treading
probability or the average particle deformation given an
ambient stress value.

Finally, while the present work focuses on the limit
of high Ca∗, many interesting open questions remain re-
garding the opposite limit of small shear rates such as the
possible existence of a yield stress or flow heterogeneity
[38, 39].
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