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We show that the logarithmic derivative of the gauge coupling on the hadronic mass and the 
cosmological constant term of a gauge theory are related to the gluon condensate of the hadron and 
the vacuum respectively. These relations are akin to Feynman–Hellmann relations whose derivation for 
the case at hand is complicated by the construction of the gauge theory Hamiltonian. We bypass this 
problem by using a renormalisation group equation for composite operators and the trace anomaly. 
The relations serve as possible definitions of the gluon condensates themselves which are plagued in 
direct approaches by power divergences. In turn these results might help to determine the contribution 
of the QCD phase transition to the cosmological constant and test speculative ideas.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

The Feynman–Hellmann theorem relates the leading order vari-
ation of the energy to a local matrix element, providing a di-
rect link between an observable and a theoretical quantity. Orig-
inally derived in quantum mechanics, its application to quantum 
field theory (QFT) is generally straightforward and widely used, 
see e.g. [1]. Exceptions are cases where the Hamiltonian is dif-
ficult to construct, which may arise as a QFT is usually defined 
from a Lagrangian where (most) symmetries are manifest. An ex-
ample of such a case are gauge theories where the elimination 
of two degrees of freedom from the four vector Aμ is at the 
root of the problem. In this work we bypass the construction of 
the gauge field part of the Hamiltonian1 by using renormalisation
group equations (RGE) for composite operators as well as the trace 
anomaly. We obtain a relation that relates the logarithmic deriva-
tive of the hadron mass with respect to the coupling constant, and 
the gluon condensate of the hadron state. Likewise we find a simi-
lar relation relating the derivative of the cosmological constant and 
the vacuum gluon condensate.

The corresponding relation for the quark mass was used in 
Ref. [3] to derive the leading scaling behaviour of the hadronic 
masses for a non-trivial infrared (IR) fixed point, deformed by the 

* Corresponding author.
E-mail addresses: luigi.del.debbio@ed.ac.uk (L. Del Debbio), 

roman.zwicky@ed.ac.uk (R. Zwicky).
1 In subsequent work the relations, obtained in this paper, have been derived 

using the Hamiltonian formalism [2].

fermion mass parameter. The relation derived in this paper is used 
to compute the scaling corrections to the hadronic mass spec-
trum [4].

2. Preliminary results

We shall first rederive some results before assembling them to 
obtain the main relations of this paper.

2.1. RGE for matrix elements of local composite operators

In this section we outline the derivation of the standard RGE 
for local operator matrix elements on physical states which can 
be found in reference textbooks; e.g. [5,6]. We begin by defining 
the relation between the bare operator O i and the renormalised
operator Ō i

O i(g,m,Λ) = ( Z̄ O )−1
i j (μ/Λ)Ō j(ḡ,m̄,μ), (1)

where summation over indices is implied, (g, m) are the bare 
gauge coupling and mass, Λ is the UV cut-off of the theory, 
(ḡ, m̄) are the set of renormalised couplings and μ is the renor-
malisation scale. As stated above the operators are understood to 
be evaluated between two physical states in order to avoid the 
issue of contact terms which arises upon insertion of additional 
operators. From the independence of the bare operator on the 
renormalisation scale,

d

d lnμ
O i(g,m,Λ) = 0, (2)

http://dx.doi.org/10.1016/j.physletb.2014.05.038
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one obtains an RGE of the form,(
∂

∂ lnμ
+ β̄

∂

∂ ḡ
− m̄γ̄m

∂

∂m̄
+ (γ̄O )i j

)
Ō j(ḡ,m̄,μ) = 0 (3)

with

β̄ ≡ dḡ

d lnμ
, γ̄m ≡ −d ln m̄

d lnμ
,

(γ̄O )i j ≡ −(
Z̄−1

O

)
ik

d( Z̄ O )kj

d lnμ
. (4)

Denoting by dO i ≡ dŌ i
the engineering dimension of O i one gets 

by dimensional analysis(
∂

∂ lnμ
+ m̄

∂

∂m̄
− dO i

)
Ō i(ḡ,m̄,μ) = 0, (5)

an equation which can be combined with (3) into(
β̄

∂

∂ ḡ
− (1 + γ̄m)m̄

∂

∂m̄
+ (�̄O )i j

)
Ō j(ḡ,m̄,μ) = 0. (6)

Eq. (6) is an RGE equation for the composite operator, sometimes 
referred to as the ’t Hooft–Weinberg or Callan–Symmanzik equa-
tion. The symbol �̄O ≡ dO + γ̄O is, as usual, the scaling dimension 
of the operator Ō . Eq. (6) can be solved by the method of charac-
teristics by introducing a parameter which has the interpretation 
of a blocking variable. This is for instance used in Ref. [4] to iden-
tify the scaling corrections to correlators at a non-trivial IR fixed 
point.

To this end we note that in this paper the O i considered are 
physical quantities (no anomalous scaling) which in addition do 
not mix with other operators and therefore (�O )i j = dO i δi j .

2.2. Trace anomaly

Let us first define some conventions. The Lorentz-invariant nor-
malisation of states for D-dimensional space–time is given by

〈
H

(
E ′, �p′) ∣∣ H(E, �p)

〉 = 2E(�p)(2π)D−1δ(D−1)
(�p − �p′), (7)

the diagonal matrix elements are abbreviated to

〈X〉E H ≡ 〈
H(E, �p)

∣∣X
∣∣H(E, �p)

〉
c, (8)

where c denotes the connected part and H stands for any physical 
state. Since the energy momentum tensor is related to the four 
momentum operator p̂μ = ∫

dD−1xT0μ it is readily seen that:

〈Tμν〉E H = 2pμpν, 〈Tμν〉0 = ΛGT gμν, (9)

where 〈O 〉0 ≡ 〈0|O |0〉 hereafter with |0〉 denoting the vacuum 
state, pμ is the four momentum associated with the physical state 
(E = p0), gμν is the Minkowski metric with signature (+, −, ..., −)

and ΛGT is the cosmological constant contribution of the gauge 
theory under consideration.

The traces of the right hand side (RHS) are the masses of the 
hadrons 2M2

H and the masses density of empty space DΛGT =
gμ

μΛGT, and the left hand sides (LHS) follow from the trace 
anomaly. For a gauge theory with N f Dirac quarks the trace 
anomaly, in terms of renormalised fields, is given by [7],2

Tμ
μ
∣∣
on-shell = β̄

2ḡ
Ḡ + (1 + γ̄m)Q̄ , (10)

2 In terms of bare fields the expression (in dimensional regularisation) reads: 
Tμ

μ|on-shell = −(D − 4) 1
4 G + Q .

where the subscript “on-shell” (10) indicates that the equation, 
in this form, is to be used on the physical subspace only. Further-
more we have introduced the following shorthand notation:

Q ≡ N f mq̄q, G ≡ 1

g2
G A

αβ G Aαβ, (11)

with G A
αβ being the gauge field strength tensor and A a colour in-

dex. Summation over indices is understood. Conventions are such 
that the coupling is absorbed into the gauge field. We note that 
the trace energy momentum tensor is not renormalised (i.e. Tμν =
T̄μν ) as it is directly related to the four momentum which is a 
physical quantity. Furthermore Q̄ = Q is an RG invariant which 
then implies that β̄/(2ḡ)Ḡ + γ̄m Q̄ is an RG invariant on the sub-
space of physical states. In particular we note Ḡ �= G which is 
of importance when interpreting our final result. Finally Eqs. (10)
and (9) lead to:

2M2
H = β̄

2ḡ
Ḡ E H + (1 + γ̄m)Q̄ E H (12)

DΛGT = β̄

2ḡ
〈Ḡ〉0 + (1 + γ̄m)〈Q̄ 〉0. (13)

2.3. Feynman–Hellmann theorem in QFT

Let us start by recalling the main steps in the derivation of 
the Feynman–Hellmann theorem in quantum mechanics, which 
is a simple but powerful relation which has been obtained by a 
number of authors [8]. Let us consider a quantum-mechanical sys-
tem, whose dynamics is determined by a Hamiltonian H(λ), which 
depends on some parameter λ. The Feynman–Hellmann theorem 
states that the λ-derivative of the energy equals the derivative of 
the Hamiltonian when evaluated on the corresponding eigenstates:

∂

∂λ
E(λ) = 〈ΨE(λ)| ∂

∂λ
H(λ)|ΨE(λ)〉. (14)

It relies on the observation that

〈ΨE(λ)|ΨE(λ)〉 = 1 ⇒ ∂

∂λ
〈ΨE(λ)|ΨE(λ)〉 = 0. (15)

The adaption to QFT, in the simplest cases, necessitates solely to 
take into account the relativistic state normalisation (7). E.g. with 
Hm = Q = Q̄ (11), where Htot =Hm + ..., the Feynman–Hellmann 
theorem for the mass reads:

m̄
∂

∂m̄
E2

H = 〈Q̄ 〉E H , (16)

m̄
∂

∂m̄
(DΛGT) = 〈Q̄ 〉0. (17)

In (16) we have identified (2π)D−1δ(D−1)(�p − �p′)�p→ �p′ ↔ ∫
dD−1x

in the sense of distributions. Note, the E2
H instead of E H in (14) on 

the LHS originates from the additional factor of 2E H in the normal-
isation (7). In (17) the normalisation 〈0|0〉 = 1 was assumed. Fur-
thermore we note that in a mass independent scheme ( ∂

∂m Z̄m = 0) 
m̄ ∂

∂m̄ = m ∂
∂m and since Q = Q̄ , therefore the relation (16) also 

holds for bare quantities. Eq. (16) is widely known [1] and used in 
lattice simulation to extract the corresponding contribution to the 
nucleon mass for example [11]. Noting that m ∂

∂m E2
H = m ∂

∂m M2
H ,3

it follows that 〈Q 〉E H = 〈Q 〉MH with normalisation (7) is a static 
quantity.

3 We consider the states as used in (8) as momentum eigenstates and not 
boosted states and therefore �p has no dependence on MH . More precisely in a 
lattice simulation the states originate from interpolating operators of the form: 
Φ(�p) = ∫

dD−1xei�x·�pΦ(x0, �x).
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3. Gluon condensates through RGE and Feynman–Hellmann 
theorem

The adaption of the analogous relations (16), (17) with regard 
to the gauge coupling g is complicated by the fact that in gauge 
theories the construction of the Hamiltonian itself is rather in-
volved, see e.g. Ref. [9]. As stated in the introduction, we bypass 
the construction of the Hamiltonian, and its primary and secondary 
constraints, by using the RGE, the trace anomaly, and the relations 
for the mass.

The RGE (6) for the M2
H and ΛGT

4,5

(
β̄

∂

∂ ḡ
− (1 + γ̄m)m̄

∂

∂m̄
+ 2

)
M2

H = 0, (18)

(
β̄

∂

∂ ḡ
− (1 + γ̄m)m̄

∂

∂m̄
+ D

)
ΛGT = 0, (19)

where �M2
H

= 2 and �ΛGT = D are simply the engineering di-

mensions as M2
H and ΛGT are observables which are free from 

anomalous scaling. Using Eqs. (18), (12), (16) and Eqs. (19), (13), 
(17) we obtain:

β̄

(
∂

∂ ḡ
M2

H + 1

2ḡ
〈Ḡ〉E H

)
= β̄

(
∂

∂ ḡ
ΛGT + 1

2ḡ
〈Ḡ〉0

)
= 0 (20)

and from there we read off our main results,

ḡ
∂

∂ ḡ
E2

H = −1

2
〈Ḡ〉E H , (21)

ḡ
∂

∂ ḡ
ΛGT = −1

2
〈Ḡ〉0. (22)

For the first relation we have used ∂
∂ ḡ M2

H = ∂
∂ ḡ E2

H , where the 
same remark applies as for the derivative with respect to m given 
earlier on. In particular this implies that 〈Ḡ〉E H = 〈Ḡ〉MH is a 
static quantity.6 The relation remains valid in the case where the 
quark masses are degenerate as one can replace mq̄q → m1q̄1q1 +
m2q̄2q2 in all relations as well as for the corresponding anomalous 
mass dimension. By taking the coupling to be dimensionless we 
have implicitly assumed the space–time dimension to be D = 4. 
The only modification for a derivation in D-dimensions is to re-
place β̄/2ḡ → β̄/2ḡ + (D − 4)/4. Since β̄ disappears from the 
final results (21), (22), the latter are valid for any integer D ≥ 2. 
It seems worthwhile to point out that the relations (21), (22) have 
been checked explicitly [2]; Eq. (21) for the Schwinger model and 
the Seiberg–Witten theory as well as Eq. (22) for the massive multi 
flavour Schwinger model. The relations (21), (22) (c.f. also (12), 
(13)) are akin to Gell-Mann Oakes Renner relations [12] in that 
they relate an operator expectation value to physical quantities. 
The scheme dependence of the gluon condensates, inherent in the 
earlier statement Ḡ �= G , is made manifest through ḡ ∂

∂ ḡ �= g ∂
∂ g and 

the fact that E2
H and ΛGT, being physical quantities, do not renor-

malise. Thus we wish to stress that it is vital to distinguish bare 
and renormalised quantities when discussing the relations (21), 

4 En passant we note that close to the fixed point β̄ = 0, the RGE for ΛGT implies 
that ΛGT ∼ mD/(1+γ ∗

m) (γ ∗
m denotes the fixed point value of γm). This observation 

was essentially already made in our previous paper [10] by deriving 〈Q 〉0 ∼ 〈G〉0 ∼
mD/(1+γ ∗

m) .
5 For pure Yang–Mills (YM) theory, where effectively Q → 0, we note that (18)

leads to (β̄YM)−1 = − ∂
∂ ḡ ln MH with H being a glueball state. This may serve as a 

definition of β̄YM. The extension of this idea to a gauge theory with fermions is not 
immediate.

6 We could have obtained this result earlier on by inserting (12) into (16) and 
using 〈Q 〉MH = 〈Q 〉E H .

(22). The condensates may be computed through (21), (22) with 
lattice Monte Carlo simulation in some fixed scheme. The conver-
sion to other schemes, say, the MS-scheme can be done through a 
perturbative computation at some large matching scale. For exam-
ple defining two schemes a and b through g = Za ḡa = Zb ḡb one 
gets:

ḡa
∂

∂ ḡa
= Zab

G ḡb
∂

∂ ḡb
, Zab

G =
(

1 + ḡb
∂

∂ ḡb
ln

Za

Zb

)
. (23)

The transformation between schemes a and b is therefore given 
by 〈Ḡa〉 = Zab

G 〈Ḡb〉 according to Eqs. (21), (22) for both the vac-
uum and particle gluon matrix element. The derivation of the rela-
tions (21), (22) with bare couplings would surely be possible, but 
we do not consider it a necessity.

It is worthwhile to illustrate the importance of using eigen-
states of the Hamiltonian for the matrix elements considered in 
the Feynman–Hellmann theorem by an example at hand. One 
might be tempted to obtain the relation (16) directly from the 
trace anomaly (10) assuming a mass independent scheme (which 
entails that β̄ and γ̄m are independent of m) via

m̄
∂

∂m̄
M2

H = m̄
∂

∂m̄

1

2

〈
Tμ

μ
〉
MH

= 1

2
(1 + γ̄m)〈Q̄ 〉MH + corrections, (24)

which without corrections and γ̄m �= 1 contradicts (16). The neces-
sary corrections originate from the fact that Tμ

μ does not com-
mute with the Hamiltonian in general and therefore is not an 
eigenoperator of the physical states (7). Thus differentiation of the 
states with respect to m̄ ∂

∂m̄ is required for consistency and exem-
plifies the importance of the energy eigenstates in the Feynman–
Hellmann theorem.

4. Conclusions and discussion

In this work we have derived relations between the logarithmic 
derivative of the mass of a state (and the vacuum energy) with 
respect to the gauge coupling in terms of the corresponding gluon 
condensates as given in Eqs. (21), (22). For the readers convenience 
we restate the relations within slightly more standard notation:

ḡ
∂

∂ ḡ
M2

H = −1

2

〈
H(E H )

∣∣ 1

ḡ2
Ḡ2

∣∣H(E H )
〉
c, (25)

ḡ
∂

∂ ḡ
ΛGT = −1

2
〈0| 1

ḡ2
Ḡ2|0〉, (26)

where ∂
∂ ḡ M2

H = ∂
∂ ḡ E2

H as argued earlier on and barred quantities 
correspond to renormalised quantities. In particular ΛGT and M2

H
originate from the trace of the energy momentum tensor which is 
known to be finite after renormalisation of the basic parameters 
of the theory [7]. Hence the relation above relates finite quanti-
ties with each other. We shall comment on the interest of these 
equations for various aspects in the paragraphs below.

First the ln ḡ-derivative of M2
H and ΛGT may be taken as a 

definition of the gluon condensates. This means that the LHS, com-
putable in lattice Monte Carlo simulations, serves as a definition 
of the condensates on the RHS. An important point is that by 
computing the condensates indirectly via derivatives from physical 
quantities, problems with power divergences, which plague direct 
approaches, are absent. In this respect our approach constitutes a 
paradigm shift. For 〈Ḡ〉E H this should be straightforward since M2

H
is easily computable whereas for the gluon vacuum condensate 
〈Ḡ〉0 this comes with the caveat that ΛGT is not easy to compute 
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by itself. We note that for the former the disconnected part is au-
tomatically absent since it does not contribute to the mass M2

H . 
The scheme dependence of the condensate is determined by the 
scheme dependence of the LHS and has been discussed in the text. 
The transition from one scheme to another can be achieved by 
a perturbative computation provided the matching scale is high 
enough for perturbation theory to be valid.

We shall add a few remarks on the gluon condensates. In QCD 
the matter condensates β̄/(2ḡ)〈Ḡ〉E H are known indirectly through 
the mass (Eq. (12)) for light mesons, other than the pseudo Gold-
stone bosons π, K , η, ... , as for the latter Q̄ is negligible since it 
is O(mlight). For the nucleon this was first discussed in [13]. For 
the B-meson β̄/(2ḡ)〈Ḡ〉E H is related to a non-perturbative defini-
tion of the heavy quark scale ΛHQ [14]. The determination of the 
gluon vacuum condensate is of importance for QCD sum rules [15]
as well as for the cosmological constant problem to be discussed 
further below. The value of the gluon condensate cannot be re-
garded as settled. This is, in part, due to the fact that there is no 
direct first principle determination of the gluon condensate.

Let us comment on aspects of the cosmological constant, which 
is a topic of more speculative nature. Without gravity only en-
ergy differences matter. Thus the cosmological constant is only 
determined up to a constant in flat space. Yet the difference of 
the cosmological constant due to the QCD phase transition itself 
is generally seen to be a tractable quantity, given by Eq. (13)
provided the condensates are well defined. The quark conden-
sate is known through the Gell-Mann Oakes Renner relation [12]: 
〈Q̄ 〉0 = − f 2

πm2
π +O(m), with mπ and fπ being the pion mass and 

decay constants. It would seem that any undetermined constant of 
the gluon condensate should drop out in Eq. (22). Therefore 〈Ḡ〉0
determined from this equation could be reinserted into Eq. (13), 
where scheme dependence cancels provided the appropriate β̄ and 
γ̄m are used.7 Scheme independence in turn might be used as a 
consistency check of the ideas brought forward in this paragraph.

Let us add that if the gluon condensate can be determined, then 
it could be checked to what degree the lowest J PC = 0++-state in a 
confining gauge theory saturates the partial dilation conserved cur-
rent hypothesis, see e.g. Ref. [16]. This could serve as a quantitative 
measure to identify what is commonly referred to as a dilaton in 
the literature. The possibility that the Higgs boson candidate dis-
covered at the LHC might be a dilaton of a gauge theory with slow 
running coupling (walking technicolor) is a possibility that is still 
considered within the particle physics community e.g. [17].

It might be interesting to make use of the relation (25) in ap-
proaches where hadron masses can be computed. We are thinking 
not only of lattice QCD but also of AdS/QCD or Dyson–Schwinger 
approaches. The gluon condensate could be reinserted, along with 
the quark condensate, into the trace anomaly (12) and this al-
lows for the extraction of information on the beta function and 
the anomalous dimension of the mass. In the case where there 
are either no fermions or fermions with zero mass, the relation in 
footnote 5 serves as a definition of the beta function of the theory.

7 A more complete discussion would include the mass degeneracy of the flavours. 
The effect of heavy flavours (mquark > ΛQCD) can in principle be absorbed into the 
beta function. The precise discussion of which goes beyond the scope of this Letter.

Moreover, since the relation applies to any state one can check for 
the robustness of the results by applying it to many states.
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