

Edinburgh Research Explorer

The systems biology simulation core algorithm

Citation for published version:
Keller, R, Dörr, A, Tabira, A, Funahashi, A, Ziller, MJ, Adams, R, Rodriguez, N, Novère, NL, Hiroi, N,
Planatscher, H, Zell, A & Dräger, A 2013, 'The systems biology simulation core algorithm' BMC Systems
Biology, vol 7, 55., 10.1186/1752-0509-7-55

Digital Object Identifier (DOI):
10.1186/1752-0509-7-55

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher final version (usually the publisher pdf)

Published In:
BMC Systems Biology

Publisher Rights Statement:
© 2013 Keller et al.; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28974949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1186/1752-0509-7-55
http://www.research.ed.ac.uk/portal/en/publications/the-systems-biology-simulation-core-algorithm(15f9f4ee-c94c-4ca5-91ce-9c8add79a068).html

Keller et al. BMC Systems Biology 2013, 7:55
http://www.biomedcentral.com/1752-0509/7/55

METHODOLOGY ARTICLE Open Access

The systems biology simulation core algorithm
Roland Keller1†, Alexander Dörr1†, Akito Tabira2, Akira Funahashi2, Michael J Ziller3, Richard Adams4, Nicolas
Rodriguez5, Nicolas Le Novère6, Noriko Hiroi2, Hannes Planatscher1,7, Andreas Zell1 and Andreas Dräger1,8*

Abstract

Background: With the increasing availability of high dimensional time course data for metabolites, genes, and fluxes,
the mathematical description of dynamical systems has become an essential aspect of research in systems biology.
Models are often encoded in formats such as SBML, whose structure is very complex and difficult to evaluate due to
many special cases.

Results: This article describes an efficient algorithm to solve SBML models that are interpreted in terms of ordinary
differential equations. We begin our consideration with a formal representation of the mathematical form of the
models and explain all parts of the algorithm in detail, including several preprocessing steps. We provide a flexible
reference implementation as part of the Systems Biology Simulation Core Library, a community-driven project
providing a large collection of numerical solvers and a sophisticated interface hierarchy for the definition of custom
differential equation systems. To demonstrate the capabilities of the new algorithm, it has been tested with the entire
SBML Test Suite and all models of BioModels Database.

Conclusions: The formal description of the mathematics behind the SBML format facilitates the implementation of
the algorithm within specifically tailored programs. The reference implementation can be used as a simulation
backend for Java™-based programs. Source code, binaries, and documentation can be freely obtained under the
terms of the LGPL version 3 from http://simulation-core.sourceforge.net. Feature requests, bug reports, contributions,
or any further discussion can be directed to the mailing list simulation-core-development@lists.sourceforge.net.

Keywords: Systems biology, Biological networks, Mathematical modeling, Simulation, Algorithms, Ordinary
differential equation systems, Numerical integration, Software engineering

Background
As part of the movement towards quantitative biology,
the modeling, simulation, and computer analysis of bio-
logical networks have become integral parts of modern
biological research [1]. Ambitious national and interna-
tional research projects such as the Virtual Liver Network
[2] strive to derive even organ-wide models of biolog-
ical systems that include all kinds of processes taking
place at several levels of detail. Large-scale efforts like this
require intensive collaboration between various research
groups, including experimenters, modelers, and bioinfor-
maticians. The exchange, storage, interoperability, and the

*Correspondence: andraeger@eng.ucsd.edu
†Equal contributors
1Center for Bioinformatics Tuebingen (ZBIT), University of Tuebingen,
Tübingen, Germany
8Present address: University of California, San Diego, 417 Powell-Focht
Bioengineering Hall 9500, Gilman Drive, La Jolla, CA 92093-0412, USA
Full list of author information is available at the end of the article

possibility to combine models have been recognized as
key aspects of this endeavor [3-6].

XML-based standard description formats such as the
Systems Biology Markup Language (SBML) [7,8] and
CellML [9,10] enable encoding of quantitative biological
network models. To facilitate sharing and re-use of the
models, online databases such as BioModels Database [11]
and the CellML model repository [12] provide large col-
lections of published models. Software libraries for read-
ing and manipulating the content of these formats are also
available [13-15] as well as end-user programs supporting
these model description languages.

The models encoded in these formats can be inter-
preted in terms of several modeling frameworks, includ-
ing, but not limited to, differential equation systems, with
additional structures such as discrete events and alge-
braic equations. The diversity of modeling approaches
and experimental data often requires customized software

© 2013 Keller et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://simulation-core.sourceforge.net
mailto:simulation-core-development@lists.sourceforge.net

Keller et al. BMC Systems Biology 2013, 7:55 Page 2 of 16
http://www.biomedcentral.com/1752-0509/7/55

solutions for very specific tasks. For efficient analysis, sim-
ulation, and calibration (e.g., the estimation of parameter
values) of biological network models a multiple-purpose
and efficient numerical solver library is prerequisite.
Although the language specifications of SBML [16-22]
and CellML [23] describe the semantics of models in
these formats and their interpretation, the algorithmic
implementation is still not straightforward.

The SBML community offers standardized and manu-
ally derived benchmark tests [24] in order to evaluate the
quality of simulation results, because it has been recog-
nized that in many cases different solver implementations
lead to divergent results [25]. The availability of this test
suite and the currently much larger variety of support-
ing software for SBMLa in comparison to CellML are the
reasons that in this work we focus on the simulation of
models encoded in the SBML format.

We address the question of how to precisely interpret
these models in terms of ordinary differential equation
systems. Furthermore, we show how to adapt existing
numerical integration routines in order to simulate these
models. To this end, we derive a new algorithm for the
accurate interpretation and simulation of all currently
existing levels and versions of SBML. To demonstrate
the usefulness of the algorithm, we introduce an exhaus-
tive reference implementation in Java™. The algorithm
described in this paper is, however, not limited to any
particular programming language.

It is also important to note that the interpretation of
these models must be strictly separated from the numer-
ical method that solves the implied differential equation
system. In this way, a similar approach would also be pos-
sible for other systems biology community formats. In
particular, the architecture of the reference implementa-
tion described herein has been ab ovo designed with the
aim to be complemented by a CellML module.

As the result, we present the Systems Biology Simulation
Core Library, a platform-independent, well-tested generic
open-source library. The library is completely decoupled
from any graphical user interface and can therefore eas-
ily be integrated into third-party programs. It comprises
several ordinary differential equation (ODE) solvers and
an interpreter for SBML models. It is the first simulation
library based on JSBML [15].

Furthermore, the Systems Biology Simulation Core
Library contains classes to both export simulation con-
figurations to the Simulation Experiment Description
Markup Language (SED-ML) [26], and facilitate the re-
use and reproduction of these experiments by executing
SED-ML files.

Results and discussion
In order to derive an algorithm for the interpretation of
SBML models in a differential equation framework, it is

first necessary to take a closer look at the mathematical
equations implied by this data format. Based on this
general description, we will then discuss all necessary
steps to deduce an algorithm that takes all special cases
for the various levels and versions of SBML into account.

A formal representation of models in systems biology
The mathematical structure of a reaction network com-
prises a stoichiometric matrix N, whose rows correspond
to the reacting species �S within the system, whereas its
columns represent the reactions, i.e., bio-transformations,
in which these species participate. The velocities �ν of the
reaction channels �R determine the rate of change of the
species’ amounts:

d
dt

�S = N�ν(�S, t, N, W, �p) . (1)

The parameter vector �p contains rate constants and other
quantities that influence the reactions’ velocities. Accord-
ing to Liebermeister et al. [27,28] the modulation matrix
W is defined as a matrix of size |�R| × |�S| containing a
numerical representation of the type of the regulatory
influences of the species on the reactions, e.g., competitive
inhibition or physical stimulation. Integrating the homo-
geneous ordinary differential equation system (1) yields
the predicted amounts of the species at each time point of
interest within the interval [t0, tT]:

�S =
∫ tT

t0
N�ν(�S, t, N, W, �p)dt , (2)

where t0 ∈ R and t0 < tT . Depending on the units of
the species, the same notation can also express the change
of the species’ concentrations. In this simple case, solving
equation (2) can be done in a straightforward way using
many (numerical) differential equation solvers. The non-
linear form of the kinetic equations in the vector function
�ν constitutes the major difficulty for this endeavor and is
often the reason why an analytical solution of these sys-
tems is not possible or very hard to achieve. Generally,
differential equation systems describing biological net-
works are, however, inhomogeneous systems with a higher
complexity. Solving systems encoded in SBML can be seen
as computing the solution of the following equation:

�Q =
∫ tT

t0
N�ν(�Q, t, N, W, �p)+�g(�Q, t)dt+�fE(�Q, t)+�r(�Q, t) ,

(3)

with t0 ≡ 0 and tT ∈ R+. The vector �Q of quanti-
ties contains the sizes of the compartments �C, amounts
(or concentrations) of reacting species �S, and the values
of all global model parameters �P. It should be noted that
these models may contain local parameters �p that influ-
ence the reactions’ velocities, but which are not part of the
global parameter vector �P, and hence also not part of �Q.

Keller et al. BMC Systems Biology 2013, 7:55 Page 3 of 16
http://www.biomedcentral.com/1752-0509/7/55

All vector function terms may involve a delay function,
i.e., an expression of the form delay(x, τ) with τ > 0. It is
therefore possible to address values of x computed in the
earlier integration step at time t − τ , turning equation (3)
into a delay differential equation (DDE). Note that x can
be an arbitrarily complex expression.

In the general case of equation (3), not all species’
amounts can be computed by integrating the transfor-
mation N�ν: the change of some model quantities may
be given in the form of rate rules by function �g(�Q, t).
Species whose amounts are determined by rate rules must
not participate in any reaction and hence only have zero-
valued corresponding entries in the stoichiometric matrix
N. Thereby, the rate rule function �g(�Q, t) directly gives the
rate of change of these quantities, and returns 0 for all
others.

In addition, SBML introduces the concept of events
�fE(�Q, t) and assignment rules �r(�Q, t). An event can directly
manipulate the value of several quantities, for instance,
reduce the size of a compartment to a certain portion of its
current size, as soon as a trigger condition becomes satis-
fied. An assignment rule also influences the absolute value
of a subject quantity.

A further concept in SBML is that of algebraic rules,
which are equations that must evaluate to zero at all times
during the simulation of the model. These rules can be
solved to determine the values of quantities whose values
are not determined by any other construct. In this way,
conservation relations or other complex interrelations can
be expressed in a very convenient way. With the help of
bipartite matching [29] and a subsequent conversion it is
possible to turn algebraic rules into assignment rules and
hence include these into the term �r(�Q, t). Such a transfor-
mation, however, requires symbolic computation and is
thus a complicated endeavor.

When the system under study operates at multiple time
scales, i.e., it contains a fast and a slow subsystem, a sep-
aration of the system is necessary, leading to differential
algebraic equations (DAEs). Some species can be declared
to operate at the system’s boundaries, assuming a constant
pool of their amounts or concentrations. Care must also
be taken with respect to the units of the species, because
under certain conditions division or multiplication with
the sizes of their surrounding compartments becomes
necessary in order to ensure the consistent interpretation
of the models. For all these reasons, solving equation (3)
is much more complicated than computing the solution of
the simple equation (2) alone.

From the perspective of software engineering, a strict
separation of the interpretation of the model and the
numerical treatment of the differential equation system
is necessary to ensure that regular numerical methods
can be used to solve equation (3). In order to efficiently
compute this solution, multiple preprocessing steps are

required, such as the conversion of algebraic rules into
assignment rules, or avoiding repeated recomputation of
intermediate results. The next sections will give a detailed
explanation of the necessary steps to solve these systems
and how to efficiently perform their numerical integration
with standard numerical solvers.

Initialization
At the beginning of the simulation the values of species,
parameters and compartments are set to the initial values
given in the model. All rate laws of the reactions, assign-
ment rules, transformed algebraic rules (see below), initial
assignments, event assignments, rate rules and function
definitions are integrated into a single directed acyclic
syntax graph. This graph is thus the result of merging
the abstract syntax trees representing all those individ-
ual elements. Equivalent elements are only contained
once. In comparison to maintaining multiple syntax trees,
this solution significantly decreases the computation time
needed for the evaluation of syntax graphs during the
simulation. Figure 1 gives an example for such a syntax
graph.

After the creation of this graph, the initial assignments
and the assignment rules (including transformed algebraic
rules) are processed and initial values defined by these
constructs are computed.

Figure 1 Example for the creation of an abstract syntax graph of
a small model. This figure displays a unified representation of kinetic
equations from an example model that consists of the following
reactions: R1 : F1,6BP � DHAP + GA3P, R2 : DHAP � GA3P. Both
reactions are part of the glycolysis. The contained molecules are
fructose 1,6-bisphosphate (F1,6BP), dihydroxyacetone phosphate
(DHAP), and glyceraldehyde 3-phosphate (GA3P). Using the program
SBMLsqueezer [31] the following mass action kinetics have been
created: νR1 = k+1·[F1,6BP] −k−1·[DHAP] ·[GA3P] , νR2 = k+2·
[DHAP] −k−2·[GA3P]. The nodes for [DHAP] and [GA3P] are only
contained in the syntax graph once and connected to more than one
multiplication node. This figure clearly indicates that the syntax graph
is not a tree. As can be seen in this picture, the outdegree of syntax
trees does not have to be binary.

Keller et al. BMC Systems Biology 2013, 7:55 Page 4 of 16
http://www.biomedcentral.com/1752-0509/7/55

Solving algebraic rules
The most straightforward approach to deal with algebraic
rules is to convert them to assignment rules, which can
in turn be directly solved. In every equation of an alge-
braic rule, there should be at least one variable whose
value is not yet defined through other equations in the
model. This variable has to be determined for the pur-
pose of interpreting the algebraic rule. At first, a bipartite
graph is generated according to the SBML specifications
[19-22]. This graph is used to compute a matching using
the algorithm by Hopcroft and Karp [29]. The initial
greedy matching is extended with the use of augmenting
paths. This process is repeated until no more augment-
ing paths can be found. Per definition, this results in a
maximal matching. As stated in the SBML specifications
[19-22], if any equation vertex remains unconnected after
augmenting the matching as far as possible, the model is
considered overdetermined and thus is not a valid SBML
model. If this is not the case, the mathematical expression
of every algebraic rule is thereafter transformed into an
equation with the target variable on its left-hand side, and
hence fulfills the definition of an assignment rule. The left-
hand side is represented by the respective variable vertex,
to which the considered algebraic rule has been matched.
Figure 2 displays the described algorithm in the form of a
flow chart.

Event handling
An event in SBML is a list of assignments that is exe-
cuted depending on whether a trigger condition switches
from false to true. In addition, SBML enables modellers
to define a delay which may postpone the actual execu-
tion of the event’s assignments to a later point in time.
With the release of SBML Level 3 Version 1, the process-
ing of events has been raised to an even higher level of
complexity: in earlier versions it was sufficient to deter-
mine, when an event triggers and when its assignments
are to be executed. In Level 3 Version 1 only a few new
language elements have been added, but these have a sig-
nificant impact on how to handle events: for example, the
order, in which events have been processed, used to be at
programmer’s discretion in SBML Level 2, but in Level 3
Version 1 it is given by the event’s priority element. Coor-
dinating the sequence, in which events are to be executed,
has now become the crucial part of event handling. Fur-
thermore, there exists the option to cancel an event during
the time since its trigger has been activated and the actual
time when the scheduler picks the event for execution.
Events that can be cancelled after the activation of their
triggers are called nonpersistent.

At every time step, the events to be executed are a union
of two subsets of the set of all events. On one hand, there
are events whose triggers have been activated at the cur-
rent time and which are to be evaluated without delay.

On the other hand, there are events triggered at some
time point before, and whose delay reaches till the cur-
rent point in time. For every element of the resulting
set of events , the priority rule must be evaluated. One
event is randomly chosen for execution from all events

Figure 2 Algorithm for transforming algebraic rules to
assignment rules. The first step is to decide whether the model is
overdetermined by creating a matching between the equations and
the variables of a model. For this purpose, an initial greedy matching
is computed based on a bipartite constructed according to the SBML
specifications. To obtain a maximal matching, augmenting paths are
determined and the current matching is extended. If there are no
augmenting paths available anymore, the computed matching is
maximal. Having an unconnected equation vertex results in an
overdetermined model. If the matching is not overdetermined, for
each algebraic rule an assignment rule is generated. The left-hand
side of each rule corresponds to the variable the respective algebraic
rule has been matched to.

Keller et al. BMC Systems Biology 2013, 7:55 Page 5 of 16
http://www.biomedcentral.com/1752-0509/7/55

of highest priority. In principle, all other events could be
processed in the same manner, but the assignment of the
first event can change the priority or even the trigger
condition of the events that have not yet been executed.
Therefore, the trigger of nonpersistent events and the pri-
ority of the remaining events have to be evaluated again.
In this case, the event that has now the highest priority
is chosen as next. This process must be repeated until
no further events are left for execution. Figure 3 shows
the slightly simplified algorithm for event processing at a
specific point in time: Let E be the set of all events in a
model, and EI be the set of events whose trigger condi-
tions have already been evaluated to true in previous time
steps. We refer to elements within EI as inactive events.

We define the set EA as the subset of E containing events
whose trigger condition switches from false to true at the
current time step t. At the beginning of the event han-
dling, EA is empty. We call an event persistent, if it can
only be removed from EA under the condition that all of
its assignments have been evaluated. This means that a
nonpersistent event can be removed from EA when its trig-
ger condition becomes false during the evaluation of other
events. The function trig(e) returns 1 or 0 depending on
whether or not the trigger condition of event e ∈ E is sat-
isfied. Similarly, the function persist(e) returns 1 if event e
is persistent, or 0 otherwise.

The interpretation of events is the most time consuming
step of the integration procedure. This is why efficient and

Figure 3 Processing of events: simplified algorithm (handling of delayed events omitted). At each iteration, the trigger conditions of active
events ea ∈ EA that are not persistent are checked. If the trigger condition of such an event has changed from true (1) to false (0), the event is
removed from EA. The next step comprises the evaluation of the triggers of all events. If its trigger changes from false to true, an event is added to
the set of active events EA. An event with its trigger changed from true to false is removed from the list of inactive events. After the processing of all
triggers, the event e of highest priority in the set of active events is chosen for execution by the function choose(EA). Note that priorities are not
always defined, or multiple events may have an identical priority. The function choose(EA) is therefore more complex than shown in this figure. The
selected event is then processed, i.e., all of its assignments are evaluated, and afterwards the triggers of all events in E have to be evaluated again,
because of possible mutual influences between the events. The algorithm proceeds until the set EA of active events is empty.

Keller et al. BMC Systems Biology 2013, 7:55 Page 6 of 16
http://www.biomedcentral.com/1752-0509/7/55

clearly organized data structures are required to ensure
high performance of the algorithm.

Time step adaptation considering events and the
calculation of derivatives
The precise calculation of the time when events are
triggered is crucial to ensure exact results of the numerical
integration process. It could, for instance, happen that an
event is triggered at time tτ , which is between the inte-
gration time points tτ−1 and tτ+1. When processing the
events only at time points tτ−1 and tτ+1, it might happen
that the trigger condition cannot be evaluated to true at
neither of these time points. Hence, a numerical integra-
tion method with step-size adaptation is required in order
to hit the correct time points. Rosenbrock’s method [30]
can adapt its step size h if events occur (see Figure 4 for
details). For a certain time interval [tτ−1, tτ+1] and the
current vector �Q, Rosenbrock’s method determines the

new value of vector �Q at a point in time tτ−1 + h, with
h > 0. If the error tolerance cannot be respected, h is
reduced and the procedure is repeated.

After that, the events and the assignment rules are
processed at the new point in time tτ−1 + h. If the
previous step causes a change in �Q, the adaptive step size
is decreased by setting h to h/10 and the calculation is
repeated until either the minimum step size is reached or
the processing of events and assignment rules does not
change �Q anymore. Hence, the time at which an event
takes place is precisely determined.

For given values �Q at a point t in time the current vector
of derivatives �̇Q is calculated as follows. First, the rate rules
are processed �̇Q = �g(�Q, t). Note that function �g returns 0
in all dimensions in which no rate rule is defined. Second,
the velocity νi of each reaction channel Ri is computed
with the help of the unified syntax graph (e.g., Figure 1).
The velocity functions depend on �Q at time t. During the

Figure 4 Refined step-size adaptation for events. For a certain time interval, the Rosenbrock solver (KiSAO term 33) always tries to increase time t
by the current adaptive step size h and calculates a new vector of quantities �Qnext. After a successful step, the events and rules of the model are
processed. If this causes a change in �Q, h is first decreased and the Rosenbrock solver then calculates another vector �Qnext using this adapted step
size. The precision of the event processing is therefore determined by the minimum step size hmin. The adapt function is defined by Rosenbrock’s
method [30].

Keller et al. BMC Systems Biology 2013, 7:55 Page 7 of 16
http://www.biomedcentral.com/1752-0509/7/55

second step, the derivatives of all species that participate
in the current reaction Ri need to be updated (see the
flowchart in Figure 5).

A reference implementation of the algorithm
The algorithm described above has been implemented
in Java™ and included into the Systems Biology Simula-
tion Core Library. Figure 6 displays an overview of the
software architecture of this community project, which
has been designed with the aim to provide an exten-
sible numerical backend for customized programs for
research in computational systems biology. The SBML-
solving algorithm is based on the data structures pro-
vided by the JSBML project [31]. With the help of
wrapper classes several numerical solvers originating
from the Apache Commons Math library [32] could be
included into the project. In addition, the library pro-
vides an implementation of the explicit fourth order
Runge-Kutta method, Rosenbrock’s method, and Euler’s
method.

Due to the strict separation between numerical differ-
ential equation solvers, and the definition of the actual
differential equation system, it is possible to implement
support for other community standards, such as CellML
[9].

In order to support the standard Minimum Information
About a Simulation Experiment (MIASE) [33], the library
also provides an interpreter of Simulation Experiment
Description Markup Language (SED-ML) files [26]. These
files allow users to store the details of a simulation, includ-
ing the selection and all settings of the numerical method,
hence facilitating the creation of reproducible results. A
simulation experiment can also be directly started by pass-
ing a SED-ML file to the interpreter in this library. Each
solver has a method to directly access its correspond-
ing Kinetic Simulation Algorithm Ontology (KiSAO) term
[34] to facilitate the execution of SED-ML files.

Many interfaces, abstract classes, and an exhaustive
source code documentation in the form of JavaDoc facili-
tate the customization of the library. For testing purposes,
the library contains a sample program that benchmarks
its SBML interpreter against the entire SBML Test Suite
version 2.3.2 [24].

Benchmark and application to published models
The reference SBML implementation has successfully
passed the SBML Test Suite [24] using the Rosenbrock
solver. The results are shown in Table 1. All models
together can be simulated within seconds, which means
that the simulation of one SBML model takes only mil-
liseconds on average, using regular desktop computers.

The total simulation time for all models in SBML Level 3
Version 1 is significantly higher than for the models in
other SBML levels and versions. This can be explained

Figure 5 Calculation of the derivatives at a specific point in time.

First, the vector for saving the derivatives of all quantities �̇Q is set to
the null vector �0. Then the rate rules of the model are processed by

solving the function �g(�Q, t), which can change �̇Q in some dimensions.
After that for every reaction channel Rj its velocity Jj is computed. The
derivatives of each species (with index i) participating in the currently
processed reaction channel Rj are updated in each step adding the
product of the stoichiometry nij and the reaction’s velocity Jj . In this
figure, the stoichiometric values nij in the matrix N are assumed to be
constant for the sake of simplicity. These values can be variable.
Before Level 3, SBML provided StoichiometryMath elements
that could be used for a direct computation of the stoichiometry. In
Level 3, the StoichiometryMath element has been removed
and these values can be changed by treating them as the subject of
assignment rules. In both cases, the values for nij have to be updated
in each simulation step.

Keller et al. BMC Systems Biology 2013, 7:55 Page 8 of 16
http://www.biomedcentral.com/1752-0509/7/55

*<results><calls>

 NamedValue
RootFunction

Value FunctionValue

ASTNodeValue
ASTNode
Interpreter

Stoichiometry
Value

SBMLEventIn
ProgressWithDelay

SBMLEvent
InProgress

 SBMLinterpreter
 «interface»

SBML
ValueHolder

SBML-specific implementation

Event
InProgress

 «interface»

Event
DESystem

 «interface»

Delayed
DESystem

 «interface»

FastProcess
DESystem

 «interface»

 RichDESystem

 «interface»

 DESystem

Abstract definition of
differential equation systems

 «interface»

FirstOrder
DifferentialEquations

Abstract
Integrator

 «interface»

 EventHandler

AdamsBash-
forthSolver

AdamsMoulton
Solver

DormandPrince
54Solver

DormandPrince
853Solver

GraggBulirsch
StoerSolver

HighamHall
54Solver

FirstOrder
Solver

Rosenbrock
Solver

AdaptiveStep
sizeIntegrator EulerMethod RungeKutta

EventSolver

 Block MultiTable
Abstract

DESSolver

 «interface»

 DESSolver
 «interface»

 DelayValueHolder
Type hierarchy of numerical
solvers

Figure 6 Architecture of the Systems Biology Simulation Core Library (simplified). Numerical methods are strictly separated from differential
equation systems. The upper part displays the unified type hierarchy of all currently included numerical integration methods. The middle part
shows the interfaces defining several special types of the differential equations to be solved by the numerical methods. The class
SBMLinterpreter (bottom part) implements all of these interfaces with respect to the information content of a given SBML model. Similarly, an
implementation of further data formats can be included into the library.

by the fact that the test suite contains some models of
this version whose evaluation requires a time-consuming
processing of a large number of events. In particular, the
simulation of model No. 966 of the SBML Test Suite,
which is only provided in SBML Level 3 Version 1, takes
20 s because it contains 23 events to be processed. Two
events fire every 10−2 time units within the simulation
time period of 1,000 time units. These events must there-
fore be evaluated thousandfold within the specified time
interval. The evaluation of this model accounts for over
50% of the total simulation time for the models in SBML
Level 3 Version 1.

An implementation of an SBML solver that passes
the test suite should in principle also be capable of
computing the solution of all models from BioModels
Database, a resource that contains a collection of pub-
lished and curated models. This online database cur-
rently provides neither reference data for the models,

nor any settings for the numerical computation (such
as step size, end time etc.). However, it offers pre-
computed plots of the time courses for the vast major-
ity of models. Therefore, while it cannot be directly
used as a benchmark test, it can help checking that
a solver implementation supports all features of many
published models and that the algorithm always suc-
cessfully terminates. The Systems Biology Simulation
Core Library solves all curated models from BioModels
Database (release 23, October 2012) without raising any
errors, see Methods for details. These results suggest the
reliability of the simulation algorithm described in this
work.

In the following, we select two models that exhibit
diverse features from this repository to illustrate the capa-
bilities of this library: BioModels Database model No. 206
by Wolf et al. [35] and BioModels Database model No. 390
by Arnold and Nikoloski [36].

Keller et al. BMC Systems Biology 2013, 7:55 Page 9 of 16
http://www.biomedcentral.com/1752-0509/7/55

Table 1 Simulation of the models from the SBML Test Suite using the Rosenbrock solver

Level Version Models Correct simulations Total running time (in s)

1 2 252 252 2.9

2 1 885 885 6.8

2 2 1,041 1,041 6.8

2 3 1,041 1,041 6.8

2 4 1,043 1,043 6.8

3 1 1,077 1,077 38.5

This table shows the number of tested models and the total running times of the tests for all SBML levels and versions, where the time for reading the file has been
excluded from the analysis. The measured elapsed time therfore gives the CPU time needed for the computation only (see Methods).

The model by Wolf et al. [35] mimics glycolytic
oscillations that have been observed in yeast cells. The
model describes how the dynamics propagate through
the cellular network comprising eleven reactions, which
interrelate nine reactive species. Figure 7a displays the
simulation results for the intracellular concentrations
of 3-phosphogylcerate, ATP, glucose, glyceraldhyde 3-
phosphate, and NAD+: after an initial phase of approxi-
mately 15 s all metabolites begin a steady-going rhythmic
oscillation. Changes in the dynamics of the fluxes through
selected reaction channels within this model can be
seen in Figure7b.

By comparing a large collection of previous mod-
els of the Calvin-Benson cycle, Arnold and Nikoloski
created a quantitative consensus model that comprises

eleven species, six reactions, and one assignment rule
[36]. All kinetic equations within this model call special-
ized function definitions. Figure 8 shows the simulation
results for the species ribulose-1,5-bisphosphate, ATP,
and ADP within this model. As in the previous test case,
the dynamics computed by the Simulation Core Library
reproduce the figures provided by BioModels Database.

Comparison to existing solver implementations for SBML
In order to benchmark our software, we chose similar
tools exhibiting the following features from the SBML
software matrix [39]:

• The last updated version was released after the final
release of the specification for SBML Level 3
Version 1 Core, i.e., October 6th 2010.

0 5 10 15 20 25 30

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Time in s

C
on

ce
nt

ra
tio

n
in

 m
m

o l
⋅

⋅

l−1

glucose
ATP
glyceraldehyde 3−phosphate

NAD+

3−phosphoglycerate

A

0 5 10 15 20 25 30

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Time in s

F
lu

x
in

 m
m

ol

s−
1

D−glucose 6−phosphotransferase
glycerone−phosphate−forming
phosphoglycerate kinase
pyruvate 2−O−phosphotransferase
acetaldehyde forming
ATP biosynthetic process

B

Figure 7 Simulation of glycolytic oscillations. This figure displays the results of a simulation computed with the Systems Biology Simulation Core
Library based on model No. 206 from BioModels Database [35,37]. A) Shown are the changes of the concentration of the most characteristic
intracellular metabolites 3-phosphoglycerate, ATP, glucose, glyceraldehyde 3-phosphate (GA3P), and NAD+ within yeast cells in the time interval
[0, 30] seconds. B) This panel displays a selection of the dynamics of relevant fluxes (D-glucose 6-phosphotransferase, glycerone-phosphate-
forming, phosphoglycerate kinase, pyruvate 2-O-phosphotransferase, acetaldehyde forming, ATP biosynthetic process) that were computed as
intermediate results by the algorithm. The computation was performed using the Adams-Moulton solver [38] (KiSAO term 280) with 200 integration
steps, 10−10 as absolute error tolerance and 10−5 as relative error tolerance. Due to the importance of feedback regulation the selection of an
appropriate numerical solver is of crucial importance for this model. Methods without step-size adaptation, such as the fourth order Runge-Kutta
algorithm (KiSAO term 64), might only be able to find a high-quality solution with an appropriate number of integration steps. The simulation results
obtained by using the algorithm described in this work reproduces the results provided by BioModels Database.

Keller et al. BMC Systems Biology 2013, 7:55 Page 10 of 16
http://www.biomedcentral.com/1752-0509/7/55

0 5 10 15 20 25 30 35

0.5

1.0

1.5

2.0

Time in s

C
on

ce
nt

ra
tio

n
in

 m
m

ol
⋅l−1

Ribulose 1,5 bisphosphate
ATP
ADP

Figure 8 Simulation of the Calvin-Benson cycle. Another example
of the capabilities of the Simulation Core Library has been obtained
by solving model No. 390 from BioModels Database [36,37]. This
figure shows the evolution of the concentrations of ribulose
1,5-bisphosphate, a key metabolite for CO2 fixation in the reaction
catalyzed by ribulose-1,5-bisphosphate carboxylase oxygenase
(RuBisCO), and the currency metabolites ATP and ADP during the first
35 s of the photosynthesis. This model was simulated using Euler’s
method (KiSAO term 30) with 200 integration steps.

• Support for SBML Level 3.
• Open-source software
• No dependency on commercial products that are not

freely available (e.g., MATLAB™ or Mathematica™)

The selected programs are in alphabetical order: BioUML
[40], COPASI [41], iBioSim [42], JSim [43], LibSBMLSim
[44], and VCell [45,46]. Table 2 summarizes the compar-
ison of the most recent versions of all six programs. It
should be mentioned that this comparison can only mir-
ror a snapshot of the ongoing development process of
all programs at the time of writing. An up-to-date com-
parison of the capabilities of SBML solvers can be found
online [47].

Limitations and perspective
The modifications done to the Rosenbrock solver enable a
precise timing of events during simulation. However, this
precise timing can lead to a noticeable increase in run-
time when events are triggered in very small intervals,
e.g., every 10−3 time units. This behavior can, for exam-
ple, be observed in BioModels Database model No. 408
[48] (a model with three events). When the precise tim-
ing of events is not of utmost importance, a solver other
than Rosenbrock can be chosen. Furthermore, there are
plans to improve the runtime behavior of the Rosen-
brock solver for the simulation of models containing
events.

When dealing with stiff problems, Rosenbrock’s method
is a good choice, because it is has been designed for

stiff pODE. However, our experiments show, that the
Rosenbrock solver can be inefficient for non-stiff prob-
lems in comparison to other solvers. This issue can lead
to an increased run-time regarding large models such
as model No. 235 of the BioModels Database, which
contains 622 species that participate in 778 reactions,
distributed accross three compartments [49]. In some
cases, tuning the relative and absolute tolerance can help,
but depending on the system’s structure, Rosenbrock’s
method is sometimes stretched to its limits. The Runge-
Kutta-Fehlberg method [50] (KiSAO term 86), which is
included in iBioSim, shows also an increase in run-time
concerning this model.

The performance of the Runge-Kutta-Fehlberg and
Rosenbrock methods show, however, that simpler ODE
solvers can have more difficulties with some biological
models than more advanced solvers, such as CVODE from
SUNDIALS [51] that can adapt to both non-stiff and
stiff problems. The SUNDIALS library, which is incor-
porated into BioUML, can handle complicated pODE
significantly better, but since it is not available under
the LGPL and no open-source Java version of these
solvers can currently be obtained, we disregarded its
use.

Algebraic rules constitute an important problem for
any implementation of the SBML standard. The unbound
variable of each such equation can be efficiently identi-
fied [29], whereas the transformation of an algebraic rule
into an assignment rule includes symbolic computation
and is very difficult to implement. In some cases, such
a transformation is not even possible. Alternatively, the
current value of the free variable in an algebraic equation
could, for instance, be identified using nested intervals.
However, this approach consumes a significantly higher
run-time, because the nested intervals would have to be
re-computed at every time step, whereas the transforma-
tion approach considers every algebraic rule only once
(during the initialization).

Since Level 3, SBML entails one further aspect: it is
now possible to add additional features to the model by
declaring specialized extension packages. The algorithm
discussed in this paper describes the core functionality of
SBML. The extension packages are very diverse, reaching
the graphical representation [53], the description of qual-
itative networks, such as Petri nets [54], and many more.
It is therefore necessary to separately derive and imple-
ment algorithms for the interpretation of individual SBML
packages.

The agenda for the further development of the open-
source project, the Systems Biology Simulation Core
Library, includes the implementation of SBML exten-
sion packages, support for CellML, and the incorporation
of additional numerical solvers. Contributions from the
community are welcome.

Kelleretal.BM
C

System
sBiology

2013,7:55
Page

11
of16

http
://w

w
w

.b
iom

edcentral.com
/1752-0509/7/55

Table 2 Comparison of SBML-capable simulators

Program Version Difficult SBML Fully SBML test SED-ML Programming GUI API Platform Comments

elements Suite compliant language access

Fast Algebraic Events

reactions rules

BioUML 0.9.4 ✓ ✓ ✓ ✓ In α Java ✓ JavaScript Independent

version

COPASI 4.9.45 – – (✓) – – C++ (with ✓ ✓ Windows, Mac OS X,

multiple bindings) Linux, Solaris

iBioSim 2.4.5 ✓ ✓ ✓ ✓ In α Java, C ✓ (✓) Windows, Mac OS X,

version Linux (Fedora 17)

JSim 2.10 – ✓ – – – Java ✓ ✓ Windows, Mac OS X,

Linux

LibSBMLSim 1.1.0 ✓ ✓ ✓ (✓) – C (with multiple) – ✓ Windows, Mac OS X,

bindings) Linux, Free BSD

Simulation 1.3 ✓ ✓ ✓ ✓ ✓ Java – ✓ Independent

core library

VCell 5.0 ✓ – ✓ – – Java frontend, ✓ – Independent Internet

C/C++ server connection

backend required

The table gives an overview about the most characteristic features of SBML-capable simulation programs (April 19th 2013). It shows which programs support the SBML elements fast reactions, algebraic rules, and events.
Another key point is whether all models of the most recent SBML Test Suite [24] can be correctly solved. Note that in the SBML Test Suite column, a dash means that not all of its models can be correctly solved, because not all
SBML elements are supported. LibSBMLSim, which is a simulation API written in C, can only read models given in SBML Level 2 Version 4 and SBML Level 3 (indicated by the checkmark in brackets). Similarly, a dash in the
column for events means that not all possible cases for this language element can be correctly solved. COPASI, for instance, supports events in SBML, but not all of the current constructs. It should be mentioned that not all
programs primarily focus on the use of ODE solvers. In iBioSim, for instance, the stochastic analysis of SBML is more important [52]. Furthermore, some programs such as VCell or COPASI do not use SBML as their native
format. BioUML, iBioSim, and the Systems Biology Simulation Core Library, are the only simulation tools from this selection that pass all models of the SBML Test Suite across all levels and versions of SBML. Most programs
provide direct access to their API. COPASI, LibSBMLSim, and the Systems Biology Simulation Core Library have particularly been designed for the use as a solver backend. The program iBioSim can be executed in a script, e.g.,
for batch processing of multiple models.

Keller et al. BMC Systems Biology 2013, 7:55 Page 12 of 16
http://www.biomedcentral.com/1752-0509/7/55

Conclusions
The aim of this work is to derive a formal descrip-
tion of the mathematics behind SBML together with
an algorithm that efficiently solves it in terms of an
ordinary differential equation framework. As an impor-
tant design feature, the algorithm can be combined with
existing numerical solvers in a plugin fashion. The Rosen-
brock solver embodies a universal approach for simu-
lation that can deal with stiff problems and precisely
solve models containing arbitrary SBML elements. The
description in this paper is intended to facilitate the imple-
mentation of the algorithm within specifically tailored
programs.

Our tests indicate that at the moment only two other
programs pass the entire test suite for all SBML levels
and versions: BioUML, which is a workbench for mod-
elling, simulation, and parameter fitting, and iBioSim. The
reference implementation of the algorithm introduced in
this work, the Systems Biology Simulation Core Library,
is therefore the only API simulation library exhibiting this
capability.

The Systems Biology Simulation Core Library is an effi-
cient Java tool for the simulation of differential equation
systems used in systems biology. It can be easily inte-
grated into larger customized applications. For instance,
CellDesigner [55] has already been using it since ver-
sion 4.2 as one of its integral simulation libraries. The
stand-alone application SBMLsimulator [56] provides a
convenient graphical user interface for the simulation of
SBML models and uses it as a computational back-end.
The abstract class structure of the library supports the
integration of further model formats, such as CellML,
in addition to its SBML implementation. To this end,
it is only necessary to implement a suitable interpreter
class.

By including support for the emerging standard SED-
ML, we hope to facilitate the exchange, archival and repro-
duction of simulation experiments performed using the
Systems Biology Simulation Core Library.

Methods
Implementation
All the solver classes are derived from the abstract class
AbstractDESSolver (Figure 6). Several solvers of the
Apache Commons Math library (version 3.0) are inte-
grated with the help of wrapper classes [32]. Numer-
ical methods and the actual differential equation sys-
tems are strictly separated. The class MultiTable
stores the results of a simulation within its Block data
structures.

The abstract description of differential equation sys-
tems, with the help of several distinct interfaces, makes it
possible to decouple them from a particular type of bio-
logical network. It is therefore possible to pass an instance

of an interpreter for a respective model description for-
mat to any available solver. The interpretation of SBML
models is split between evaluation of events and rules,
computation of stoichiometric information, and computa-
tion of the current values for all model components (such
as species and compartments).

For a given state of the ODE system, the class
SBMLinterpreter, responsible for the evaluation of
models encoded in SBML, returns the current set of
time-derivatives of the variables. It is connected to an effi-
cient MathML interpreter of the expressions contained in
kinetic laws, rules and events (ASTNodeInterpreter).
The nodes of the syntax graph for those expressions
depend on the current state of the ODE system. If the
state has changed, the values of the nodes have to be
recalculated (see Results).

An important aspect in the interpretation of SBML
models is the determination of the exact time at which
an event occurs because this influences the precision
of the system’s variables. To this end, we adjusted
an implementation of the Rosenbrock solver [57], an
integrator with an adaptive step size, to a very pre-
cise timing of the events. In addition to events, rules
are also treated during integration. Basically, rules are
treated like events that occur at every given point in
time and are therefore processed in the same man-
ner. For every object of the type AlgebraicRule, a
new AssignmentRule object is generated by means
of the preceding bipartite matching. They represent
only temporary rules, that are incorporated in the sim-
ulation process but do not influence the model in
the SBML file.

In the SBMLinterpreter, events are represented via
an array containing one instance of EventInProgress
for every event in the model. Thereby, the distinction
between events with and without delays is made. Both
types of events can be triggered multiple times before
being executed. If no delay is defined, the assignments of
the event are usually executed at the same point in time
when the event has been triggered. However, when such
an event is cancelled by other events, all of its assign-
ments are also cancelled before execution. An event with
delay can produce multiple further assignments within
the time frame between the trigger time and the actual
execution time. In order to deal with delayed events, the
class SBMLEventInProgressWithDelay keeps track
of this via a list containing the points in time, at which
the respective event has to be executed. When events
are triggered more than once before execution, they have
to be sorted in ascending order by their delay. This is
neccesary, because in this case the delay of the very same
event may vary.

When the SBMLinterpreter is processing events
with priority, the events with the highest priority are

Keller et al. BMC Systems Biology 2013, 7:55 Page 13 of 16
http://www.biomedcentral.com/1752-0509/7/55

stored in a list until one of them is selected for execution.
Technically, the method of choice for the organization
of such priority queues would apply a binary max heap
data structure instead. The root of the heap represents
the largest value in the heap. After its extraction, the
heap property is restored so that the next largest value
is moved to the root. However, as stated in Results,
the execution of one event can influence the priority of
the remaining events. It can possibly happen that many
priorities simultaneously change, whereby the standard
method to restore the max heap characteristic after
extraction is not sufficient anymore. For this reason, we
disregarded the use of more complex data structures for
the current implementation.

Since SBML Level 2 Version 1, it has also become
possible to create user-defined functions. These function
definition objects contain lambda calculus including an
optional list of arguments together with the actual math-
ematical expression of the function. During the initializa-
tion phase, function definitions are also incorporated into
the abstract syntax graph (Figure 1). For each function
definition, its arguments defined in its lambda expression
are mapped to their corresponding nodes in the abstract
syntax graph. The evaluation of a syntax graph node
with a user-defined function consists of several steps. The
arguments are evaluated and then passed to their corre-
sponding node in the graph via the mapping established
before. After this step the nodes representing arguments
have a specific value attached to them. Finally, the com-
plete abstract syntax graph can be evaluated. Care must
be taken, because several function definitions may have
arguments with identical identifiers. All possible naming
conflicts must be preempted.

As part of the calculation of reaction velocities,
the StoichiometryMath construct allows a dynamic
change of a reaction’s stoichiometry over the course
of the simulation. Since SBML Level 3 Version 1, the
stoichiometry of a reaction can be directly altered,
because it is now possible to address the identifier of a
SpeciesReference as the target variable within rules
or events. The SBMLinterpreter class flags reactions
with changing stoichiometry during initialization and
evaluates the corresponding abstract syntax graph anew if
the stoichiometry is needed for calculation.

The constraints introduce assumptions about a
model’s behavior. Similar to the trigger of events,
the abstract syntax graph of each constraint is eval-
uated at every time step. In case of a violation
the SBMLinterpreter generates an instance of
ConstraintEvent that is then processed by the cor-
responding ConstraintListener class. The user is
informed about the constraint upon its violation via the
standard Java Logger. The output message includes
the point in simulation time and the message of the

constraint. In addition, more advanced user-defined
implementations of ConstraintListener can be
added to the SBMLinterpreter, for instance, to notify
a GUI about violations or display the associate messages
in a more user-friendly way.

SED-ML support is enabled by inclusion of the
jlibsedml library [58] in the binary download.
Clients of the Systems Biology Simulation Core Library
can choose to use the jlibsedml API directly, or
access SED-ML support via facade classes in the
org.simulator.sedml package that do not require
direct dependencies on jlibsedml in their code.

Default settings and configuration
The standard preferences for simulating an SBML model
consist of the Rosenbrock solver with an absolute toler-
ance of 10−12 and a relative tolerance of 10−6. On the
basis of our experiments, this setup can handle most of the
problems without further tuning. The Rosenbrock solver
with its adaptive step size is the most effective solver
in this library for stiff pODE. Nevertheless, the user has
the possibility the choose another solver for integration.
According to the SBML specifications, a model has to be
simulated starting at time point 0.0. Since this library is
not limited to SBML, the solvers also accept arbitrary start
times. The user has also the possibility to specify the end
of the simulation. Modifying the relative and absolute tol-
erance can increase the accuracy of the results or decrease
computation time.

Simulation of models from BioModels Database
All 424 curated models from BioModels Database [11]
(release 23, October 2012) have been simulated with iden-
tical settings, as suggested by Bergmann et al. [25]: time
interval [0, 10], the Rosenbrock solver, 10−6 as relative
and 10−12 as absolute tolerance, and a step size of 0.01
time units. For the models No. 234 [59] and No. 339 [60]
from BioModels Database the absolute tolerance had to
be set to 10−10 in order to achieve the necessary accu-
racy and to avoid that the algorithm surpasses its minimal
step size. On a sample basis, individual models have been
selected and manually compared to the pre-computed
plots provided by BioModels Database in order to check
the correctness of the simulation results.

Simulation of the SBML test suite
The models from SBML Test Suite version 2.3.2 [24] were
first simulated with the Rosenbrock solver, 10−6 as relative
and 10−12 as absolute tolerance. For six models (No. 863,
882, 893, 994, 1109, and 1121) we had to set the rela-
tive tolerance to 10−8 in order to simulate as accurately
as desired. For three other models (No. 872, 987, 1052)
the relative tolerance even had to be set to 10−12 and the
absolute tolerance to 10−14.

Keller et al. BMC Systems Biology 2013, 7:55 Page 14 of 16
http://www.biomedcentral.com/1752-0509/7/55

Hard- and software configuration
For all run-time tests, an Intel� Core™ i5 CPU with
3.33 GHz and 4 GB RAM was used with Microsoft�
Windows� 7 (Version 6.1.7600) as operating system and
Java Virtual Machine version 1.6.0_25.

The Systems Biology Simulation Core Library was also
successfully tested under Linux (Ubuntu version 10.4) and
Mac OS X (versions 10.6.8 and 10.8.2).

Availability and requirements
The current version of Systems Biology Simulation Core
Library is available at the project’s homepage. The entire
project, including source code and documentation, sev-
eral versions of jar files containing only binaries, binaries
together with source code, can be downloaded, option-
ally also as a version including all required third-party
libraries.

Project name: Systems Biology Simulation Core Library
Project homepage: http://simulation-core.sourceforge.
net
Operating systems: Platform independent, i.e., for all sys-
tems for which a JVM is available.
Programming language: Java™
Other requirements: Java Runtime Environment (JRE)
1.6 or above
License: GNU Lesser General Public License (LGPL) ver-
sion 3

Endnote
aMore than 250 available programs now support the

SBML data format (April 19th 2013).

Abbreviations
ADP: Adenosine diphosphate; API: Application programing interface; ATP:
Adenosine-5’-triphosphate; DHAP: Dihydroxyacetone phosphate; DAE:
Differential algebraic equation; DDE: Delay differential equation; F1,6BP:
Fructose 1,6-bisphosphate; GA3P: Glyceraldehyde 3-phosphate; GUI: Graphical
user interface; JAR: Java archive file; JDK: Java development kit; JRE: Java
runtime environment; JVM: Java virtual machine; KiSAO: Kinetic simulation
algorithm Ontology; MIASE: Minimum information about a simulation
experiment; LGPL: GNU lesser general public license; ODE: Ordinary differential
equation; RuBisCO: Ribulose-1,5-bisphosphate carboxylase oxygenase; NAD+ :
Nicotinamide adenine dinucleotide; SBML: Systems biology markup language;
SED-ML: Simulation experiment description markup language.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
RK and AlD contributed equally, implemented the majority of the source code,
and declare shared first authorship. MJZ and HP designed and implemented
the abstraction scheme between solvers and ODE systems. NR and NLN
designed, implemented, and coordinated the data structures for a smooth
integration of JSBML. RA implemented support for SED-ML. AT and AF
incorporated the Simulation Core Library into CellDesigner. NH created
mathematical models which include several SBML features to test the
integration with CellDesigner. AnD initialized and coordinated the project,

drafted the manuscript, and supervised the work together with AZ. All authors
contributed to the implementation, read and approved the final manuscript.

Acknowledgements
The authors are grateful to B. Kotcon, S. Mesuro, D. Rozenfeld, A. Yodpinyanee,
A. Perez, E. Doi, R. Mehlinger, S. Ehrlich, M. Hunt, G. Tucker, P. Scherpelz, A.
Becker, E. Harley, and C. Moore, Harvey Mudd College, USA, for providing a
Java implementation of Rosenbrock’s method, and to M. T. Cooling, University
of Auckland, New Zealand, for fruitful discussion. The authors thank D.
M. Wouamba, P. Stevens, M. Zwießele, M. Kronfeld, and A. Schröder for source
code contribution and fruitful discussion.
This work was funded by the Federal Ministry of Education and Research
(BMBF, Germany) as part of the Virtual Liver Network (grant number 0315756).
The Japan Society for the Promotion of Science and the Ministry of Education,
Culture, Sports, Science and Technology of Japan supported this work by
Grants-in-Aid for Scientific Research on Innovative Areas (KAKENHI), grant
number 23136513. In addition, this work was funded by the UK Biotechnology
and Biological Sciences Research Council, grant number BB/D019621/1. We
acknowledge support by the German Research Foundation (DFG) and the
Open Access Publishing Fund of the University of Tuebingen.

Author details
1Center for Bioinformatics Tuebingen (ZBIT), University of Tuebingen,
Tübingen, Germany. 2Graduate School of Science and Technology, Keio
University, Yokohama, Japan. 3Department of Stem Cell and Regenerative
Biology, Harvard University, Cambridge, MA, USA. 4SynthSys Edinburgh, CH
Waddington Building, University of Edinburgh, Edinburgh EH9 3JD, UK.
5European Bioinformatics Institute, Wellcome Trust Genome Campus,
Hinxton, Cambridge, UK. 6Babraham Institute, Babraham, Cambridge, UK.
7Present address: Natural and Medical Sciences Institute at the University of
Tuebingen Reutlingen, Germany. 8Present address: University of California, San
Diego, 417 Powell-Focht Bioengineering Hall 9500, Gilman Drive, La Jolla, CA
92093-0412, USA.

Received: 14 December 2012 Accepted: 18 June 2013
Published: 5 July 2013

References
1. Macilwain C: Systems biology: evolving into the mainstream. Cell

2011, 144(6):839–841. [http://dx.doi.org/10.1016/j.cell.2011.02.044]

2. Holzhutter HG, Drasdo D, Preusser T, Lippert J, Henney AM: The virtual
liver: a multidisciplinary, multilevel challenge for systems biology.
Wiley Interdiscip Rev Syst Biol Med 2012, 4(3):221–235. [http://dx.doi.org/10.
1002/wsbm.1158]

3. Schulz M, Uhlendorf J, Klipp E, Liebermeister W: SBMLmerge, a system
for combining biochemical network models. Genome Inform Ser 2006,
17:62–71.

4. Klipp E, Liebermeister W, Helbig A, Kowald A, Schaber J: Systems biology
standards—the community speaks. Nat Biotechnol 2007,
25(4):390–391. [http://dx.doi.org/10.1038/nbt0407-390]

5. Chelliah V, Endler L, Juty N, Laibe C, Li C, Rodriguez N, Le Novere N: Data
integration and semantic enrichment of systems biology models
and simulations. In Data Integration in the Life Sciences Volume 5647 of
Lecture Notes in Computer Science. Edited by Paton NW, Missier P, Hedeler
C. Berlin, Heidelberg: Springer; 2009:5–15. [http://dx.doi.org/10.1007/978-
3-642-02879-3_2]

6. Liebermeister W, Krause F, Uhlendorf J, Lubitz T, Klipp E: SemanticSBML:
a tool for annotating, checking, and merging of biochemical models
in SBML format. In 3rd International Biocuration Conference: Nature
Publishing Group; 2009. [http://dx.doi.org/10.1038/npre.2009.3093.1]

7. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP,
Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED,
Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JHS,
Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le NovereN,
Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson
MR, Nielsen PF, Sakurada T, Schaff J C, Shapiro B E, Shimizu T S, Spence H
D, Stelling J, Takahashi K, Tomita M, Wagner JM, Wang J, Forum S:

http://simulation-core.sourceforge.net
http://simulation-core.sourceforge.net
http://dx.doi.org/10.1016/j.cell.2011.02.044
http://dx.doi.org/10.1002/wsbm.1158
http://dx.doi.org/10.1002/wsbm.1158
http://dx.doi.org/10.1038/nbt0407-390
http://dx.doi.org/10.1007/978-3-642-02879-3_2
http://dx.doi.org/10.1007/978-3-642-02879-3_2
http://dx.doi.org/10.1038/npre.2009.3093.1

Keller et al. BMC Systems Biology 2013, 7:55 Page 15 of 16
http://www.biomedcentral.com/1752-0509/7/55

The systems biology markup language (SBML): a medium for
representation and exchange of biochemical network models.
Bioinformatics 2003, 19(4):524–531. [http://bioinformatics.oxfordjournals.
org/cgi/content/abstract/19/4/524]

8. The Systems Biology Markup Language [http://sbml.org].
9. Lloyd CM, Halstead MDB, Nielsen PF: CellML: its future, present and

past. Prog Biophys Mol Bio 2004, 85(2–3):433–450. [http://dx.doi.org/10.
1016/j.pbiomolbio.2004.01.004]

10. The CellML project. [http://cellml.org]
11. Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E,

Henry A, Stefan MI, Snoep JL, Hucka M, Le Novere N, Laibe C: BioModels
Database: An enhanced, curated and annotated resource for
published quantitative kinetic models. BMC Syst Biol 2010, 4:92.
[http://dx.doi.org/10.1186/1752-0509-4-92]

12. Lloyd CM, Lawson JR, Hunter PJ, Nielsen PF: The CellML Model
Repository. Bioinformatics 2008, 24(18):2122–2123. [http://dx.doi.org/10.
1093/bioinformatics/btn390]

13. Bornstein BJ, Keating SM, Jouraku A, Hucka M: LibSBML: an API library
for SBML. Bioinformatics 2008, 24(6):880–881. [http://dx.doi.org/10.1093/
bioinformatics/btn051]

14. Miller AK, Marsh J, Reeve A, Garny A, Britten R, Halstead M, Cooper J,
Nickerson DP, Nielsen PF: An overview of the CellML API and its
implementation. BMC Bioinformatics 2010, 11:178. [http://dx.doi.org/10.
1186/1471-2105-11-178]

15. Drager A, Rodriguez N, Dumousseau M, Dorr A, Wrzodek C, Le Novere N,
Zell A, Hucka M: JSBML: a flexible Java library for working with SBML.
Bioinformatics 2011, 27(15):2167–2168. [http://bioinformatics.
oxfordjournals.org/content/27/15/2167]

16. Hucka M, Finney A, Sauro H, Bolouri H: Systems Biology Markup
Language (SBML) level 1: structures and facilities for basic model
definitions. In Tech. rep., Systems Biology Workbench Development Group
JST ERATO Kitano Symbiotic Systems Project Control and Dynamical Systems.
CA USA: MC 107-81, California Institute of Technology, Pasadena; 2001.

17. Hucka M, Finney A, Sauro H, Bolouri H: Systems Biology Markup
Language (SBML) level 1: structures and facilities for basic model
definitions. In Tech. Rep. 2, Systems Biology Workbench Development Group
JST ERATO Kitano Symbiotic Systems Project Control and Dynamical Systems,
MC 107-81. CA USA: California Institute of Technology, Pasadena; 2003.

18. Finney A, Hucka M: Systems Biology Markup Language (SBML) level
2: structures and facilities for model definitions. In Tech. rep., Systems
Biology Workbench Development Group JST ERATO Kitano Symbiotic Systems
Project Control and Dynamical Systems, MC 107-81: California Institute of
Technology; 2003.

19. Finney A, Hucka M, Le Novere N: Systems Biology Markup Language
(SBML) level 2: structures and facilities for model definitions.
In Tech. rep; 2006.

20. Hucka M, Finney AM, Hoops S, Keating SM, Le Novere N: Systems
Biology Markup Language (SBML) level 2: structures and facilities
for model definitions. In Tech. rep; 2007.

21. Hucka M, Finney A, Hoops S, Keating SM, Le Novere N: Systems biology
markup language (SBML) Level 2: structures and facilities for model
definitions. In Tech. rep. Nature Precedings; 2008. [http://dx.doi.org/10.
1038/npre.2008.2715.1]

22. Hucka M, Bergmann FT, Hoops S, Keating SM, Sahle S, Schaff JC, Smith L,
Wilkinson DJ: The Systems Biology Markup Language (SBML):
language specification for level 3 version 1 core. In Tech. rep. Nature
Precedings; 2010. [http://precedings.nature.com/documents/4959/
version/1]

23. Cuellar A, Nielsen P, Halstead M, Bullivant D, Nickerson D, Hedley W,
Nelson M, Lloyd C: CellML 1.1 Specification. In Tech. rep., Bioengineering
Institute: University of Auckland; 2006. [http://www.cellml.org/
specifications/cellml_1.1/]

24. SBML Test Suite. [http://sbml.org/Software/SBML_Test_Suite]
25. Bergmann FT, Sauro HM: Comparing simulation results of SBML

capable simulators. Bioinformatics 2008, 24(17):1963–1965. [http://
bioinformatics.oxfordjournals.org/cgi/content/abstract/24/17/1963]

26. Waltemath D, Adams R, Bergmann FT, Hucka M, Kolpakov F, Miller AK,
Moraru II, Nickerson D, Sahle S, Snoep JL, Le Novere N: Reproducible
computational biology experiments with SED-ML–the Simulation
Experiment Description Markup Language. BMC Syst Biol 2011, 5:198.
[http://dx.doi.org/10.1186/1752-0509-5-198]

27. Liebermeister W, Klipp E: Bringing metabolic networks to life:
convenience rate law and thermodynamic constraints. Theor Biol Med
Model 2006, 3(42):41. [http://dx.doi.org/10.1186/1742-4682-3-41]

28. Liebermeister W, Uhlendorf J, Klipp E: Modular rate laws for enzymatic
reactions: thermodynamics, elasticities and implementation.
Bioinformatics 2010, 26(12):1528–1534. [http://dx.doi.org/10.1093/
bioinformatics/btq141]

29. Hopcroft JE, Karp RM: An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM J Comput 1973, 2(4):225–231. [http://dx.doi.org/
10.1137/0202019]

30. Press WH, Teukolsky SA, Vetterling WT, Flannery BP: Numerical Recipes
in FORTRAN; The Art of Scientific Computing. In New York: Cambridge
University Press; 1993.

31. Drager A, Hassis N, Supper J, Schroder A, Zell A: SBMLsqueezer: a
CellDesigner plug-in to generate kinetic rate equations for
biochemical networks. BMC Syst Biol 2008, 2:39. [http://www.
biomedcentral.com/1752-0509/2/39]

32. Commons Math: The Apache Commons Mathematics Library.
[http://commons.apache.org/proper/commons-math/]

33. Waltemath D, Adams R, Beard DA, Bergmann FT, Bhalla US, Britten R,
Chelliah V, Cooling MT, Cooper J, Crampin EJ, Garny A, Hoops S, Hucka M,
Hunter P, Klipp E, Laibe C, Miller AK, Moraru I, Nickerson D, Nielsen P,
Nikolski M, Sahle S, Sauro HM, Schmidt H, Snoep JL, Tolle D, Wolkenhauer
O, Le Novere N: Minimum Information About a Simulation
Experiment (MIASE). PLoS Comput Biol 2011, 7(4):e1001122. [http://dx.
doi.org/10.1371/journal.pcbi.1001122]

34. Courtot M, Juty N, Knupfer C, Waltemath D, Zhukova A, Drager A,
Dumontier M, Finney A, Golebiewski M, Hastings J, Hoops S, Keating S,
Kell DB, Kerrien S, Lawson J, Lister A, Lu J, Machne R, Mendes P, Pocock M,
Rodriguez N, Villeger A, Wilkinson DJ, Wimalaratne S, Laibe C, Hucka M, Le
Novere N: Controlled vocabularies and semantics in systems biology.
Mol Syst Biol 2011, 7:543. [http://dx.doi.org/10.1038/msb.2011.77]

35. Wolf J, Passarge J, Somsen OJG, Snoep JL, Heinrich R, Westerhoff HV:
Transduction of intracellular and intercellular dynamics in yeast
glycolytic oscillations. Biophys J 2000, 78(3):1145–1153. [http://dx.doi.
org/10.1016/S0006-3495(00)76672-0]

36. Arnold A, Nikoloski Z: A quantitative comparison of Calvin-Benson
cycle models. Trends Plant Sci 2011, 16(12):676–683. [http://dx.doi.org/
10.1016/j.tplants.2011.09.004]

37. Le Novere N, Bornsteinm BJ, Broicher A, Courtot M, Donizelli M, Dharuri H,
Li L, Sauro H, Schilstra M, Shapiro B, Snoep JL, Hucka M: BioModels
Database: a free, centralized database of curated, published,
quantitative kinetic models of biochemical and cellular systems.
Nucleic Acids Res 2006, 34:D689–D691. [http://nar.oxfordjournals.org/cgi/
content/full/34/suppl_1/D689]

38. Hairer E, Norsett SP, Wanner G: Solving Ordinary Differential
Equations. 1 Nonstiff Problems.: Berlin: Springer; 2000.

39. SBML Software Matrix (October 8th 2012). [http://sbml.org/
SBML_Software_Guide/SBML_Software_Matrix]

40. Kolpakov FA, Tolstykh NI, Valeev TF, Kiselev IN, Kutumova EO, Ryabova A,
Yevshin IS, Kel AE: BioUML–open source plug-in based platform for
bioinformatics: invitation to collaboration. In Moscow Conference on
Computational Molecular Biology: Department of Bioengineering and
Bioinformatics of MV Lomonosov Moscow State University;
2011:172–173. [http://mccmb.genebee.msu.ru/2011/mccmb11.pdf]

41. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L,
Mendes P, Kummer U: COPASI–a COmplex PAthway SImulator.
Bioinformatics 2006, 22(24):3067–3074. [http://dx.doi.org/10.1093/
bioinformatics/btl485]

42. Myers CJ, Barker N, Jones K, Kuwahara H, Madsen C, Nguyen NPD:
iBioSim: a tool for the analysis and design of genetic circuits.
Bioinformatics 2009, 25(21):2848–2849. [http://dx.doi.org/10.1093/
bioinformatics/btp457]

43. Raymond GM, Butterworth E, Bassingthwaighte JB: JSIM: Free software
package for teaching physiological modeling and research. Exp Biol
2003, 280:102–107.

44. Takizawa H, Nakamura K, Tabira A, Chikahara Y, Matsui T, Hiroi N,
Funahashi A: LibSBMLSim: A reference implementation of fully
functional SBML simulator. In Bioinformatics; 2013. [http://dx.doi.org/
10.1093/bioinformatics/btt157]

http://bioinformatics.oxfordjournals.org/cgi/content/abstract/19/4/524
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/19/4/524
http://sbml.org
http://dx.doi.org/10.1016/j.pbiomolbio.2004.01.004
http://dx.doi.org/10.1016/j.pbiomolbio.2004.01.004
http://cellml.org
http://dx.doi.org/10.1186/1752-0509-4-92
http://dx.doi.org/10.1093/bioinformatics/btn390
http://dx.doi.org/10.1093/bioinformatics/btn390
http://dx.doi.org/10.1093/bioinformatics/btn051
http://dx.doi.org/10.1093/bioinformatics/btn051
http://dx.doi.org/10.1186/1471-2105-11-178
http://dx.doi.org/10.1186/1471-2105-11-178
http://bioinformatics.oxfordjournals.org/content/27/15/2167
http://bioinformatics.oxfordjournals.org/content/27/15/2167
http://dx.doi.org/10.1038/npre.2008.2715.1
http://dx.doi.org/10.1038/npre.2008.2715.1
http://precedings.nature.com/documents/4959/version/1
http://precedings.nature.com/documents/4959/version/1
http://www.cellml.org/specifications/cellml_1.1/
http://www.cellml.org/specifications/cellml_1.1/
http://sbml.org/Software/SBML_Test_Suite
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/24/17/1963
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/24/17/1963
http://dx.doi.org/10.1186/1752-0509-5-198
http://dx.doi.org/10.1186/1742-4682-3-41
http://dx.doi.org/10.1093/bioinformatics/btq141
http://dx.doi.org/10.1093/bioinformatics/btq141
http://dx.doi.org/10.1137/0202019
http://dx.doi.org/10.1137/0202019
http://www.biomedcentral.com/1752-0509/2/39
http://www.biomedcentral.com/1752-0509/2/39
http://commons.apache.org/proper/commons-math/
http://dx.doi.org/10.1371/journal.pcbi.1001122
http://dx.doi.org/10.1371/journal.pcbi.1001122
http://dx.doi.org/10.1038/msb.2011.77
http://dx.doi.org/10.1016/S0006-3495(00)76672-0
http://dx.doi.org/10.1016/S0006-3495(00)76672-0
http://dx.doi.org/10.1016/j.tplants.2011.09.004
http://dx.doi.org/10.1016/j.tplants.2011.09.004
http://nar.oxfordjournals.org/cgi/content/full/34/suppl_1/D689
http://nar.oxfordjournals.org/cgi/content/full/34/suppl_1/D689
http://sbml.org/SBML_Software_Guide/SBML_Software_Matrix
http://sbml.org/SBML_Software_Guide/SBML_Software_Matrix
http://mccmb.genebee.msu.ru/2011/mccmb11.pdf
http://dx.doi.org/10.1093/bioinformatics/btl485
http://dx.doi.org/10.1093/bioinformatics/btl485
http://dx.doi.org/10.1093/bioinformatics/btp457
http://dx.doi.org/10.1093/bioinformatics/btp457
http://dx.doi.org/10.1093/bioinformatics/btt157
http://dx.doi.org/10.1093/bioinformatics/btt157

Keller et al. BMC Systems Biology 2013, 7:55 Page 16 of 16
http://www.biomedcentral.com/1752-0509/7/55

45. Moraru II, Schaff JC, Slepchenko BM, Blinov ML, Morgan F,
Lakshminarayana A, Gao F, Li Y, Loew LM: Virtual Cell modelling and
simulation software environment. IET Syst Biol 2008, 2(5):352–362.
[http://dx.doi.org/10.1049/iet-syb:20080102]

46. Resasco DC, Gao F, Morgan F, Novak IL, Schaff JC, Slepchenko BM: Virtual
Cell: computational tools for modeling in cell biology. Wiley
Interdiscip Rev: Syst Biol Med 2012, 4(2):129–140. [http://dx.doi.org/10.
1002/wsbm.165]

47. SBML Test Suite Database—Test results for SBML-compatible
software systems. [http://sbml.org/Facilities/Database/Simulator]

48. Hettling H, van Beek: JHGM: Analyzing the functional properties of
the creatine kinase system with multiscale ‘sloppy’ modeling. PLoS
Comput Biol 2011, 7(8):e1002130. [http://dx.doi.org/10.1371/journal.pcbi.
1002130]

49. Kuhn C, Wierling C, Kühn A, Klipp E, Panopoulou G, Lehrach H, Poustka AJ:
Monte Carlo analysis of an ODE model of the Sea Urchin
Endomesoderm network. BMC Syst Biol 2009, 3(3):83. [http://dx.doi.org/
10.1186/1752-0509-3-83]

50. Fehlberg E: Klassische Runge-Kutta-Formeln vierter und niedrigerer
Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf
Wärmeleitungsprobleme. Computing 1970, 6(1–2):61–71. [http://dx.doi.
org/10.1007/BF02241732]

51. Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE,
Woodward CS: SUNDIALS: Suite of nonlinear and
differential/algebraic equation solvers. ACM T Math Software 2005,
31(3):363–396. [https://computation.llnl.gov/casc/sundials/
documentation/documentation.html]

52. Madsen C, Myers CJ, Patterson T, Roehner N, Stevens JT, Winstead C:
Design and test of genetic circuits using iBioSim. Design Test Comput,
IEEE 2012, 29(3):32–39.

53. Gauges R, Rost U, Sahle S, Wegner K: A model diagram layout
extension for SBML. Bioinformatics 2006, 22(15):1879–1885. [http://
bioinformatics.oxfordjournals.org/cgi/content/abstract/22/15/1879]

54. Chaouiya C, Keating SM, Berenguier D, Naldi A, Thieffry D, van Iersel MP,
Helicar T: Qualitative models. In Tech. rep.; 2013. [http://sbml.org/
images/4/40/SBML-L3-qual-specification-2013-04-15.pdf]

55. Funahashi A, Tanimura N, Morohashi M, Kitano H: CellDesigner: a
process diagram editor for gene-regulatory and biochemical
networks. BioSilico 2003, 1(5):159–162. [http://www.sciencedirect.com/
science/article/B75GS-4BS08JD-5/2/
5531c80ca62a425f55d224b8a0d3f702]

56. SBMLsimulator—An efficient Java solver implementation for SBML.
[http://www.cogsys.cs.uni-tuebingen.de/software/SBMLsimulator]

57. Kotcon B, Mesuro S, Rozenfeld D, Yodpinyanee A: Final Report for
Community of Ordinary Differential Equations Educators. In Harvey
Mudd College Joint Computer Science and Mathematics Clinic. Claremont
CA: 301 Platt Boulevard; 2011:91711. [http://www.math.hmc.edu/clinic/
projects/2010/]

58. Java Resources for SED-ML. [http://jlibsedml.sourceforge.net]
59. Tham LS, Wang L, Soo RA, Lee SC, Lee HS, Yong WP, Goh BC, Holford NHG:

A pharmacodynamic model for the time course of tumor shrinkage
by gemcitabine + carboplatin in non-small cell lung cancer patients.
Clin Cancer Res 2008, 14(13):4213–4218. [http://dx.doi.org/10.1158/1078-
0432.CCR-07-4754]

60. Wajima T, Isbister GK, Duffull SB: A comprehensive model for the
humoral coagulation network in humans. Clin Pharmacol Ther 2009,
86(3):290–298. [http://dx.doi.org/10.1038/clpt.2009.87]

doi:10.1186/1752-0509-7-55
Cite this article as: Keller et al.: The systems biology simulation core algo-
rithm. BMC Systems Biology 2013 7:55.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://dx.doi.org/10.1049/iet-syb:20080102
http://dx.doi.org/10.1002/wsbm.165
http://dx.doi.org/10.1002/wsbm.165
http://sbml.org/Facilities/Database/Simulator
http://dx.doi.org/10.1371/journal.pcbi.1002130
http://dx.doi.org/10.1371/journal.pcbi.1002130
http://dx.doi.org/10.1186/1752-0509-3-83
http://dx.doi.org/10.1186/1752-0509-3-83
http://dx.doi.org/10.1007/BF02241732
http://dx.doi.org/10.1007/BF02241732
https://computation.llnl.gov/casc/sundials/documentation/documentation.html
https://computation.llnl.gov/casc/sundials/documentation/documentation.html
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/22/15/1879
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/22/15/1879
http://sbml.org/images/4/40/SBML-L3-qual-specification-2013-04-15.pdf
http://sbml.org/images/4/40/SBML-L3-qual-specification-2013-04-15.pdf
http://www.sciencedirect.com/science/article/B75GS-4BS08JD-5/2/5531c80ca62a425f55d224b8a0d3f702
http://www.sciencedirect.com/science/article/B75GS-4BS08JD-5/2/5531c80ca62a425f55d224b8a0d3f702
http://www.sciencedirect.com/science/article/B75GS-4BS08JD-5/2/5531c80ca62a425f55d224b8a0d3f702
http://www.cogsys.cs.uni-tuebingen.de/software/SBMLsimulator
http://www.math.hmc.edu/clinic/projects/2010/
http://www.math.hmc.edu/clinic/projects/2010/
http://jlibsedml.sourceforge.net
http://dx.doi.org/10.1158/1078-0432.CCR-07-4754
http://dx.doi.org/10.1158/1078-0432.CCR-07-4754
http://dx.doi.org/10.1038/clpt.2009.87

