

Edinburgh Research Explorer

View determinacy for preserving selected information in data
transformations

Citation for published version:
Fan, W, Geerts, F & Zheng, L 2012, 'View determinacy for preserving selected information in data
transformations' Information Systems, vol 37, no. 1, pp. 1-12., 10.1016/j.is.2011.09.001

Digital Object Identifier (DOI):
10.1016/j.is.2011.09.001

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Author final version (often known as postprint)

Published In:
Information Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28974886?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.is.2011.09.001
http://www.research.ed.ac.uk/portal/en/publications/view-determinacy-for-preserving-selected-information-in-data-transformations(d28b669e-90bc-4fe0-a0be-a6c78542f31d).html

View Determinacy for Preserving Selected Information in Data Transformations

Wenfei Fana, Floris Geertsa, Lixiao Zhengb,∗

aUniversity of Edinburgh
bChinese Academy of Sciences

Abstract

When transforming data one often wants certain information in the data source to be preserved, i.e., we identify parts of the source
data and require these parts to be transformed without loss of information. We characterize the preservation of selected information
in terms of the notions of invertibility and query preservation, in a setting when transformations are specified as a view V (a set
of queries), and source information is selected by a query Q. We investigate the problem for determining whether transformations
V preserve the information selected by Q. (1) We show that the notion of invertibility coincides with view determinacy studied
for query rewriting. (2) We establish the undecidability of the problem when either Q or V is in DATALOG or first-order logic, for
invertibility and query preservation. (3) When Q and V are conjunctive queries (CQ), the problem is as hard as view determinacy
for CQ queries and CQ views, an open problem. Nevertheless, we provide complexity bounds of the problem, either in PTIME or
NP-complete, when V ranges over subclasses of CQ (i.e., SP, SC, PC), and when Q is assumed to be a minimal CQ query or not. (4)
We show that CQ is complete for L-to-CQ rewriting when L is SP, SC or PC, i.e., every CQ query can be rewritten in terms of SP,
SC or PC views using a query in CQ.

Keywords: Information preservation, queries, views, rewriting, view determinacy.

1. Introduction

When transforming data from a data source to a target
database in practice, we often want to preserve certain infor-
mation in the data source. That is, we identify certain parts of
the source data and require the parts to be transformed with-
out loss of information. For example, to migrate a customer
database D from one platform to another, we may want the
transformation to ensure that the entire set of customers in D
can be retrieved from the target database. When exchanging the
data with a database of domestic customers, on the other hand,
we may want the transformation to warrant that all conjunctive
queries about domestic customers inD can still be answered by
using conjunctive queries posed on the target data.

The practical need gives rise to the following questions. How
should we model the preservation of selected information in
data transformations? Can we effectively determine whether a
given transformation preserves the information selected?

To answer these questions, this paper introduces a charac-
terization of selected information preservation, investigates its
fundamental problems and establishes their complexity bounds.

Information preservation. We propose two criteria to specify
the preservation of selected information. Consider the setting
in which data transformations are specified in terms of a view
V (a set of queries) from source to target, and the selected in-
formation is identified by a query Q defined on the data source.

We say that V is invertible relative to Q if there exists a
query Q−1 such that for every source database D, Q(D)=

∗Corresponding author: Lixiao Zheng, Institute of Software, Chinese
Academy of Sciences, P.O.Box 8718, Beijing 100190, China, Tel: +86-10-
62661600-6125, Fax: +86-10-62661627

Email addresses: wenfei@inf.ed.ac.uk (Wenfei Fan),
fgeerts@inf.ed.ac.uk (Floris Geerts), zhenglx@ios.ac.cn
(Lixiao Zheng)

Q−1
(
V(D)

)
. Intuitively, it says that source data Q(D) se-

lected byQ can be effectively reconstructed from the target data
V(D). In other words, when Q(D) is concerned, the transfor-
mation V does not lose any information.

Consider a query language Lq . We say that V is query pre-
serving relative to Q and Lq if there exists a computable func-
tion F :Lq→Lq such that for any query Q′∈Lq and source
database D, Q′

(
Q(D)

)
=F (Q′)

(
V(D)

)
. Intuitively, for any

Q′ in Lq that can be answered in Q(D), the same answer can
also be found in the target V(D) by using a query in the same
Lq; i.e., when queries in someone’s favorite languages are con-
cerned, no information in Q(D) is lost in the transformation.

Observe that when Q is the identity query, Q(D) selects the
entire data source D, and invertibility and query preservation
aim to preserve the information of the entire D.

We investigate the connection between invertibility and
query preservation. These two notions are not equivalent. The
former asks for the ability to restore the selected source data
Q(D), while the latter concerns the information in Q(D) that
can be retrieved using queries in a particular language Lq . We
show that when Lq contains the identity query as found in
most sensible relational query languages, query preservation is
a stronger notion. Indeed, if V is query preserving relative to
Q and Lq , then V is invertible relative to Q. In contrast, there
exist V,Q and Lq such that V is invertible relative to Q but V
is not query preserving relative to Q and Lq . In addition, we
identify sufficient conditions for the two notions to coincide.

Connection with view determinacy. There is also an intimate
connection between invertibility and the notion of view deter-
minacy introduced in [1]. A view V is said to determine a
query Q iff for all databases D1 and D2, if V(D1)=V(D2)
then Q(D1)=Q(D2). That is, V provides enough information
to uniquely determine the answer to Q. The notion of view de-

Preprint submitted to Elsevier September 16, 2011

terminacy has proved useful in a variety of applications such
as query rewriting using views, semantic caching, security and
privacy [2, 3, 4, 5, 6, 1, 7].

We show that invertibility and view determinacy coincide:
for any view V and query Q, V is invertible relative to Q iff V
determinesQ. Among other things, this tells us that the study of
view determinacy also finds applications in preserving selected
information in data transformations, and vice versa.

Complexity results. We study two problems for determining
whether a transformation preserves selected information.

The invertibility problem is to decide, given a view V and a
query Q, whether V is invertible relative to Q.

The query preservation problem is to determine, given V,
Q and a query language Lq , whether V is query preserving
relative to Q and Lq .

We parameterize the problems with various Ls and Lv , the
query languages in which selection queriesQ are expressed and
in which views V are defined, respectively. We consider the
following Ls and Lv: DATALOG, first-order queries (FO), and
conjunctive queries (CQ). We also consider SP, PC and SC, sub-
classes of CQ denoted by listing the operators supported (selec-
tion, projection and Cartesian product).

We show that both problems are undecidable when one of
Ls and Lv is CQ while the other is either DATALOG or FO.
These results carry over to the problem for deciding whether
V determines Q. While it is known that the view determinacy
problem is undecidable when V orQ is in FO [5], the results on
DATALOG are new additions to the study of view determinacy.

When both Ls and Lv are CQ, the invertibility problem is as
hard as the view determinacy problem when V and Q are in
CQ, which remains open [5]. We focus on special cases when
Q is a CQ query and views V are defined in SP, SC or PC. We
show that the invertibility problem is in PTIME for PC views,
but it becomes NP-complete for SP and SC views. Moreover,
we show that the problem is also in PTIME for SP views when
Q is a minimal CQ query (see, e.g., [8] for minimal CQ queries).
These complexity bounds remain intact for their view determi-
nacy counterparts. In addition, we show that these results carry
over to the query preservation problem when Lq is CQ.

Complete rewriting. Another notion introduced in [1] con-
cerns the completeness of a rewriting language. In a query lan-
guage L, a query Q can be rewritten using a view V iff there
exists a query Q−1 in L such that Q(D)=Q−1

(
V(D)

)
for all

databasesD [1]. That is, the inverseQ−1 ofQ is definable inL.
Clearly, if Q can be rewritten using a view V with a query Q−1

in a language L, then V determines Q, while the converse may
not be true. The language L is said to be complete for Lv-to-Ls

rewritings if L can be used to rewrite a query Q in Ls using
V in Lv whenever V determines Q. That is, L is expressive
enough to capture rewritings of Ls queries using Lv views as
long as the views determine those queries.

It is known that CQ is not complete for CQ-to-CQ rewritings
[1]. Nevertheless, we show that CQ is complete for L-to-CQ
rewritings when L ranges over SP, PC and SC.

This work is a first step towards characterizing the preserva-

tion of selected information in data transformations. Our results
reveal the connection and differences between the two notions
for information preservation, namely, invertibility and query
preservation. In addition, the complexity results of the paper
are of interest to both the study of data transformations and re-
search on query rewriting using views. A variety of techniques
are used to prove the results, including characterizations of CQ
subclasses, reductions and constructive proofs with algorithms.

Related work. Closest to this work is the study of view deter-
minacy, introduced in [1]. A number of results have been devel-
oped for the view determinacy problem and the completeness of
rewriting languages, briefly summarized as follows [4, 5, 1].
(1) The view determinacy problem is undecidable when ei-
ther queries or views are in FO. Furthermore, FO is not com-
plete for FO-to-FO rewritings. In fact, it has been shown that
any language that is complete for FO-to-FO rewritings must
be Turing-complete. (2) The problem remains undecidable
for UCQ queries and UCQ views, and moreover, UCQ is not
complete for UCQ-to-UCQ rewritings. Indeed, no monotonic
language is complete for CQ-to-CQ rewriting. (3) It remains
unknown whether the view determinacy problem is decidable
when the view and queries are in CQ [5].

In light of the practical interests in CQ queries, view deter-
minacy has been studied for a variety of special classes of CQ
queries and views in [4, 5, 1]. It has been shown there that the
problem is decidable and that CQ is complete for rewritings in
the following cases: (1) arbitrary CQ queries and Boolean CQ
views; (2) arbitrary CQ queries and monadic CQ views (i.e., CQ
views with only one free variable); and (3) arbitrary CQ queries
and a single path CQ view, which is defined over a single bi-
nary relation and has the formQ(x,y)=∃x1, . . . ,xk(R(x,x1)∧
R(x1,x2)∧·· ·∧R(xk−1,xk)∧R(xk,y)).

Special cases of the view determinacy problem for CQ have
also been studied in [2, 3, 6, 7]. (1) The packed fragment of FO
(PFO) was considered in [3], which is a generalization of the
guarded fragment of FO. It was shown that PFO is complete for
PFO-to-PFO rewritings, and the determinacy problem for PFO
queries and PFO views is decidable in 2EXPTIME. Moreover,
for the packed fragment of conjunctive queries (PCQ), PCQ is
complete for PCQ-to-PCQ rewritings and thus the determinacy
problem is decidable. These results also extend to unions of
PCQs. (2) Chain CQ queries, denoted as CQchain, were stud-
ied in [2], which extend path CQ queries by allowing multiple
binary relations. It was shown there that determinacy is de-
cidable for chain queries and chain views, and that FO is com-
plete for CQchain-to-CQchain rewritings. (3) These results were
extended in [6] to connected graph CQ queries, denoted by
CQcgraph, which are binary CQ queries whose body, if viewed
as an undirected graph, is connected. It was reported there that
FO is complete for CQchain-to-CQcgraph rewritings. (4) [7] stud-
ied CQ queries that are defined over unary database schemas, in
which each relation has only one attribute. It was shown that
for this class of queries and views, determinacy is decidable in
PTIME and CQ is complete for rewritings. Nevertheless, none
of these results transfers to the cases we consider.

As observed in [5], view determinacy (invertibility) is equiv-

2

alent to the notion of lossless views under the exact view
assumption, which has been studied for regular path queries
[9, 10]. Also related is the large amount of work on equivalent
rewritings of queries using views (e.g., [11, 12]). It was shown
that it is NP-complete to decide whether a given CQ query has
an equivalent rewriting using a given set of CQ views [11], and
several of its special PTIME cases were identified in [12].

As we shall show shortly, invertibility and view determinacy
are equivalent. Therefore, all of our results on invertibility carry
over to view determinacy. In particular, this work shows that the
view determinacy problem is undecidable when either queries
or views are in DATALOG. In addition, we provide the com-
plexity of the problem for queries in CQ and for views in SP,
PC or SC, either NP-complete or in PTIME. We also show that
CQ is complete for L-to-CQ rewritings when L ranges over sub-
classes SP, PC and SC of CQ. On the other hand, previous results
on view determinacy also transfer to invertibility. In addition,
when invertibility (view determinacy) and query preservation
coincide as we shall elaborate, prior results on view determi-
nacy also remain intact on query preservation, and vice versa.

The notions of invertibility and query preservation are also
related to the notions of dominance and calculus dominance,
which were proposed in [13] to specify relative information ca-
pacity, and were studied for data integration [14, 15, 16]. A
schema S is said to dominate another schema T if there ex-
ist schema mappings V and V −1 from S to T and from T
to S, respectively, such that for any source instance D of S,
D=V −1(V (D)). Schema S calculously dominates T if S
dominates T with (V,V −1) and moreover, both V and V −1

are expressible in relational calculus. Clearly, dominance is a
special case of invertibility when selection query Q is the iden-
tity query, and calculus dominance is the special case when Q
is the identity and views are in FO. These notions were also
considered in the XML settings in [17, 18]. No previous results
on (calculus) dominance can carry over to the cases studied in
this work.

Organization. Section 2 presents the notions of query preser-
vation, invertability and view determinism, and investigates
their connections. Section 3 states the decision problems stud-
ied in this paper. Section 4 provides the undecidability results
for DATALOG and FO, followed by the decidable cases for sub-
classes of CQ in Section 5. Finally, Section 6 summarizes the
main results of the paper and identifies open questions.

2. Selected Information Preservation

In this section, we first introduce the notions of query preser-
vation, invertability and view determinism. We then investigate
the connections between these concepts.

A database schema R=(R1, . . . ,Rk) consists of a finite set
of relation symbols Ri, each of which is associated with an ar-
ity ni>0. Let dom be an infinite set of values. A (database)
instance D=(I1, . . . , Ik) of R associates with each symbol Ri

a relation Ii consisting of ni-ary tuples over dom. In this pa-
per, we only consider finite instances. We denote by I(R) the
set of all instances ofR that take values from dom. The active

domain of a relation I , denoted by adom(I), is the set of val-
ues in dom that occur in I . Similarly, for D=(I1, . . . , Ik) we
define adom(D) as the union of adom(Ii) for i∈ [1,k].

A query Q overR is defined as a computable (generic) map-
ping from I(R) to I(R), for some output relation R. Let R=
(R1, . . . ,Rk) and V=(V1, . . . ,V`) be two database schemas. A
view V fromR to V is a set of queries Qi from I(R) to I(Vi),
one for each i∈ [1, `]. For a query language Lv , we say that V
is a view in Lv if Qi is in Lv for each i∈ [1, `]. We refer to R
and V as the input and output schema of V, respectively.

2.1. Invertibility and Query Preservation

Let Q be a query over source schema R and let V be a view
from R to V . We say that V is invertible relative to Q if there
exists a query Q−1 over V such that for every instance D of
R, Q(D)=Q−1

(
V(D)

)
. Intuitively, invertibility says that the

selected part of source data, identified by Q, can be recovered
from the view. It does not say, however, whether the inverse
Q−1 belongs to a certain query language or whether the inverse
can be computed efficiently.

Let Lq be a query language. We say that a view V is query
preserving relative to Q and Lq if there exists a computable
function F :Lq→Lq such that for any query Q′∈Lq and any
instance D of R, Q′

(
Q(D)

)
=F (Q′)

(
V(D)

)
. Intuitively, any

query (in a specific query language Lq) imposed on the selected
part of source data can be effectively answered using the view.

We say that a view V is information preserving relative to a
query Q and a query language Lq if V is both invertible and
query preserving relative to Q and Lq .

We next reveal the connection and differences between in-
vertibility and query preservation. We start with sufficient con-
ditions for the two notions to be equivalent, which extend an
observation of [18] for special cases of these two notions in the
context of semi-structured data and query languages.

Proposition 1. Let Q be a query, V a view and Lq a query
language.

- If V is query preserving relative to Q and Lq , and the
identity query id is expressible in Lq , then V is invertible
relative to Q, and moreover, Q−1 is a query in Lq as well.

- If V is invertible relative to Q, the inverse Q−1 is express-
ible in Lq , and Lq is closed under composition, then V is
query preserving relative to Q and Lq .

Here a query language Lq is closed under composition if for
any Q1, Q2 in Lq , Q1◦Q2 (if defined) is also in Lq .

Proof: Suppose that V is query preserving relative to Q and
Lq . Then there exists a computable function F :Lq→Lq such
that for any query Q′∈Lq and any instance D, Q′

(
Q(D)

)
=

F (Q′)
(
V(D)

)
. By assumption, id is expressible in Lq and

thus Q(D)= id
(
Q(D)

)
=F (id)

(
V(D)

)
for any instance D.

That is, Q−1 =F (id). Hence V is invertible relative to Q and
moreover, the inverse Q−1 is a query in Lq .

Suppose that V is invertible relative to Q and the inverse Q−1

3

is in Lq . By assumption, Lq is closed under composition and
therefore, we can define a function F :Lq→Lq as F (Q′)=Q′◦
Q−1 for any Q′∈Lq . Clearly, for any Q′∈Lq and any instance
D, Q′

(
Q(D)

)
=Q′◦Q−1

(
V(D)

)
=F (Q′)

(
V(D)

)
. That is,

V is query preserving relative to Q and Lq . �

Observe that id is definable in all commonly used relational
query languages. In the sequel we consider w.l.o.g. only query
languages in which id is definable. Hence, the notion of query
preservation is generally stronger than invertibility. This is
verified by the separation result below, which we shall prove
shortly.

Proposition 2. There exist a CQ query Q and a view V in CQ
such that (1) V is invertible relative toQ, but (2) V is not query
preserving relative to Q and CQ.

2.2. View determinacy

It turns out that the notion of invertibility coincides with the
notion of view determinacy [5], which we recall next. Let Q be
a query over source schemaR and let V be a view fromR to V .
A view V determinesQ, denoted by V�Q, iff for all instances
D1, D2 ofR, if V(D1)=V(D2) then Q(D1)=Q(D2).

Lemma 1. LetQ be a query and V a view. Then V is invertible
relative to Q iff V determines Q.

Proof: Suppose that V is invertible relative to Q. Then
for any pair of instances D1 and D2 we have that Q(D1)=
Q−1

(
V(D1)

)
and Q(D2)=Q−1

(
V(D2)

)
. Thus if V(D1)=

V(D2) then clearly Q(D1)=Q(D2), and hence V�Q.
Conversely, suppose that V�Q. Let σ be the mapping that

associates V(D) with the corresponding value of Q(D), for
every instance D. It is easily verified (see e.g., [1]) that σ is
generic, computable and furthermore can be taken as the inverse
Q−1. Hence, V is indeed invertible relative to Q. �

The completeness of rewriting languages has also been stud-
ied in [5]. We say that a query Q can be rewritten using V in a
languageL iff there exists some queryQ−1∈L over the schema
V such that Q(D)=Q−1

(
V(D)

)
for all instances D ofR. We

denote this by Q⇒VQ
−1. Observe that if Q⇒VQ

−1 for a
query Q−1 in some query language L, then obviously V�Q.
The converse is, however, generally not true.

Given a view language Lv and a query language Ls, we say
that a query language L is a complete rewriting language for
Lv-to-Ls rewritings if for all query Q∈Ls and view V in Lv ,
L can be used to rewrite Q using V whenever V�Q.

It is known that CQ is not complete for CQ-to-CQ rewrit-
ings [5]. Capitalizing on this, we give a proof of Proposition 2.

Proof of Proposition 2. It is known that there exist a CQ query
Q and a CQ view V such that V�Q, but the inverseQ−1 is not
definable in CQ. Such concrete examples can be found in [2, 5].
Let Q and V be such a pair. By Lemma 1, V is invertible
relative to Q. Hence to prove Proposition 2, it suffices to show
that V is not query preserving relative to Q and CQ.

Assume by contradiction that V is query preserving rela-
tive to Q and CQ. Then there exists a computable function
F :CQ→CQ such that for any query Q′∈CQ and any instance
D, Q′

(
Q(D)

)
=F (Q′)

(
V(D)

)
. Let Q′ be id, then Q(D)=

F (id)
(
V(D)

)
, i.e., Q⇒VF (id), and F (id) is a CQ query.

This contradicts the fact that Q−1 is not definable in CQ. �

3. Problem Statements

We investigate the following decision problems. Let Ls, Lv

and Lq be query languages. The first problem is referred to as
the invertibility problem, stated as follows.

PROBLEM: VDet(Ls,Lv)
INPUT: A query Q∈Ls, a view V={Q1, . . . ,Q`} de-

fined in terms of queries in Lv .
QUESTION: Is V invertible relative to Q?

By Lemma 1, VDet(Ls,Lv) can be equivalently stated as the
view determinacy problem for (Ls,Lv). It is the problem to
determine, given Q∈Ls and V={Q1, . . . ,Q`} such that Qi∈
Lv for i∈ [1, `], whether V determines Q. We shall use these
two statements interchangeably in the sequel.

We shall also consider the query preservation problem:

PROBLEM: QPre(Ls,Lv,Lq)
INPUT: A query Q∈Ls, a view V={Q1, . . . ,Q`} de-

fined in terms of queries in Lv , and a query
language Lq .

QUESTION: Is V query preserving relative to Q and Lq?

Query languages used in this paper range over: (1) CQ, the
class of conjunctive queries built up from relation atoms, by
closing under conjunction∧ and existential quantification ∃; (2)
FO, first-order logic queries built from atomic formulas using
∧, disjunction ∨, negation ¬, ∃ and universal quantification ∀;
and (3) DATALOG, datalog queries defined as a collection of
rules p(x̄) :- p1(x̄1), . . . ,pn(x̄n), where each pi is either an
atomic formula (a relation atom in R, or equality =), or an
IDB predicate. That is, DATALOG is an extension of union of
conjunctive queries with an inflational fixpoint operator. We
refer to [8] for more details concerning these languages.

Recall that the class of conjunctive queries, CQ, is the class
of SPC queries built up from the relational algebra operators:
selection (S), projection (P) and Cartesian product (C). We also
consider fragments of CQ, denoted by listing the operators al-
lowed in the fragment. In particular, we consider the following
three classes of CQ queries:

• SP: the fragment defined with S and P operators only;

• PC: the fragment defined with P and C operators only, and

• SC: the fragment defined with S and C operators only.

4. Undecidability Results

In this section we study VDet(Ls,Lv) and QPre(Ls,Lv,Lq)
when Ls or Lv is either FO or DATALOG. The main results are
negative: both problems are undecidable in these settings.

4

We first consider the invertibility problem for DATALOG. It
is known that the view determinacy problem is undecidable
when either Ls or Lv is FO, and when both Ls and Lv are
UCQ [5]. By Lemma 1, the undecidability results carry over
to VDet(Ls,Lv). We next show that VDet(Ls,Lv) (and hence
view determinacy) is also undecidable when Ls is DATALOG
and Lv is CQ, and when Ls is CQ and Lv is DATALOG.

Theorem 1. VDet(Ls,Lv) is undecidable when

(1) Ls is DATALOG and Lv is CQ , or
(2) Ls is CQ and Lv is DATALOG. �

Proof: Both proofs are by reduction from the containment
problem for DATALOG, which is to determine, given two
DATALOG queriesQ1 andQ2, whetherQ1(D)⊆Q2(D) for ev-
ery instance D. This problem is known to be undecidable [19].

(1) VDet(DATALOG,CQ). Let Q1 and Q2 be two DATALOG
queries defined over schemaR, with answer predicates ans1(x̄)
and ans2(x̄), respectively. Let N be a nullary relation sym-
bol not appearing in R. We define a DATALOG query Q over
(R,N) consisting of the rules of Q1 and Q2 together with:

Q(x̄) :- ans1(x̄),N()
Q(x̄) :- ans2(x̄)

The CQ view V over (R,N) is defined such that for any in-
stance (D,IN) of (R,N), V(D,IN)=D. We next show that
Q1⊆Q2 iff V�Q. Suppose that Q1⊆Q2. Then Q is equiv-
alent to Q2. Since V simply copies the instance D of R
we have that Q⇒VQ2, from which V�Q follows. Con-
versely, if Q1 6⊆Q2, then there exists an instance D of R such
that Q1(D)∪Q2(D) 6=Q2(D). Given such D, we define two
database instances D1 =(D,{()}) and D2 =(D,∅) of (R,N).
Because V(D1)=V(D2)=D but Q(D1) 6=Q(D2), we can
conclude that V does not determine Q.

(2) VDet(CQ,DATALOG). Let Q1 and Q2 be two DATALOG
queries defined over relational schema R, with answer pred-
icates ans1(x̄) and ans2(x̄), respectively. Let R1, R2 be two
relation symbols not appearing in R, which have the same ar-
ity as ans1 and ans2. We define the DATALOG view V over
(R,R1,R2) as V={V1,V2,V3}, where

V1(x̄) :- R1(x̄),ans2(ȳ),R2(ȳ)
V2(x̄) :- R1(x̄)
V2(x̄) :- ans1(x̄),R2(x̄)
V3(x̄) :- ans2(x̄),R2(x̄)

We define the CQ query Q such that for any instance D′=
(D,I1, I2) over {R,R1,R2}, Q(D′)=I1. We next show that
Q1⊆Q2 iff V�Q. Suppose that Q1⊆Q2. We can define the
inverse Q−1 in FO as follows:

Q−1(x̄)=∃ȳ
(
(V1(x̄)∧V3(ȳ))∨(V2(x̄)∧¬V3(ȳ))

)
Indeed, for any database instance D′=(D,I1, I2) of schema

(R,R1,R2), if V3(D′) is nonempty, then V1(D′) returns
I1. If V3(D′)=∅, which means that Q2(D)∩I2 =∅, then
from Q1⊆Q2 we can conclude that Q1(D)∩I2 =∅ and hence

V2(D′) returns I1. That is,Q⇒VQ
−1 and hence V�Q. Con-

versely, suppose that Q1 6⊆Q2. Then there exists an instance
D of relational schema R and a tuple t̄ such that t̄∈Q1(D)
and t̄ 6∈Q2(D). Given such D and t̄, we define two instances
D′=(D,{ t̄},{ t̄}) and D′′=(D,∅,{ t̄}). It is easy to see that
V(D′)=V(D′′)=(∅,{ t̄},∅) but Q(D′)={ t̄} 6=Q(D′′)=∅.
Thus V does not determine Q. �

When it comes to QPre(Ls,Lv,Lq), the query preservation
problem, we show that it is also beyond reach in practice when
any of Ls and Lv is either FO or DATALOG.

Theorem 2. QPre(Ls,Lv,Lq) is undecidable when

(1) Ls is FO, and Lv and Lq are CQ,
(2) Ls is CQ, Lv is FO and Lq is CQ,
(3) Ls is DATALOG, Lv is CQ and Lq is DATALOG, or
(4) Ls is CQ, Lv is DATALOG and Lq is FO. �

Proof: We show the undecidability of (1) and (2) by reduction
from the satisfiability problem of FO, which is known to be un-
decidable [8]. The undecidability of (3) and (4) follows from
the proofs of Theorem 1.

(1) Let Q0(ȳ) be an FO query over a relation schema R and let
N1 and N2 be two nullary relations. Let R=(R,N1,N2). We
define the view V and query Q over schema R. Let V (x̄)=
R(x̄)∧N1 and Q(ȳ)=Q0(ȳ)∧N2. We show that V is query
preserving relative to Q and CQ iff Q0 is not satisfiable.

First assume that Q0 is not satisfiable. Then for any instance
D=(IR, I1, I2) of R, Q(D)=∅. Moreover, for any Q′∈CQ
we have that Q′(∅)=∅. Hence F (Q′) :=∅ satisfies the desired
properties. Hence V is query preserving relative to Q and V .

Conversely, assume that Q0 is satisfiable. That is, there ex-
ists an instance I0 of R such that Q0(I0) 6=∅. By Proposition 1,
it suffices to show that V does not determine Q. For if it holds,
then by id∈CQ, no function F can exist that makes V query
preserving. We distinguish between the following two cases:
(a) Q0(∅)=∅ and (b) Q0(∅) 6=∅. For case (a), consider in-
stances D1 =(∅,∅,()) and D2 =(I0,∅,()), where Q0(I0) 6=∅
as assumed above. We have that Q(D1)=∅ and Q(D2)=
Q0(I0) 6=∅ whereas V (D1)=V (D2)=∅. For case (b), con-
sider instances D1 =(∅,∅,()) and D2 =(I,∅,∅), where I is ar-
bitrary. Then Q(D1) 6=∅ and Q(D2)=∅, whereas V (D1)=
V (D2)=∅. Hence, V does not determine Q.

(2) Let Q0(ȳ) be an FO query over a single relation schema
R. Consider the schema R=(R,R′), where R′ is a copy
of R. Let Q(x̄)=R(x̄) and let V (x̄)=R(x̄)∧(¬∃ȳQ0(ȳ))∧
¬(¬∃x̄R′(x̄)∧∃ȳQ′0(ȳ)), where Q′0 is equal to Q0 but with R
replaced by R′. We show that V is query preserving relative to
Q and CQ iff Q0 is not satisfiable.

When Q0 is not satisfiable, then F can be taken as the iden-
tity mapping. One can readily verify that V is query preserving
relative to Q and CQ with such a query rewriting function.

On the other hand, if Q0 is satisfiable, it suffices to show that
V does not determine Q. For if it holds, then by id∈CQ, no
function F can exist that makes V query preserving relative to

5

Q and CQ by Proposition 1. Again we distinguish between the
following two cases: (a) Q0(∅)=∅ and (b) Q0(∅) 6=∅. For case
(a), consider the instances D1 =(∅,∅) and D2 =(I,∅), where
I 6=∅ and Q0(I) 6=∅. Since Q0 is satisfiable, there must exist
such an instance I of R. Then V (D1)=V (D2)=∅, whereas
Q(D1)=∅ 6=I=Q(D2). For case (b), consider D1 =(∅,∅)
and D2 =(I,∅), where I is an arbitrary nonempty instance of
R. Then again V (D1)=V (D2)=∅, whereas Q(D1)=∅ 6=I=
Q(D2). In both cases, V does not determine Q.

(3) Consider the view V and query Q as described in the proof
of Theorem 1(1). It is easily verified that when Q1⊆Q2 then
F (Q′) can be defined as the composition of Q with Q′. When
Q1 6⊆Q2, it follows from the proof of Theorem 1(1) that V does
not determine Q and hence, by Proposition 1, V is not query
preserving relative to Q and DATALOG.

(4) Consider V and Q defined in the proof of Theorem 1(2). It
is easily verified that when Q1⊆Q2 then F (Q′) can be defined
as the composition of Q−1 with Q′. Since Q−1 is in FO, F (Q′)
is in FO as well. When Q1 6⊆Q2, it follows from the proof of
Theorem 1(2) that V does not determine Q. By Proposition 1,
V is not query preserving relative to Q and FO. �

5. Decidable Cases for CQ Queries

We next study VDet(Ls,Lv) and QPre(Ls,Lv,Lq) when
Ls, Lv and Lq are conjunctive queries (CQ). In general, it
is unknown whether the view determinacy problem is decid-
able for conjunctive queries [5]. We focus on special cases
VDet(CQ,L) and QPre(CQ,L,CQ), for selection queries Q in
CQ and views V in a fragment L of CQ, where L is SP, PC
or SC. We show that these problems are either NP-complete or
in PTIME (Theorem 3, 4, Corollaries 2 and 3), and that CQ is
complete L-to-CQ rewritings (Corollary 1).

The proofs of Theorem 3 and 4 are nontrivial. To simplify
the discussion, we first present some notations and lemmas that
will be used throughout the proofs (Section 5.1). We then study
VDet and QPre for the special case when selection queries Q
are minimal CQ queries (Section 5.2). Finally we extend the
results to general CQ queries (Section 5.3).

5.1. Preliminaries
We use R=(R1, . . . ,Rk) and V=(V1, . . . ,V`) to denote the

source and target schema, respectively. Let var be an infinite
set of variables that are disjoint from dom. Let Q(x̄) be a CQ
query overR with free variables x̄.

We consider instances over the extended domain dom∪var.
More specifically, we associate with each CQ query Q an in-
stance over this extended domain in the usual way. That is, the
frozen body of Q, denoted by [Q], is the instance over R such
that (x1, . . . ,xn) belongs to the relation in [Q] corresponding to
Ri iff Ri(x1, . . . ,xn) is an atom in Q. Note that (x1, . . . ,xn)
may contain both constants (from dom) and variables (from
var). Similarly, for a set V of CQ queries, we use [V] to de-
note the union of the frozen bodies [Q] for all Q in V.

Consider a mapping h from variables to variables and con-
stants. Let t̄ be a tuple over dom∪var. Then h(t̄) is defined in

the usual way by applying h to each component of t̄. Similarly,
we denote by h([Q]) the instance obtained by taking the union
of h(t̄) for t̄∈ [Q]. A homomorphism h from an instance I to an
instance J over the extended domain, denoted as h :I→J , is a
standard homomorphism that is identity on dom. More specifi-
cally, h(I)⊆J . Recall that for a CQ queryQ(x̄) and an instance
D, a tuple t̄ is in Q(D) iff there exists a homomorphism h from
[Q] to D such that h(x̄)= t̄.

A query Q1 is contained in a query Q2, denoted as Q1⊆
Q2, if for any instance D, Q1(D)⊆Q2(D). Two queries are
equivalent, denoted as Q1≡Q2, if Q1⊆Q2 and Q2⊆Q1.

A classical result in the theory of conjunctive queries is the
following Homomorphism Theorem [20]: Let Q1(x̄1) and
Q2(x̄2) be two CQ queries over the same schema R with free
variables x̄1 and x̄2, respectively. Then Q1⊆Q2 iff there exists
a homomorphism h from [Q2] to [Q1] such that h(x̄2)= x̄1, or
in other words, Q1⊆Q2 iff x̄1∈Q2([Q1]).

The following proposition (slightly modified) from [2] states
some observations.

Proposition 3. Let Q(x̄) be a CQ query with free variables x̄
and let V be a set of CQ views. If V�Q then (i) V([Q]) 6=∅;
and (ii) all the relation symbols appearing in Q also appear in
some query in V.

Our results also make use of the following results on view
determinacy for conjunctive queries [1, 5]. Let Q(x̄) be a CQ
query and V={V1(x̄1), . . . ,V`(x̄`)} be a set of views in CQ.
Let S=(S1, . . . ,S`)=V([Q]). We construct an instance D
over R from S as follows: For each i∈ [1, `] and for every tu-
ple t̄ belonging to Si, we include in D the tuples of h([Vi])
with h(x̄i)= t̄, where h maps every variable in [Vi] not in x̄i to
some new distinct value. We call this instance the V-inverse
of S, denoted as V−1(S). Let QV(x̄) be the CQ query over V
with free variables x̄ and frozen body [QV]=S. The instance
V−1(S) is actually obtained from [QV] by unfolding view def-
initions, with bound variables in view definitions renamed to
new distinct variables. That is, V−1(S)=[QV◦V]. The fol-
lowing proposition (slightly modified) is from [1, 5].

Proposition 4. Let Q(x̄) be a CQ query and V be a set of CQ
views. Let S=V([Q]) andQV(x̄) be the CQ query with [QV]=
S. We have the following: (i) if x̄∈Q

(
V−1(S)

)
, then QV is a

rewriting of Q in terms of V, and thus V�Q. (ii) if Q has a
CQ rewriting in terms of V, then QV is such a rewriting.

5.2. Minimal CQ Queries
We first consider the invertibility problem in which selection

queries Q are minimal conjunctive queries. Recall that a con-
junctive query Q is minimal if removing any of the rows from
[Q] leads to an nonequivalent conjunctive query [8]. For mini-
mal CQ queries, we show the following:

Theorem 3. When the queries in Ls are minimal CQ queries,
VDet(Ls,Lv) is

(1) in PTIME when Lv is PC,

6

(2) in PTIME when Lv is SP,
(3) NP-complete when Lv is SC. �

The proof is a little involved, and consists of several parts.
The PTIME results are shown by leveraging Proposition 4(i).
More specifically, for both cases a number of conditions on the
query Q and view V are identified such that (1) when satisfied,
the conditions imply that x̄∈Q(V−1(S)) and thus V deter-
minesQ; and (2) when the conditions are not satisfied, the view
does not determine the query. Furthermore, these conditions
can be verified in PTIME. The intractability of VDet(CQ,SC)
is shown in two steps: First, NP-hardness is established by re-
duction from the graph 3-colorability problem; and second, the
NP upper bound is shown to hold even when queries in Ls are
not minimal. The upper bound proof is deferred to Section 5.3.

Before giving the details of the proof, we elaborate the im-
pact of the minimality assumption for CQ queries inLs. As pre-
viously described, the PTIME results rely on the identification of
necessary and sufficient conditions for view determinacy. In or-
der to show that these conditions are necessary, we show that
if the conditions fail to hold, then there exist two instances
D1 and D2 such that V(D1)=V(D2) but Q(D1) 6=Q(D2).
We show next that if Q is minimal, then there is a principled
way to find (in PTIME) two instances D1 and D2 such that
Q(D1) 6=Q(D2). We shall show in the proof of Theorem 3 that
these instances can further be taken such that V(D1)=V(D2).

More formally, given a CQ queryQ(x̄) and a tuple t̄∈ [Q], we
call a set ∆ of tuples critical for t̄ andQ if the CQ queriesQ1(x̄)
and Q2(x̄) with frozen bodies [Q1]=[Q]∪∆ and [Q2]=([Q]\
{ t̄})∪∆, respectively, satisfy the following two properties: (1)
Q1≡Q, or in other words, adding ∆ does not change the query
Q; and (2) Q(Q2, that is, replacing t̄ with ∆ results in a query
strictly more general than Q. Critical sets of tuples allow us to
construct instances on which Q differs:

Lemma 2. Let Q(x̄) be a CQ query, t̄∈ [Q] and ∆ be a set of
critical tuples for t̄ and Q. Then for D1 =[Q]∪∆ and D2 =
([Q]\{ t̄})∪∆ we have that Q(D1) 6=Q(D2).

Proof: Let Q1(x̄) and Q2(x̄) be the CQ queries with frozen
bodies [Q1]=D1 and [Q2]=D2, respectively. Assume by
contradiction that Q(D1)=Q(D2). By assumption, Q1≡Q,
and hence, we also have that Q1([Q1]) = Q1(D1) = Q1(D2)
= Q1([Q2]). Furthermore, x̄∈Q1([Q1]) and thus also
x̄∈Q1([Q2]). By the Homomorphism Theorem, Q2⊆Q1.
From the assumption that Q⊆Q2, and hence Q1⊆Q2, we
can then conclude that Q≡Q2. This contradicts the fact that
Q(Q2 and therefore, Q(D1) 6=Q(D2). �

The crucial observation is that whenQ(x̄) is a minimal query,
one can construct critical sets of tuples easily. More precisely,
let t̄∈ [Q] and let s̄ be a tuple obtained from t̄ by replacing some
occurrences of (i) a constant; or (ii) a variable that appears in
multiple rows in [Q]; or (iii) a variable that appears in x̄, with
a distinct new variable; or (iv) replacing some occurrences of
a variable that appears multiple times but only in t̄, with a dis-
tinct new variable while keeping the other occurrences of this
variable unchanged. We then have the following:

Lemma 3. Let Q(x̄) be a minimal CQ query, t̄∈ [Q] and ∆ be
a set of tuples obtained from t̄ as described in (i)–(iv). Then ∆
is critical for t̄ and Q.

Proof: We need to show that forQ1(x̄) with [Q1]=[Q]∪∆ and
Q2(x̄) with [Q2]=([Q]\{ t̄})∪∆, we have that (a)Q≡Q1 and
(b) Q(Q2. For (a) it suffices to observe that [Q]⊆ [Q1] and
therefore, Q1⊆Q. Furthermore, the trivial homomorphism h :
[Q]→ [Q] can be extended to a homomorphism h′ : [Q1]→ [Q]
since, by construction, every tuple s̄∈∆ is equal to t̄ except
that some occurrences of a constant or variable are replaced
by a new variable that does not introduce additional equality
constraints. Hence, h′([Q1])⊆ [Q], h′(x̄)= x̄ and therefore,
Q⊆Q1. We can thus conclude that Q≡Q1, as desired.

For (b) we first observe that [Q2]⊆ [Q1] and thus Q1⊆Q2.
From (a) we can also infer that Q⊆Q2. Assume by contra-
diction that Q≡Q2. Since |[Q2]|= |[Q1]|−1> |[Q]| and Q is
minimal, there exists a subset T of [Q2] such that Q′2(x̄) with
[Q′2]=T is equivalent to Q, and |[Q′2]|= |[Q]|. We consider the
following cases: (i) [Q]\{ t̄}⊆ [Q′2]; and (ii) [Q]\{ t̄} 6⊆ [Q′2].

Case (i). Note that [Q′2] consists of all the tuples of [Q]\{ t̄}
plus a newly constructed tuple s̄∈∆. Since Q′2 and Q are min-
imal and equivalent, the tableaux ([Q′2], x̄) and ([Q], x̄) are the
same up to renaming of variables (cf. Proposition 6.2.9 in [8]).
This is impossible, however, by the construction of tuples in ∆.

Case (ii). Observe that there exists a tuple ū∈ [Q]\{ t̄} such
that ū 6∈ [Q′2]. Let Q′(x̄) be the CQ query with [Q′]=[Q]\{ ū}.
It is easily verified that there exists a homomorphism h1 :
[Q′2]→ [Q′] with h1(x̄)= x̄. On the other hand, Q≡Q′2 and
there exists a homomorphism h2 : [Q]→ [Q′2] with h2(x̄)= x̄.
Thus there exists a homomorphism h=h1◦h2 : [Q]→ [Q′] with
h(x̄)= x̄ and hence, Q′⊆Q. Furthermore, from [Q′]⊆ [Q] we
infer that Q⊆Q′. Hence, Q′≡Q. This, however, contradicts
the assumption that Q is minimal and therefore, Q 6≡Q2. �

Proof of Theorem 3. We are now ready to prove Theorem 3.

(1) VDet(CQ,PC). We first consider the case when V consists
of a single view V . We then show the result for general views.

Single PC view. Let Q(x̄Q) be a minimal CQ query and
V (x̄V) be a PC view defined over relational schema R=
(R1, . . . ,Rk). Since V is a PC query, [V] contains no constants
and each variable in [V] appears only once. This implies that
for any pair of tuples t̄V ∈ [V] and t̄Q∈ [Q] over the same rela-
tion inR, there is a unique homomorphism h from t̄V to t̄Q.

We show that V determinesQ iff the following conditions are
satisfied: (1) the relation symbols appearing inQ are exactly the
same as those appearing in V ; (2) for each tuple t̄Q∈ [Q] there
exists a tuple t̄V ∈ [V] over the same relation inR such that for
each variable x in t̄V and for the homomorphism h from t̄V to
t̄Q, if (a) h(x) is a constant; or (b) h(x) appears more than once
in [Q]; or (c) h(x) appears in x̄Q, then x must appear in x̄V .
These conditions can be easily checked in PTIME.

We first show that if these conditions hold then V �Q.
More specifically, we show that the conditions imply that x̄Q∈
Q
(
V −1(S)

)
. Let S=V ([Q]). By condition (1), S 6=∅, and one

7

can construct the instance V −1(S) from S. Consider an arbi-
trary tuple t̄Q∈ [Q] and let t̄V be a tuple [V] that satisfies condi-
tion (2). Let h be the homomorphism from t̄V to t̄Q. Since V is
a PC query, we can extend h to be a homomorphism h̄ from [V]
to [Q]. Moreover, by the construction of V −1(S), there is a tu-
ple t̄∈V −1(S) such that t̄=h′(t̄V), where h′(x)= h̄(x)=h(x)
if x appears in x̄V , and h′(x) is a new distinct variable other-
wise. Now consider tuples t̄Q and t̄. By conditions (2a) and
(2b), t̄Q and t̄ are isomorphic, and the homomorphism h′′ from
t̄Q to t̄ is identity on variables that appear more than once in
[Q]. By gathering all homomorphism h′′ between tuples t̄Q
in [Q] and tuples t̄∈V −1(S), constructed as above from tu-
ples t̄V that satisfy condition (2), we thus obtain a homomor-
phism h̄′′ from [Q] to V −1(S). By condition (2c), h̄′′ is iden-
tity on variables that appear in x̄Q, and thus h̄′′(xQ)=xQ and
x̄Q∈Q

(
V −1(S)

)
. From Proposition 4(i) it follows that V �Q.

We next show that the conditions are also necessary. We first
consider condition (1). Suppose that Q has less relation sym-
bols than V . In this case, V ([Q])=∅ and by Proposition 3(i),
V does not determine Q. If Q has more relation symbols than
Q, then by Proposition 3(ii), V cannot determine Q either. In
other words, condition (1) needs to be satisfied.

Next, consider condition (2). Suppose that there exists a tuple
t̄Q∈ [Q] such that for any tuple t̄V ∈ [V] over the same relation
as t̄Q, one of the conditions (2a)–(2c) is not satisfied. Let t̄= t̄Q.
For each tuple t̄V ∈ [V] over the same relation as t̄, we construct
a tuple s̄ from t̄ as follows. Let h be the unique homomorphism
from t̄V to t̄. Let x be the variable in t̄V that does not occur in
x̄V but either (a) h(x) is a constant; (b) h(x) occurs multiple
times in [Q]; or (b) h(x) appears in x̄Q. We then construct s̄
from t̄ by replacing each h(x) in t̄ with a new distinct variable.
For each t̄V we put the resulting tuple s̄ in the set ∆. Lemma 3
implies that ∆ is critical for t̄ and Q, and Lemma 2 tells us
that Q(D1) 6=Q(D2) for D1 =[Q]∪∆ and D2 =([Q]\{ t̄})∪
∆. Hence if V (D1)=V (D2), then V does not determine Q.

We now verify that V (D1)=V (D2). Since D2⊆D1, we
have that V (D2)⊆V (D1). Hence, we need to show that
V (D1)⊆V (D2). Let ū∈V (D1) and let h′ : [V]→D1 such that
h′(x̄V)= ū. Then for the tuple t̄V ∈ [V] such that h′(t̄V)= t̄, we
have a tuple s̄∈∆ that coincides with t̄ on variables in t̄V that
occur in x̄V but may be different on some other attributes. Since
V is a PC query, however, we can define h′′ : [V]→D2 such that
h′′=h′ on [V]−\{t̄V } and h′′(t̄V)= s̄. Clearly, h′′(x̄V)= ū,
and since this argument works for every tuple in V (D1), we
have that V (D1)⊆V (D2). Hence V (D1)=V (D2).

Multiple PC views. We next consider VDet(CQ,PC) when V
consists of multiple views {V1(x̄1), . . . ,V`(x̄`)}. We show that
VDet(CQ,PC) is in PTIME by reducing the multiple view case
to the single-view case.

The reduction is given as follows. First, we divide V into two
sets: V1 is the set of views Vi∈V such that Vi contains more
relation symbols than Q, and V2 =V\V1. Next, we consider
the product query V⊗ of the views in V2. Here we assume
that the variables in the Vi’s are all distinct and consider V⊗=

×Vi∈V2
Vi in which the free variables in V⊗ is the union of the

free variables in the Vi’s. We show that V�Q iff V2 6=∅ and
V⊗�Q. Note that both conditions can be checked in PTIME.

Suppose first that the conditions hold. Consider two in-
stances D1 and D2 such that V(D1)=V(D2). This implies
that V⊗(D1)=V⊗(D2). Because V⊗�Q, we can then con-
clude that Q(D1)=Q(D2). In other words, V�Q.

Conversely, suppose that one of the conditions does not
hold. Clearly, when all views Vi in V address more relation
symbols then Q, then Vi([Q])=∅ for i∈ [1, `] and hence
V([Q])=∅. Proposition 3(i) then tells us that V cannot
determine Q. In other words, V2 must be nonempty. Sup-
pose next that V⊗ does not determine Q. Since V⊗ is a
single view, this implies that the conditions for the single
view case (as stated in the proof above) do not hold. As
a consequence, we can construct the two instances D1 and
D2, as in the proof for single PC views, which have the
property that V⊗(D1)=V⊗(D2) but Q(D1) 6=Q(D2). Fur-
thermore, observe that V⊗(D1)=V⊗(D2) 6=∅ and therefore
V (D1)=V (D2) for any D∈V2. Since D1 and D2 are
constructed from [Q], these instances are empty for all relations
not addressed by Q. As a result V (D1)=V (D2)=∅ for
any V ∈V1. Putting these together, V(D1)=V(D2) but
Q(D1) 6=Q(D2). Hence V does not determine Q. �

(2) VDet(CQ,SP). We first consider the case when V consists
of a single view V , and then extend the result to general views.

Single SP view. Let Q(x̄Q) be a minimal CQ query and
V (x̄V) be an SP view defined over relational schema R=
(R1, . . . ,Rk). Since V is an SP query, [V] consists of a single
tuple t̄V over some relation R inR.

We provide necessary and sufficient conditions on V and Q
to decide whether V determines Q or not. More specifically,
we show that V �Q iff (1)Q only contains the relation symbol
R; (2) for each tuple t̄Q∈ [Q], there exists a homomorphism h
from t̄V to t̄Q and furthermore, for each variable x in t̄V , if (a)
h(x) is a constant; or (b) there exists a variable y in t̄V such that
x 6=y but h(x)=h(y); or (c) h(x) appears in multiple tuples in
[Q]; or finally, (d) if h(x) appears in x̄Q, then x must appear in
x̄V . These conditions can easily be checked in PTIME.

We first show that if the conditions above hold then V �Q,
by showing that the conditions imply that x̄Q∈Q

(
V −1(S)

)
.

Let us consider S=V ([Q]) in more detail. Suppose that [Q]
consists of m tuples t̄1, . . . , t̄m. Since V contains only one tu-
ple t̄V , one can easily verify that S is the projection of {hi(t̄V) |
i∈ [1,m]} on the attributes corresponding to x̄V , where hi is
the homomorphism from t̄V to t̄i for each t̄i∈ [Q]. Conse-
quently, we also have an explicit description of V −1(S). In-
deed, V −1(S)={h′i(t̄V) | i∈ [1,m]}, where h′i(x)=hi(x) if x
is a variable in x̄V , and h′i(x)=x′ otherwise, and x′ is a dis-
tinct new variable not appearing anywhere else. We next show
that the conditions imply that x̄Q∈Q

(
V −1(S)

)
and hence by

Proposition 4(i), that V �Q.
We show that x̄Q∈Q

(
V −1(S)

)
by constructing a homomor-

phism h̄ : [Q]→V −1(S) such that h̄(x̄Q)= x̄Q. Let t̄i∈ [Q]
and consider the tuple s̄i =h′i(t̄V)∈V −1(S). Let u be a vari-
able or constant in t̄i and let h−1

i (u)={x |hi(x)=u}. Ob-

8

serve that conditions (2a) and (2b) imply that h−1
i (u)⊆ x̄V or

h−1
i (u)∩x̄V =∅. Furthermore, in the latter case, h−1

i (u) con-
sists of a single element. We define h′′i : t̄i→ s̄i as follows:
h′′i (u)=u in case that h−1

i (u)⊆ x̄V , and h′′i (u)=h′i(h
−1
i (u))

in case that h−1
i (u)∩x̄V =∅. By the construction of V −1(S),

the mapping h′′i is an isomorphism from t̄i to s̄i. Furthermore,
condition (2c) guarantees that the union of all h′′i , for i∈ [1,m]
is a homomorphism h̄′′ from [Q] to V −1(S) which is, by con-
dition (2d), ensured to be identity on variables in x̄Q. In other
words, h̄′′(x̄Q)= x̄Q and therefore, x̄Q∈Q

(
V −1(S)

)
.

We next show that the conditions above are also necessary.
The necessity of condition (1) follows immediately from Propo-
sition 3(ii). We next consider condition (2) and show that if this
condition does not hold, then V does not determine Q.

First suppose that there exists a tuple t̄∈ [Q] such that there
exists no homomorphism from t̄V to t̄. In this case, the in-
stances D1 =[Q]\{t̄} and D2 =[Q] provide a counterexample
for view determinacy. Indeed, the lack of homomorphism im-
plies that V ([Q])=V (D1). The minimality of Q, however, im-
plies thatQ([Q]) 6=Q(D1). Hence, we may assume that for any
tuple t̄∈ [Q] there exists a homomorphism h from t̄V to t̄.

Suppose, however, that there exist a tuple t̄Q∈ [Q] and a vari-
able x in t̄V such that x does not occur in x̄V , but for the homo-
morphism h from t̄V to t̄Q, either h(x) is a constant, or h(x)
appears in multiple tuples in [Q], or h(x) appears in x̄Q; or there
exists another variable y with h(x)=h(y). Let t̄= t̄Q. We con-
struct a tuple s̄ from t̄ by replacing each occurrence of h(x) in t̄
that corresponds to each occurrence of x in t̄V with a new dis-
tinct variable. Note that the replacement does not affect the ex-
istence of a homomorphism from t̄V to s̄. Since x does not ap-
pear in x̄V , we have that V ({ t̄})=V ({s̄}). Let D1 =[Q]∪{s̄}
and let D2 =([Q]\{ t̄})∪{s̄}. Since V is an SP query we may
conclude that V (D1)=V (D2). From Lemma 3 we know that
∆={s̄} is critical for t̄ and [Q], and hence Lemma 2 implies
that Q(D1) 6=Q(D2). In other words, V does not determine Q.

Multiple SP views. We next consider the case when V con-
sists of a number of SP views. Let Q be a CQ query and V be
a set of SP views. For each view V ∈V, [V] consists of one
tuple t̄V over some relation in R. We show that V�Q iff for
each tuple t̄Q∈ [Q], there exist a tuple t̄V ∈ [V] over the same
relation as t̄Q and a homomorphism h from t̄V to t̄Q such that
the conditions (2a)–(2d) described above are satisfied for tQ, tV
and h. As before, these conditions can be checked in PTIME.

Along the same lines as in the proof for single SP views, one
can readily verify that the conditions are sufficient to determine
whether V�Q. We next show their necessity.

Suppose that there exists a tuple t̄Q∈ [Q] for which no tuple
t̄V ∈ [V] can be found that can be mapped onto t̄Q. In this case,
deleting t̄Q from [Q] results in V([Q])=V([Q]\{t̄Q}). The
minimality ofQ, however, implies thatQ([Q]) 6=Q([Q]\{t̄Q}).
Hence, V does not determine Q.

Next, suppose that there exists a tuple t̄Q∈ [Q] such that, for
each tuple t̄V ∈ [V] for which there exists a homomorphism
to t̄Q, but one of the conditions (2a)–(2d) do not hold. Let
t̄= t̄Q. For each such tuple t̄V we construct a row s̄ from

t̄, similarly to the construction in the proof for single SP
views. Let ∆ be the set of all the constructed tuples. Let
D1 =[Q]∪∆ and D2 =([Q]\{ t̄})∪∆. It is readily verified
that V(D1)=V(D2), ∆ is critical for t̄ and [Q] and hence,
Q(D1) 6=Q(D2). In other words, V does not determine Q.

(3) VDet(CQ,SC). We show that VDet(CQ,SC) is NP-hard
by reduction from the graph 3-colorability problem, which is
known to be NP-complete (cf. [21]). The NP upper bound holds
even when queries in Ls are not minimal, which will be verified
in the proof of Theorem 4(2).

The reduction is constructed as follows. Given a graph G=
(V,E), we define a (minimal) CQ query Q and an SC view W
such that W�Q iff G is 3-colorable. More specifically, let C
be a set of 3 variables disjoint from the set of vertices V , and R
be a binary relation. We construct a CQ query Q(x̄) such that

[Q]={(c1, c2) |c1, c2∈C,c1 6=c2}

and an SC view W (x̄, ȳ) such that

[W]={(v1,v2) |(v1,v2)∈E}∪{(c1, c2) |c1, c2∈C,c1 6=c2}.

The free variables inQ are given by x̄=(c1, c2, c1, c3, c2, c1, c2,
c3, c3, c1, c3, c2). The free variables of W are (x̄, ȳ), where x̄ is
as in Q and ȳ consists of all edges in E.

We show that W determines Q iff G is 3-colorable. Suppose
that G is 3-colorable and let γ :V →C be a 3 coloring of V .
Consider the view W ′=([W], x̄). Then, h : [W]→ [Q] defined
as h(vi)=γ(vi) and h(ci)=ci is a homomorphism from [W]
to [Q] such that h(x̄)= x̄. Indeed, since γ is a 3-coloring of
V , we have that h((v,w))=(γ(v),γ(w))∈ [Q]. Hence, Q⊆
W ′. Since W ′⊆Q we then have that Q=πx̄(W). This in turn
implies thatW�Q. On the other hand, suppose thatG is not 3-
colorable. Then there exists no homomorphism from [W] to [Q]
and thus W ([Q])=∅. From Proposition 3(i) we can conclude
that W does not determine Q. �

The proof of Theorem 3 also tells us that CQ is complete for
rewriting CQ queries using SC, SP or PC views.

Corollary 1. The class of conjunctive queries is complete for
L-to-CQ rewritings when L is SC, SP, or PC. �

Proof: The cases when Lv is SP or PC follow immediately from
the proofs of Theorem 3(1) and (2), respectively. Indeed, in
those proofs it has been shown that if V�Q then Q−1 is given
by a CQ query. Observe that the statement remains intact for
selection queries in Ls that are not necessarily minimal. In-
deed, for a CQ query Q, V�Q iff V�Qmin, where Qmin is a
minimal CQ query equivalent to Q. Moreover, if there exists a
query Q−1 such that Q−1 is a CQ rewriting of Qmin using V,
then Q−1 is also a CQ rewriting of Q using V, and vice versa.

The case when Lv is SC follows from Theorem 1 in [2] in
which the completeness of CQ is shown for views that do not
contain non-distinguishable variables. �

9

Corollary 1 and Proposition 1, when taken together, tell us
that QPre(CQ,Lv,Lq) is equivalent to VDet(CQ,Lv) when the
language Lq subsumes CQ. Hence, from Theorem 3 we obtain:

Corollary 2. When queries in Ls are minimal CQ queries,
QPre(Ls,Lv,CQ) is

(1) in PTIME when Lv is PC or SP, and
(2) NP-complete when Lv is SC. �

5.3. Arbitrary CQ queries
We next turn our attention to the general case, that is, when

the queries in Ls are not necessarily minimal. We first con-
sider the invertibility problem. While general CQ queries do
not make our lives harder when views are PC queries, they do
complicate the invertibility analysis for SP views. Indeed, the
invertibility problem becomes intractable for SP views, in con-
trast to PTIME when queries in Ls are minimal (Theorem 3(2)).

Theorem 4. VDet(CQ,Lv) is

(1) PTIME when Lv is PC, and
(2) NP-complete when Lv is SP or SC. �

Proof: We first show that VDet is in PTIME for PC views. We
then show the intractability of the problem for SP and SC views.

(1) VDet(CQ,PC). We need the following notation. Given a
CQ query Q(x̄Q) and a variable x in [Q], we call x typed if
x appears only in one column over a single relation table in
[Q]. For a typed variable x, let Qx be the set of tuples in [Q]
that contain x. If Qx can be mapped to a single tuple via a
homomorphism, we call x single typed. Checking whether a
variable is typed or single typed can be done in PTIME.

We first consider a single PC view V (x̄V). We show that
V �Q iff the following conditions are satisfied: (1′) the rela-
tion symbols appearing in Q are exactly the same as those ap-
pearing in V ; and (2′) for each row t̄Q∈ [Q], there exists a row
t̄V ∈ [V] over the same relation such that the following condi-
tions are satisfied for each variable x in t̄V and for the (unique)
homomorphism h from t̄V to t̄Q: x must appear in x̄V (a) if
h(x) is a constant; or (b) if h(x) is not typed; or (c) h(x) is
typed but not single typed; or (d) if h(x) appears in x̄Q.

We show that these conditions on Q and V translate to the
conditions described in the proof of Theorem 3(1) when con-
sidering a minimal query Q′ equivalent to Q and the same view
V . From this, the PTIME result follows. More specifically, let
Q′(x̄Q) be the minimal CQ query equivalent to Q such that
[Q′]⊆ [Q]. Clearly, Q′ and Q access the same set of relation
symbols and thus condition (1′) is equivalent to condition (1) in
the proof of Theorem 3(1).

We next verify this for condition (2′). Since Q′≡Q, there
exists a homomorphism h : [Q]→ [Q′] with h(x̄Q)= x̄Q. Let
t̄Q∈ [Q] and t̄V ∈ [V] be two tuples over the same relation. Let
t̄Q′ =h(t̄Q). Consider the homomorphisms h1 : t̄V → t̄Q and
h2 : t̄V → t̄Q′ . It is clear that h2 =h◦h1. Let x be a variable
in t̄V . We distinguish between the following cases, depending
on the conditions stated above: (2′a) If h1(x) is a constant, then

h2(x) is the same constant; (2′b) If h1(x) is not typed or (2′c)
if h1(x) is typed but not single typed, then h2(x)=h(h1(x))
appears multiple times in [Q′]; (2′d) if h1(x) occurs in x̄Q,
then h2(x)=h(h1(x))=h1(x) also occurs in x̄Q. Therefore
the conditions (2′a), (2′b), (2′c) and (2′d) for general CQ queries
correspond to the conditions (2a), (2b) and (2c) for minimal CQ
queries in the proof of Theorem 3(1).

When V consists of multiple PC views, we can verify the
statement by reduction to the single-view case, along the same
lines as the proof for the multiple view case for minimal CQ
queries. We omit the details here to avoid repetition.

(2) VDet(CQ,SP) and VDet(CQ,SC). From Theorem 3(3) we
already know that VDet(CQ,SC) is NP-hard when queries in Ls

are minimal. This lower bound trivially carries over to the gen-
eral case. We therefore only need to show that VDet(CQ,SP) is
NP-hard for general queries and establish a matching NP upper
bound for VDet(CQ,SP) and VDet(CQ,SC).

For the lower bound, we show a stronger result. That is, we
show that VDet(CQ,S) is already NP-hard by reduction from the
containment problem for CQ queries, which is known to be NP-
complete (cf. [8]). Let Q1(x̄) and Q2(x̄) be two CQ queries
over the same n-ary relation R. We construct a CQ query Q
and an S view V={V } such that V �Q iff Q1⊆Q2.

More specifically, let R′ be an (n+1)-ary relation obtained
from R by adding an extra attribute A. We define Q(x̄) as a
CQ query over R′ such that [Q]=({0}×[Q1])∪({u}×[Q2]),
where u is a variable not appearing anywhere else and x̄ denotes
the free variables in Q1 and Q2, respectively. Let V (z̄) be the
S-query over R′ with [V]=(0,z1,z2, . . . ,zn). We know from
Corollary 1 that CQ is complete for S-to-CQ rewritings and by
Proposition 4(i) and (ii) that V �Q iff x̄∈Q(V −1(S)).

Observe that for the S-view V and query Q we have that
V ([Q])={0}×[Q1]=V −1(S). We next show that there ex-
ists a homomorphism h : [Q]→V −1(S) such that h(x̄)= x̄ iff
Q1⊆Q2. Suppose that Q1(x̄)⊆Q2(x̄). Then there is a homo-
morphism h′ : [Q2]→ [Q1] such that h(x̄)= x̄. Clearly, we can
extend h′ to a homomorphism from [Q] to {0}×[Q1] by setting
h=h′ for variables in [Q2] and h̄(u)=0, and by letting h be the
identity for variables inQ1. Then clearly h(x̄)= x̄. Conversely,
suppose that h : [Q]→{0}×[Q1] is a homomorphism such that
h(x̄)=(x̄). Then h induces a homomorphism h′ from Q2 to
Q1 such that h′(x̄)= x̄, hereby showing that Q1⊆Q2.

To see that VDet(CQ, SP) and VDet(CQ, SC) are in NP,
observe that by Corollary 1, V�Q iff the inverse is a CQ query
and moreover, this query is an equivalent rewriting of Q using
V. In other words, testing determinacy reduces to testing for
an equivalent CQ rewriting, which is known to be in NP [11]. �

Along the same lines as Corollary 2, we can readily get the
following for the query preservation problem.

Corollary 3. QPre(CQ,Lv,CQ) is

(1) in PTIME when Lv is PC, and

(2) NP-complete when Lv is SP or SC. �

10

Problem Complexity
VDet(FO, CQ) undecidable (Cor. 2.2. in [5])
VDet(CQ, FO) undecidable (Cor. 2.2. in [5])
VDet(DATALOG, CQ) undecidable (Thm. 1(1))
VDet(CQ, DATALOG) undecidable (Thm. 1(2))
VDet(UCQ, UCQ) undecidable (Thm 4.1. [5])

Table 1: Undecidability results. Gray entries are new results shown in this paper.

Minimal queries General queries
Problem Complexity Problem Complexity
VDET(SPC,SPC) open VDET(SPC,SPC) open
VDET(SPC,PC) PTIME (Thm 3(1)) VDET(SPC,PC) PTIME (Thm 4(1))
VDET(SPC,SP) PTIME (Thm 3(2)) VDET(SPC,SP) NP-complete (Thm 4(2))
VDET(SPC,SC) NP-complete (Thm 3(3)) VDET(SPC,SC) NP-complete (Thm 4(2))

Table 2: Decidability results for view determinacy and conjunctive queries.

6. Conclusion

We have introduced the notions of query preservation and
invertability to specify the preservation of selected informa-
tion in data transformations. We have shown that invertabil-
ity coincides view determinacy, establishing the connection be-
tween selected information preservation and query rewriting
using views. We have also investigated two important prob-
lems associated with selected information preservation, namely,
VDet(Ls,Lv) and QPre(Ls,Lv,Lq), and provided their com-
plexity bounds for a variety of query languages for express-
ing selection queries (Ls), views (Lv) and user queries (Lq).
We expect that these results will help practitioners determine
whether their data transformations are lossless w.r.t. important
information. In addition, the results are new additions to the
study of view determinacy and complete rewriting languages.

We summarize the main complexity results for invertibility
(view determinacy) in Tables 1 and 2, annotated with their cor-
responding theorems. All the results in Table 2 and the high-
lighted results in Table 1 have not appeared in the literature.

The study of selected information preservation is still pre-
liminary. One open problem is to establish the complexity
of VDet(CQ,CQ) and QPre(CQ,CQ,CQ). However, these are
by no means trivial: for example, VDet(CQ,CQ) is equiva-
lent to the view determinacy problem for CQ queries and CQ
views, whose decidability remains unknown [5]. Another issue
is to study VDet(L,CQ) and QPre(L,CQ,CQ), for CQ views
and selection queries Q in L ranging over SP, PC and SC. A
third topic is to identify practical cases of VDet(CQ,CQ) and
QPre(CQ,CQ,CQ) that are tractable. In particular, our conjec-
ture is that the analyses would become simpler for key preserv-
ing CQ views, i.e., views that retain the keys of base relations
involved [22]. Data transformations in practice are either key
preserving or can be naturally extended to preserve keys.

Acknowledgments. Fan and Geerts are supported in part by
an IBM scalable data analytics for a smarter planet innovation
award, and the RSE-NSFC Joint Project Scheme. Fan is also
supported in part by the National Basic Research Program of
China (973 Program) 2012CB316200 and NSFC 61133002.

References

[1] L. Segoufin, V. Vianu, Views and queries: determinacy and rewriting, in:
PODS, 2005, pp. 49–60.

[2] F. Afrati, Determinacy and query rewriting for conjunctive queries and
views, TCS 412 (2011) 1005–1021.

[3] M. Marx, Queries determined by views: Pack your views, in: PODS,
2007, pp. 23–30.

[4] A. Nash, L. Segoufin, V. Vianu, Determinacy and rewriting of conjunctive
queries using views: A progress report, in: ICDT, 2007, pp. 59–73.

[5] A. Nash, L. Segoufin, V. Vianu, Views and queries: Determinacy and
rewriting, TODS 35 (3) (2010) 21:1–21:41.

[6] D. Pasailă, Conjunctive queries determinacy and rewriting, in: ICDT,
2011, pp. 220–231.

[7] L. Zheng, H. Chen, Determinacy and rewriting of conjunctive queries
over unary database schemas, in: SAC, 2011, pp. 1044–1049.

[8] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-
Wesley, 1995.

[9] D. Calvanese, G. D. Giacomo, M. Lenzerini, M. Y. Vardi, Lossless regular
views, in: PODS, 2002, pp. 247–258.

[10] D. Calvanese, G. D. Giacomo, M. Lenzerini, M. Y. Vardi, View-based
query processing: On the relationship between rewriting, answering and
losslessness, TCS 371 (3) (2007) 169–182.

[11] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, D. Srivastava, Answering queries
using views, in: PODS, 1995, pp. 95–104.

[12] C. Chekuri, A. Rajaraman, Conjunctive query containment revisited, in:
ICDT, 1997, pp. 56–70.

[13] R. Hull, Relative information capacity of simple relational database
schemata., SIAM J. Comput. 15 (1986) 856–886.

[14] S. Abiteboul, R. Hull, Restructuring hierarchical database objects, TCS
62 (1988) 3–38.

[15] R. J. Miller, Y. E. Ioannidis, R. Ramakrishnan, The use of information
capacity in schema integration and translation, in: VLDB, 1993, pp. 120–
133.

[16] R. J. Miller, Y. E. Ioannidis, R. Ramakrishnan, Schema equivalence in
heterogeneous systems: bridging theory and practice, Inf. Syst. 19 (1994)
3–31.

[17] D. Barbosa, J. Freire, A. O. Mendelzon, Designing information-
preserving mapping schemes for XML, in: VLDB, 2005, pp. 109–120.

[18] W. Fan, P. Bohannon, Information preserving xml schema embedding,
TODS 33 (2008) 4:1–4:44.

[19] O. Shmueli, Equivalence of datalog queries is undecidable, J. Log. Pro-
gram. 15 (1993) 231–241.

[20] A. K. Chandra, P. M. Merlin, Optimal implementation of conjunctive
queries in relational data bases, in: STOC, 1977, pp. 77–90.

[21] M. Garey, D. Johnson, Computers and Intractability: A Guide to the The-
ory of NP-Completeness, W. H. Freeman and Company, 1979.

[22] G. Cong, W. Fan, F. Geerts, J. Li, J. Luo, On the complexity of view up-
date analysis and its application to annotation propagation, TKDE (2011).

11

