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In 1983, after devoting some eight years of his life to the description of how a 

nematode worm develops from an embryo into an adult, molecular biologist John 

Sulston embarked on a remarkably different project: he decided to map the worm’s 

genome. Sulston’s impulsive desire to characterise this creature’s DNA from start to 

finish offers only a partial explanation for this transition. Instead, a close 

examination of the wider social context for this “moment” in molecular biology 

gives a more rewarding explanation of Sulston’s intellectual leap. This reveals a 

world in which biotechnology gradually adapted to and integrated into an 

“information society” increasingly dependent on the creation, distribution and 

manipulation of information. The application of computing to DNA during the first 

half of the 1980s was crucial for this integration, fostering the emergence of 

genomics and ultimately the Human Genome Project. 

 

Information processing and biological technologies 

 

The mid 1980s witnessed an explosion of interest in mapping and sequencing DNA (see 

box). Organisms like yeast, Escherichia coli and the nematode worm Caenorhabditis 



elegans all became the focus for this effort to locate genes to a particular part of a 

chromosome and determine their nucleotide structure [1]. The biographies of the 

scientists involved and several popular accounts often cite the emergence of new 

technologies as an explanation for this new direction in molecular biology, failing to 

address the social conditions in which those technologies arose [2,3]. In fact, it is helpful 

to take a look at how these new DNA mapping and sequencing tools were a product of 

both biotechnology and “information society”, two distinct social, technical and 

economic forms that converged throughout the 1980s. 

The decade before, the desire of individual professionals and laymen –rather than 

companies- to become computer customers had coincided with the development of the 

microprocessor and digital networks to miniaturise and interconnect the machines. This 

had resulted in the personal computer – Altair in 1975, Apple II in 1977 and IBM’s PC in 

1981 – and user-friendly software manufactured, in particular, by Xerox and Microsoft. 

With these key developments, information processing began to gain significant economic 

and cultural currency. 

Sociologist Manuel Castells argues that this tendency derived in “information society”, 

one in which “information generation, processing and transmission” became “the 

fundamental sources of productivity and power”. One of the key features of this new 

order, claims Castells, is “the networking logic of its basic structure”. The countries, 

markets and social groups in an information society tend to be electronically 

interconnected [4]. 

Also in the 1970s, biologists were looking for ways to explore and understand DNA in 

greater detail. They developed instruments to cut, clone and analyse genetic material, 

among them the physical mapping and sequencing techniques. At the end of the decade 

and during the 1980s, several companies – mainly university start-ups – began 



commercialising products based on these technologies and, in 1986, the US firm Applied 

Biosystems released the first automatic DNA sequencing machine onto the market. 

Scholars have coined this landscape the “biotechnology era”, one characterized by the 

high expectations of scientists in the power of these new techniques but also by public 

concern over the ethical implications of developments like genetic modification and 

cloning [5]. 

The information society and biotechnology era both emerged in a similar social context. 

During the 1970s, the developed world experienced a growing economic crisis owing to 

the escalating price of oil and the increasing instability of the welfare state. Companies 

and governments sought new areas of investment and found them in the new information 

and biotechnology markets. 

But even at the end of the decade, these two domains were still clearly distinct from one 

another. In 1979, a report by the Commission of the European Communities cited “the 

technology of information” and “biotechnology” as two of just three key fields “in which 

the potential for technological innovation and the consequent changes in the economic, 

social and political organisation of our societies” would be “most significant” in the next 

20 years. Yet the text dealt with information society and biotechnology separately, not 

only treating them as genuinely independent phenomena in space but also in time. 

Whereas the information revolution was likely to concern “the next ten years”, “bio-

industry” would take place “the latest at the beginning of the twenty-first century” [6]. 

Sulston’s research during this period was removed from both the information and the new 

biological technologies. His investigations between the mid-1970s and 1983 focused 

exclusively on the development of the worm C. elegans, including systematic 

microscopic work to trace the divisions and movements of every single cell from the 

embryo to the adult nematode [7] (Figure 1). Despite early attempts to introduce 



computers to his group of researchers [8], this did not occur until the mid-1980s when the 

worm’s genome became the practice ground for new DNA technologies. 

 

Bioinformatics: a crucial connection 

 

The institution in which Sulston was based – the Laboratory of Molecular Biology in 

Cambridge, UK (LMB) – had been using computers since the 1950s, not for work into C. 

elegans or DNA, but to automate analysis of x-ray crystallographic data and reveal 

protein structure [9]. It was only in the 1970s, when another group at the LMB leaded by 

Fred Sanger came up with ways to sequence DNA, that computers became associated 

with this molecule. 

Sanger sought to create programs that would store and handle the DNA sequences 

generated by his group. For this purpose, he brought in Rodger Staden, a mathematical 

physicist working at the crystallography department of the LMB. The purpose of 

Staden’s first software programmes – designed between 1977 and 1980 – was to order 

and store data from DNA gels, the sequence outputs derived from Sanger’s techniques. 

Researchers could then save the sequences on a magnetic disk as text files, which may be 

edited, searched and compared at a later stage [10] (Figure 2). 

  

In 1982, Staden introduced an algorithm to ease sequence assembly. Sanger’s methods 

entailed breaking the molecule into overlapping pieces, so to reconstruct them it was 

necessary to match the sequences at the edges of each fragment. Staden’s algorithm 

employed the same strategy as “hash-coding”, a technique lifted directly from word-

processing software, which allowed the user to locate a sequence of common letters in a 

mass of text. So, for example, a search for pupp* would turn up both puppy and puppet. 



Clearly then, Straden saw the DNA sequence as a text, an analogy he made explicit in the 

following remark: 

 

The sequence can be considered as a series of 7 character words that overlap each of their neighbours by 6 

characters. Using an alphabet of 4 [the number of DNA nucleotides] it is possible to make 16,348 (4 to the 

power of 7) different words of length 7. If we have a table of 16,348 positions we can record whether or not 

each of the possible words of length 7 are present in the consensus [assembled sequence] (…). In order to 

compare a gel reading [DNA fragment] with the consensus we simply look in the table to see if any of the 

gel’s 7 character words are present. [11] 

 

Managing texts was a key problem for those involved in the emergent computer industry. 

By borrowing a tool from word-processing software, Staden began to break down the 

barriers between information society and biotechnology.  

 

From DNA to data 

 

The challenge Sanger and Staden had faced of rearranging DNA fragments into a 

coherent sequence was similar to that which confronted Sulston in his effort to map genes 

–also DNA fragments- to a particular place in the worm’s genome. It therefore made 

sense for Sulston to borrow and adapt Staden’s sequencing software to meet his own 

mapping needs. This he did from the outset. Hence, the use of these sequencing programs 

with their particular text-processing features made the reduction of DNA to information 

the main goal of the C. elegans genome-mapping project. 

 

Indeed, in the first paper on the project, published in 1986, Sulston and his colleagues 

described the mapping method – also known as the “fingerprinting” technique – as a 



procedure “for digital characterisation and comparison of DNA fragments”. They broke 

the DNA into fragments and treated each fragment as “data” which was stored “in a 

computer data base”. The computer detected overlaps between the fragments and used 

them to construct a physical map of the genome [12] (Figure 3). Evidently, mapping was 

little more than an exercise in handling and processing information. 

 

This informational shift had a huge impact on the way that researchers across the world 

worked together. Since the mid-1970s, the investigations on C. elegans had been 

simultaneously conducted at various institutions, mainly in the United States but 

coordinated by the LMB. The emergence of the mapping project resulted in the LMB 

producing and administering the computer database, first alone and since the late 80s in 

cooperation with other researchers at Washington University in Saint Louis leaded by 

Robert Waterston. This increased the dominance of both institutions over other centres 

carrying investigations on C. elegans. 

From the mid-1980s until the publication of the complete C. elegans map and sequence 

in the late 90s, any laboratory working on a nematode gene had to send the corresponding 

DNA fragment to the LMB or Washington University to identify its location within the 

entire genome. Sulston and Waterston’s groups benefited from these incoming data –i.e. 

DNA fragments to be located- and, in return, sent out a physical map of the region in 

which the new fragment was contained. The early correspondence between the LMB and 

the other centres working on the worm illustrates how this exchange of information was 

conducted (Figure 4). Sulston’s team referred to it as “genomic communication” in its 

1986 paper [13]. 

 



The LMB, thanks to its mastery in the new DNA technologies, had, therefore, achieved 

two of the key requirements for leadership in information society. It had, firstly, founded 

its power position on the control of the mapping information produced through the 

application of computers to DNA. It had, secondly, exerted such dominancy –first 

individually and then with Washington University- within a network of interconnected 

laboratories. With the generalisation of Internet in the late 80s, such network turned, 

additionally, increasingly articulated through electric wires. The web considerably eased 

the access of researchers to C. elegans mapping information, but did not erode the 

dominancy of Sulston and Waterston’s groups as the sources of the data. 

 

The emergence of genomics and the human genome 

 

This cross-over between information society and biotechnology was not exclusive to 

Cambridge. Elsewhere, large-scale mapping and sequencing projects were under way, 

most notably the Human Genome Project (HGP). These initiatives led to the 

configuration of a new discipline – “genomics” – engaged with the application of DNA 

mapping and sequencing to different organisms. The term was coined in 1986 by 

geneticist Thomas H. Roderick and his colleagues Victor McKusick and Frank Ruddle. 

One year later, McKusick and Ruddle went on to found the journal Genomics. In the first 

issue, they defined the discipline as resulting from “a marriage of molecular and cell 

biology with classical genetics”, being also “fostered by computational science”. 

Researchers in this emergent field should be “competent in constructing and interpreting” 

various types of “maps” and interested in “learning their biological significance” for 

“development and disease”. In the journal’s editorial, McKusick and Ruddle made it 

abundantly clear they saw DNA as the data of this new discipline: 



 

Mapping all expressed genes...regardless of whether their function is known, sequencing these genes 

together with their introns [non-coding regions], and sequencing out from these is seen by many as ‘the 

way to go’. The ultimate map, the sequence, is seen as a rosetta stone from which the complexities of gene 

expression in development can be translated and the genetic mechanisms of disease interpreted. For the 

newly developing discipline of mapping / sequencing (including analysis of the information) we have 

adopted the term GENOMICS” [14].  

 

Genomics embodied the idea of reducing the genes to data that would yield scientific 

knowledge and power. Genetic information had acquired a scientific value and the new 

discipline was ready to exploit it. Indeed, two of the advertisements included in 

Genomics’ first issue – announcing a new bioinformatics company and a journal devoted 

to publishing DNA sequences – reflect how researchers then perceived the significance of 

DNA’s digital output (Figure 5). 

 

There was another reason to get excited about genomics: it began to attract serious 

funding from public and private institutions alike. Indeed, as soon as genomics emerged 

as a formal discipline, so scientists in the US began to discuss the feasibility of the HGP 

and seek money for it [15]. Other countries were quick to follow. In Britain in 1986, 

Sydney Brenner – the first person to propose C. elegans as a model organism– applied for 

funding from the UK’s Medical Research Council for a physical map of the human 

genome. 

 

Brenner’s map would require scaling-up the techniques used on the nematode by a factor 

of 50 – the difference in size between the C. elegans and human genomes. His proposal 

also called for a centralised laboratory with a group of dedicated technicians to perform 



the task. According to the grant application, “the most important product of the work” 

would be the “information about the human genes”, which, Brenner claimed, would bring 

benefits “to medical research and practice”. The same mapping technologies may also be 

applied to “industrial microorganisms and plants” and the resulting “information could 

become proprietary”, he suggested [16]. 

  

The UK government approved Brenner’s application, giving rise to the British Human 

Genome Mapping Project, which began in 1989. This coincided with a number of public 

human genome mapping and sequencing enterprises in the United States, Germany and 

France, among other countries. The national initiatives progressively converged and gave 

rise to a concerted international effort during the 90s, which is what we familiarly refer 

now as the Human Genome Project (HGP). Celera Genomics, a company leaded by Craig 

Venter, launched a private enterprise in 1998, forcing the HGP to increase its already 

multi-millionaire budget. Both initiatives derived in published human DNA sequences in 

2001 [17]. 

 

Limitations of informational thinking 

 

The emergent large-scale mapping and sequencing projects were not without their critics. 

In 1992, shortly after the HGP’s launch, philosophers of biology Alfred Tauber and 

Sahotra Sarkar weighed into the debate. Investing such vast resources to analyse whole 

genomes was unjustifiable, they argued, since there was no “practicable way to begin 

characterising biological function…from sequence information alone” [18]. Such 

criticism questioned the informational understanding of DNA on which genomics was 



based. According to Tauber and Sarkar, the nucleotide text of this molecule, which the 

HGP sought to obtain, would be insufficient to deduce how genes worked. 

 

As the HGP progressed, so this concern began to spread. Researchers increasingly 

revealed the complexities of gene regulation and protein folding, consequently eroding 

the belief that DNA sequence was they key to understanding disease and other 

phenomena. When the draft sequence of the human genome was published in 2001, it 

was clear that the HGP’s expectations of knowledge and health were more than a little 

optimistic. A new concensus with an emphasis on biological factors beyond sequence 

information began to emerge in the scientific community. 

 

Interestingly, this shift in scientific opinion over the last ten years has been accompanied 

by criticism of information society. Historian of technology David Edgerton considers the 

term a “fashionable, and misleading, way of saying little more than service industries 

now account for very large proportions of GDP and employment”. And, he claims, these 

industries are not necessarily based on information or other immaterial entities. This is 

evident from “the sheer bulk of the things associated with them, the unprecedented 

weight of stuff in the shops, the piles of paper in any office, not to mention the 

proliferation of computers, fax machines, and Xeroxes” [19]. Edgerton’s critique 

suggests that there is a material counterpart, which should be taken into account when 

analysing the power of information. 

 

The challenges to so-called information society have coincided with new explanatory 

models of genetic action. Systems biology, a new way of thinking that has emerged since 

the late 90s, proposes that DNA is in continuous interaction with other cell components 



and external environmental inputs. This suggests that “emergent properties” not 

deducible from isolated parts can only be understood by taking into account all the 

elements in a system [20]. Systems biology offers an alternative vision in which the DNA 

sequence does not offer a direct route to biological meaning, but is part of a more 

complex coordinated process. 

 

The simultaneous emergence of systems biology and criticism of information society 

suggests a new social and scientific paradigm for the current post-genomics era. Natural 

scientists, on the one hand, are beginning to think of cellular function in terms of 

complex interactions between biological molecules rather than just a product of the DNA 

sequence. Social scientists, on the other, consider that the material basis of society is as 

important as information (or any other abstraction) for explaining relationships between 

knowledge and power. Both tendencies, if converging, are likely to define a new research 

space in which the genetic text will at least be placed into its material context. 



BOX 

 

The two engines of the DNA race 

 

The new line of biological research emerging in the mid 80s implied two types of 

activities over DNA: mapping and sequencing. Both were directed toward the structure of 

this molecule, but derived in different sorts of descriptions. Mapping yielded an ordered 

set of DNA fragments normally prepared for sequencing, i.e. determination of the 

nucleotides characterising each fragment (figure 6). The connection between these 

techniques derived in controversies among the actors involved in the Human Genome 

Project. 

 

Mapping was normally applied to large genomes as that of C. elegans. Various samples 

of the DNA to be mapped were cut into thousands of fragments and those fragments, 

instead of sequenced, ordered in a set covering the genome from beginning to end –what 

is called a physical map. The ordering was achieved through finding overlaps between 

the fragments of the different samples of the DNA (figure 4). 

 

The ordered fragments of the map may, afterwards, be sequenced with a similar 

technique. The outcome, in this case, was not a set of DNA pieces, but the different 

nucleotides –adenine, cytosine, guanine and thymine- integrating each piece (figure 2). 

Apart of sequencing, the physical map could be applied to other biomedical endeavours, 

as finding the genes responsible for certain diseases. 

 



The necessity of mapping large genomes before sequencing was questioned in 1998, 

when the company Celera Genomics proposed a sequencing technique not requiring a 

previous ordering of the fragments. Such method was aimed to achieve the human 

genome sequence faster than the competing consortium of public laboratories (see main 

text). The release of Celera’s method triggered a debate on which was the most reliable 

technique to tackle DNA [21]. 



-Figures: 

 

Figure 1. Pictures of C. elegans from which John Sulston deduced the identity and 

movements of cells from a nematode embryo to a nematode adult. Developmental 

Biology (1977). 

 

Figure 2. The output of one of the programmes of Rodger Staden. Nucleic Acids 

Research (1980). 

 

Figure 3. The “fingerprinting” mapping technique used at the beginning of C. elegans 

project: (1) the DNA molecule is broken with enzymes; (2) the fragments are cut again 

and separated according to size; (3) the position of each sub-fragment is entered into a 

computer, which detects where sequences overlap; and (4) the computer constructs a 

physical map of the genome. 

 

Figure 4. Correspondence between the Massachusetts Institute of Technology and the 

Laboratory of Molecular Biology in Cambridge (UK) between 1985 and 1986. 

Laboratory of Molecular Biology Storage. 

 

Figure 5. One of the advertisements in the first issue of the journal Genomics (1987). 

 

Figure 6: Difference between mapping and sequencing. Whereas mapping (left) implies 

reducing the genome to an ordered set of unsequenced DNA fragments, sequencing 

(right) yields the nucleotide structure of the molecule. 
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