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The crystal and magnetic structures of thesLaAdCoNbO6 (A=Ca, Sr, and Ba) double perovskites have been
investigated. TheA=Ca and Sr compounds crystallize with a monoclinicP21/n superstructure while the larger
A=Ba gives a tetragonalI4/m superstructure. These materials have a rocksalt ordered arrangement of Co and
Nb with almost no inversions,1%d for A=Ca and 4% inversion forA=Sr and Ba. Magnetic susceptibility
measurements reveal antiferromagnetic ordering transitions with Neel temperatures of 17 KsA=Cad,
16 K sA=Srd, and 10 KsA=Bad. The low temperature antiferromagnetic ordering is described by the magnetic
propagation vectork = s 1

2 0 1
2

d for all materials. The saturated cobalt magnetic moment decreases from
2.97s2d mB to 2.52s3d mB to 1.85s5d mB for A=Ca, Sr, and Ba, respectively. The decrease of ordering tem-
perature and moment with increasing size ofA evidences magnetic frustration due to competition between 90°
superexchange pathways. This is shown to be a general feature in antiferromagnetic double perovskites.

DOI: 10.1103/PhysRevB.70.174434 PACS number(s): 75.30.2m, 75.25.1z, 61.12.Ld, 61.66.Fn

I. INTRODUCTION

The interplay of magnetism and electronic transport in
double perovskite oxides1 has been of recent interest follow-
ing the discovery of itinerant ferrimagnetism and low field
magnetoresistance in Sr2FeMoO6 and Sr2FeReO6 (Refs. 2
and 3). The itinerancy and ferrimagnetism arise from a
double exchange type mechanism in which ordering and
electronic configurations of the transition metal cations play
a critical role.4 Structurally, the 3d sBd and 4d or 5d sB8d
transition metal cations are ordered in an alternating(rock-
salt) manner within a perovskite lattice. Electronically, the
3d cation has a large spin(S=2 to 5/2 for Fe2+-Fe3+)
whereas the 4d or 5d cation usually hasSø1/2. Equal spins
of the 3d and 4 or 5d cations could result in a so-called
half-metallic antiferromagnet(HMAF), where completely
spin-polarized conduction occurs in a zero magnetization
material.5 Candidate HMAF double perovskite materials are,
for example,sLaAdCoRuO6 where both Co2+ and Ru5+ have
S=3/2. However, previous studies showed these materials
are antiferromagnetic with two opposed Co and two opposed
Ru spin sublattices. They are variable range hopping semi-
conductors, withTN=96 K for A=Ca and 85 K forA=Sr,
and show no magnetotransport effects.6,7 In fact, the majority
of nonmetallic double perovskites are antiferromagnetic al-
though Sr2CaReO6 and Sr2MgReO6, where Re-Re exchange
interactions are geometrically frustrated, behave as
spin-glasses.8,9

Here, we report a study into the crystal and magnetic
structures of thesLaAdCoNbO6 (A=Ca, Sr, and Ba) double
perovskites. LaSrCoNbO6 was previously reported to be cu-
bic with a=7.99 Å (Ref. 10); the Ca and Ba materials have
not been reported. In addition, we present a comparison of
the magnetic propagation vectors reported for antiferromag-
netic Mn, Fe, and Co double perovskites. We show that mag-
netic frustration is significant inB-cation ordered antiferro-

magnetic double perovskites and analyze its origins.

II. EXPERIMENT

sLaAdCoNbO6 (A=Ca, Sr, and Ba) were prepared as
yellow-brown polycrystalline powders by solid state reac-
tion. Stoichometric amounts of high purity La2O3, ACO3
(A=Ca, Sr, Ba), Co3O4 and Nb2O5 were ground, pressed into
pellets and treated for 2 h at 900 °C. The resulting powders
were reground, repressed and heated for 48 h(with three
intermediate regrinding steps) at 1300 °C forA=Ca, Sr and
at 1350 °C forA=Ba. X-ray powder diffraction(XPD) on a
Philips PW1710 or Bruker D8 diffractometer showed the Ca
and Sr materials to be phase pure. A small LaNbO4 impurity
s,1 mass %d was found for LaBaCoNbO6.

The crystal and magnetic structures of the title materials
have been investigated using neutron powder diffraction
(NPD). NPD experiments on LaCaCoNbO6 and
LaSrCoNbO6 were performed on the high resolution D2B
diffractometer at the Institute Laue Langevin(ILL ) in

FIG. 1. View of the structure of monoclinic LaCaCoNbO6 at RT.
Shaded/unshaded polyhedra are occupied by Nb/Co.
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Grenoble, France. Data were collected in the 8ø2uø160°
range in 0.05° increments at room temperature(RT) and 4 K.
The neutron wavelength was 1.5943 Å. For LaBaCoNbO6,
NPD data were collected at 4 K using the D20 instrument.
The instrument was in the high-flux setting(monochromator
takeoff angle 42°) with a wavelength of 2.4156 Å. Data were
collected in the 10ø2uø140° range with 0.1° increments.

TheGSASsuite of programs11 was used for Rietveld fitting
of the NPD and XPD data. A Pseudo-Voigt function convo-
luted with an axial divergence contribution was used to de-
scribe the peak shape for both types of data.

The dc magnetic susceptibility was measured using a
Quantum Design MPMS magnetometer. Zero field cooled
(ZFC) and field cooled(FC) data sH=500 Oed were col-
lected in the 5øTø300 K range.

III. RESULTS

A. Crystal structures

1. LaCaCoNbO6 and LaSrCoNbO6

Rietveld analysis of the NPD data showedsLaAdCoNbO6
(A=Ca, Sr) to crystallize with the monoclinicP21/n super-
structure commonly observed for double perovskites. The
P21/n superstructure allows for 1:1B-cation ordering and
describes theb−b−c+ system of three octahedral tilts in the
Glazer notation, as discussed below. Rietveld analysis
showed Co and Nb to be almost fully ordered forA=Ca
(,1% inversion) and with 4% inversion forA=Sr. The crys-
tal structure forA=Ca is illustrated in Fig. 1. The lattice
constants and refined atomic parameters at RT and 4 K are
given in Table I. Selected bond lengths and bond angles at

TABLE I. Lattice constants, refined atomic parameters and residuals forsLaAdCoNbO6 (A=Ca, Sr) at RT and 4 K, and at 4 K for
A=Ba.a

LaCaCoNbO6 LaSrCoNbO6 LaBaCoNbO6

RT 4 K RT 4 K 4 K

a (Å) 5.5509(1) 5.53934(8) 5.6423(3) 5.6331(3) 5.6902(6)

b (Å) 5.65552(9) 5.65676(7) 5.6506(3) 5.6465(3)

c (Å) 7.8909(1) 7.8733(1) 7.9693(4) 7.9573(4) 8.060(2)

b (deg) 89.860(2) 89.826(2) 89.799(5) 89.819(5)

Volume sÅ3d 247.724(8) 246.707(4) 254.08(2) 253.100(8) 260.97(1)

La/A x 0.0088(4) 0.0095(3) 0.004(1) 0.0054(8)

y 0.0438(2) 0.0456(2) 0.0246(5) 0.0291(3)

z 0.2512(4) 0.2520(3) 0.252(1) 0.2520(9)

1003U sÅ2d 1.11(3) 0.54(3) 1.37(7) 0.67(6) 0.4(1)

Co/Nb occ 0.992s7d /0.008s7d 0.96s1d /0.04s1d 0.96s2d /0.04s2d
1003U sÅ2d 0.77(4) 0.49(4) 0.85(7) 0.41(7) 0.2(1)

Nb/Co occ 0.992s7d /0.008s7d 0.96s1d /0.04s1d 0.96s2d /0.04s2d
1003U sÅ2d 0.77(4) 0.49(4) 0.85(7) 0.41(7) 0.2(1)

O1 x 0.2875(5) 0.2868(4) 0.281(1) 0.278(1) 0.044(6)

y 0.3019(5) 0.3026(4) 0.292(1) 0.294(1) 0

z 0.0444(4) 0.0445(3) 0.0363(9) 0.0352(8) 0.256(5)

1003U sÅ2d 1.09(7) 0.65(6) 1.6(2) 1.1(2) 0.5(2)

O2 x 0.1977(4) 0.1964(4) 0.211(1) 0.211(1) 0.227(3)

y −0.2141s5d −0.2140s4d −0.228s1d −0.225s1d 0.293(2)

z 0.0466(3) 0.0488(3) 0.0340(9) 0.0406(8) 0.026(2)

1003U sÅ2d 1.03(7) 0.51(6) 1.9(2) 1.0(2) 0.5(2)

O3 x −0.0857s3d −0.0873s3d −0.065s1d −0.068s1d
y 0.4746(3) 0.4732(3) 0.4885(7) 0.4867(6)

z 0.2419(4) 0.2427(3) 0.245(1) 0.2451(9)

1003U sÅ2d 1.07(4) 0.69(4) 0.9(1) 0.69(9)

x2 2.41 2.38 3.75 3.47 3.04

wRp 4.45% 4.20% 5.89% 5.28% 1.80%

Rp 3.48% 3.21% 4.65% 4.14% 1.14%

RF
2 2.84% 3.26% 4.57% 5.81% 12.31%

asLaAdCoNbO6 (A=Ca, Sr): Space groupP21/n, La/A, O1, O2, O3 at 4e sx,y,zd, Nb/Co at 2c s 1
2 ,0 ,1

2
d, Co/Nb at 2d s 1

2 ,0 ,0d. sA=Bad:
Space groupI4/m, La/Ba at 4d s0, 1

2,
1
4

d, Nb/Co at 2b s0,0,1
2

d and Co/Nb at 2a (0,0,0), O1 at 4e s0,0,zd occupancy: 0.25 and O2 at 8h
sx,y,0d occupancy: 0.5.
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RT and 4 K, and bond valence sums(BVS) at RT are given
in Table II. The BVS were calculated using theVALIST

program12 and indicate the presence of Co2+ s3d7d and
Nb5+ s4d0d for both materials. This is in agreement with the
observation by Andersonet al. in their review of double
perovskites1 that charge differencesù3 are generally re-
quired to obtain high degrees of charge ordering. The mean
CouO and NbuO bond lengths are identical at 4 K and
RT, while the La/AuO bond lengths and CouOuNb
bond angles increase slightly.

In Glazer notation,13,14a tilt system is described by speci-
fying the rotations of the BO6 octahedra about each of the
three Cartesian axes. The rotations about each axis are de-
scribed by two parameters. The first is a letter specifying the
magnitude of the rotation around that axis, relative to the
magnitude of the other rotations around the Cartesian axes.
The second parameter is a superscript indicating whether ro-
tations in adjacent layers are in the same direction or oppo-
site. The tilting associated with theP21/n space group is
b−b−c+ (where the rotations around thex andy axes have the
same magnitude). The tilting angle of thesCo/NbdO6 octa-
hedra can be defined ass180−fd /2, where f is the
CouOuNb bond angle(f=180° for a cubic perovskite).
From Table II, tilting angles of 14.2(2), 14.4(2), and 14.2(1)
for A=Ca, and 11.4(3), 11.2(3), and 10.7(3) for A=Sr are
found at RT.

2. LaBaCoNbO6

Analysis of RT x-ray data and low temperature NPD
data showed LaBaCoNbO6 to crystallize with the I4/m

superstructure. This superstructure can accommodate 1:1
B-cation ordering and corresponds to thea0a0c− Glazer
one tilt system. The crystal structure of LaBaCoNbO6 at 4 K
is illustrated in Fig. 2(a). Rietveld analysis of x-ray and
NPD data showed Co and Nb to be ordered over theB-sites
with 4% inversion. The refined atomic parameters and lattice
constants at 4 K are given in Table I. Initial Rietveld fits to
the NPD data showed anomalously large values for the
oxygen temperature factors. This was addressed by splitting
the oxygen sites[see Table I, and as illustrated in Fig. 2(b)],
thereby allowing for disordered octahedral tilts. Selected
bond lengths, bond angles and BVS for LaBaCoNbO6 at
4 K are given in Table II. The BVS indicate the presence
of Co2+ s3d7d and Nb5+ s4d0d oxidation states as observed
for the A=Ca and Sr analogs. The average CouO
and NbuO bond lengths are found to vary little with
temperature or withA (Table II) in sLaAdCoNbO6 indicating
the “rigidity” of these bonds. The ordered octahedral
tilt angle as calculated from the CouO2uNb bond angle
is 8.1s2d0, and the disordered tilts are 7.2s2d0 around the
x,y-axes and 9.5s6d0 around thez-axis. This shows that
the local disordered tilts are of comparable magnitude to the
long-range ordered one. Hence, the transition from
the a0a0c− one-tilt structure of LaBaCoNbO6 to the b−b−c+

three tilt system for smallerA=Sr, Ca is mainly a disorder-
to-order transition rather than a displacive change. The
larger Ba cation stabilizes thea0a0c− one-tilt system whereas
the smaller Ca and Sr cations favor theb−b−c+ three-tilt
system.

TABLE II. Selected bond lengths(Å), bond angles(deg) and bond valence sums(BVS) for sLaAdCoNbO6 (A=Ca, Sr and Ba).

LaCaCoNbO6 LaSrCoNbO6 LaBaCoNbO6

RT 4 K RT 4 K 4 K

kLa/AuOl 2.572(3) 2.564(2) 2.698(7) 2.691(6) 2.852(3)

NbuO1 1.982(3) 1.974(2) 1.996(7) 1.976(6) 1.96(4) s2xd
NbuO2 1.989(2) 1.987(2) 1.969(8) 1.983(6) 1.95(2) s4xd
NbuO3 1.971(3) 1.975(2) 1.985(8) 1.987(7)

kNbuOl 1.981(2) 1.979(1) 1.983(4) 1.982(6) 1.95(2)

CouO1 2.104(3) 2.108(2) 2.081(7) 2.094(6) 2.07(4) s2xd
CouO2 2.101(2) 2.107(2) 2.100(7) 2.089(5) 2.12(2) s4xd
CouO3 2.098(3) 2.090(2) 2.069(8) 2.065(8)

kCouOl 2.101(2) 2.102(1) 2.083(4) 2.083(6) 2.10(2)

CouO1uNb 151.7(2) 151.7(1) 157.2(3) 156.9(4) 180

CouO2uNb 151.3(2) 150.4(1) 157.6(3) 156.8(3) 163.8(2)

CouO3uNb 151.7(1) 151.1(1) 158.7(3) 158.1(3)

kCouOuNbl 151.6(1) 151.1(1) 157.8(2) 157.3(3) 169.2(2)

BVS La 2.96(1) 2.78(2) 2.1(1)

A 1.73(1) 2.25(2) 2.9(1)

Co 1.99(1) 2.08(2) 2.0(1)

Nb 4.97(2) 4.94(4) 5.5(2)

O1 1.94(1) 1.95(2) 2.0(1)

O2 1.91(1) 1.95(2) 2.1(1)

O3 1.99(1) 1.95(2)
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B. Magnetization

Magnetic susceptibility measurements revealed three-
dimensional antiferromagnetic ordering transitions for all
sLaAdCoNbO6 materials(Fig. 3) at low temperatures. Neel
temperaturessTNd of 17 K sA=Cad, 16 K sA=Srd, and
10 K sA=Bad were found. The ZFC and FC susceptibilities
coincide in the 5–300 K temperature range confirming the
presence of antiferromagnetic and paramagnetic states with-
out magnetic impurities. Paramagnetic momentssmeffd and
Weiss temperaturessud were determined by Curie-Weiss fits
to the susceptibility data in the 50,T,300 K range. The
Weiss temperatures(Table III) are all negative and the effec-
tive magnetic moment decreases slightly from 5.6mB/ f.u.
for A=Ca to 5.3mB/ f.u. for A=Sr and Ba. The experimental
values are substantially higher than the expected spin-only
value for high-spin Co2+ sS=3/2dmeff=3.9 mB/ f.u., indicat-
ing an orbital momentum contribution to the paramagnetic

FIG. 3. Zero field cooled magnetic susceptibilities for
LaCaCoNbO6 (circles), LaSrCoNbO6 (squares, offset by
0.02 emu/mol), and LaBaCoNbO6 (triangles, offset by
0.03 emu/mol). Curie-Weiss fits are shown.

FIG. 2. Views of the structure of tetragonal LaBaCoNbO6. (a)
Idealized polyhedral view illustrating thea0a0c− tilt system.
Shaded/unshaded polyhedra are occupied by Nb/Co.(b) Showing
the disordered tilts in the refinement model.

TABLE III. Neel temperatures, Curie-Weiss parameters, frustration factorssfd, magnetic representations, basis vectors, magnetic satu-
ration moments at 4 K, anglefCo1,Co4between moments on Co1 and Co4, and reducedx2 for sLaAdCoNbO6 (A=Ca, Sr and Ba). [Co1 and
Co4 are related by thes 1

2
1
2

1
2

d translation operation and correspond to atoms 1 and 4 in Fig. 5.]

A=Ca A=Sr A=Ba

TN (K) 17 16 10

meffsmB/ f.u.d 5.65(3) 5.30(2) 5.25(2)

u (K) −61s1d −63s1d −48s1d
f 3.6 3.9 4.8

GMag 3G2 3G4 parallel antiparallel 3G2 3G4 parallel antiparallel 3G1

Basis vectors:
Co1

[111] [111] [111] [111] [111] [111] [111] [111] [111]

Basis vectors:
Co4

f1̄11̄g f11̄1g [111] f1̄1̄1̄g f1̄11̄g f11̄1g [111] f1̄1̄1̄g [111]

mx smBd 0.02(6) 0.03(6) −0.05s7d −0.04s8d 0 0 0 0 0.24(8)

my smBd −1.97s7d −1.97s8d −1.97s8d −2.10s8d 1.7(1) 1.8(1) 1.7(1) 1.8(1) 0

mz smBd 2.22(6) −2.21s7d −2.21s7d 2.07(8) −1.9s1d 1.8(1) −1.9s1d −1.7s1d 1.83(4)

mCo smBd 2.97(2) 2.96(2) 2.97(2) 2.95(2) 2.52(3) 2.52(3) 2.52(3) 2.52(2) 1.85(5)

fCo1,Co4(deg) 97(1) 83(1) 0 180 113(8) 87(8) 0 180 0

x2 2.38 2.39 2.43 2.42 3.48 3.47 3.50 3.48 3.04

J.-W. G. BOS AND J. P. ATTFIELD PHYSICAL REVIEW B70, 174434(2004)
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moment. High-spin octahedral Co2+ has a4T1g ground state
and spin-orbit coupling typically leads to moments of
,5.2 mB (Ref. 15).

C. Magnetic structures

Magnetic diffraction peaks were observed in the 4 K NPD
patterns for all materials(Fig. 4). These were indexed by
the propagation vectors 1

2 0 1
2

d, showing that an antiferro-
magnetic Co sublattice is present.[Due to the tetragonal
cell symmetry, the magnetic reflections forA=Ba
can equivalently be indexed by thes0 1

2
1
2

d propagation
vector, but this is not true for monoclinicA=Ca
and Sr.] Representational analysis was used to obtain

symmetry allowed models for the magnetic structures,
which have been refined using reverse Monte Carlo
(RMC) simulations and Rietveld least squares fitting.
Representational analysis allows the determination of
the symmetry allowed magnetic structures that can result
from a second-order magnetic phase transition, given
the crystal structure above the transition and the propagation
vector of the magnetic ordering. These calculations
were carried out using version 2 K of the program
Sarah-Representational Analysis16 and closely follow the
method of Munozet al.17 They involve first the determina-
tion of the space group symmetry elements,g, that leave
the propagation vectork invariant: these form the
small groupGk. The magnetic representation of a crystallo-
graphic site can then be decomposed in terms of the irreduc-
ible representations(IRs) of the small groupGk:

GMag = o
n

nnGn
m,

where nn is the number of times that the IRGn appears
in the magnetic representationGmag for the chosen crystallo-
graphic site. For theA=Ca and Sr materials, the small
group Gk coincides with theP21/n space group, whereas
for A=Ba sI4/md only g1=hEu0 0 0j and g5=hI u0 0 0j
leave k invariant or transform it to an equivalent vector.
The decomposition of the magnetic representation(in
terms of the nonzero IRs ofGk) for the Co sites in the
A=Ca, Sr, and Ba materials, and their associated basis
vectors are given in Table III. For theP21/n materials
sA=Ca,Srd, Co atoms related by thes 1

2
1
2

1
2

d translation
vector can have their magnetic moments arranged in
two possible ways, corresponding toGmag=3G2 or 3G4.
For the higher symmetryA=Ba sI4/md material, the Co
magnetic moments are arranged according toGmag=3G1.
Initially, the symmetry allowed models were refined
using the Sarah-Refine program, which utilizes a RMC
algorithm to perform a global search sampling all regions
of phase space with an equal probability.16 Approximately
250 RMC cycles were run for all allowed magnetic
models. Following these simulations, the best solutions
were Rietveld (least-squares) fitted to obtain the final
solutions for the magnetic structures, which are given in
Table III.

In addition, two other models describing collinear
magnetic structures were considered for the monoclinic
A=Ca and Sr materials. These models were obtained by
considering a possible mixture of the basis vectors of the
3G2 and 3G4 representations.17 The resulting basis vectors
are given in Table III and they correspond to either a
ferromagnetic coupling of the two Co moments in the
unit cell or to an antiferromagnetic coupling. ForA=Ca
and Sr, the 3G2 and 3G4 representations and the two collinear
models give almost identical fits to the magnetic diffraction.
In all cases,mx is near zero andmy, mz have comparable
magnitudes.(For A=Sr, mx was set to zero in the final
refinement cycles to obtain more precise values ofmy
and mz.) The quality of the fit is identical for all magnetic
models. For A=Ba, the magnetic moment is almost
aligned along thec-axis with only a very small value for

FIG. 4. Observed(crosses), calculated(full line), and difference
NPD Rietveld profiles for(a) LaCaCoNbO6, (b) LaSrCoNbO6, and
(c) LaBaCoNbO6 at 4 K. Reflection markers correspond to the
Bragg positions of the structural(top) and magnetic phase(bottom).
Prominent magnetic superstructure peaks are arrowed.
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mx. The resultant magnetic moment decreases from
2.97s2dmB sA=Cad to 2.52s3dmB sA=Srd to 1.85s5dmB sA
=Bad. The expected spin-only saturation moment for high-
spin Co2+ is 3 mB.

IV. MAGNETIC FRUSTRATION

An overview of the lattice constants, magnetic ordering
temperatures, frustration factorssf = uuu /TNd (Ref. 18) and
magnetic propagation vectors for a large number of antifer-
romagnetic double perovskites including the title materials is
given in Table IV. Two trends are evident, adecreasein TN
with increasing averageA-cation sizeskrAld for any combi-
nation ofB-cations, although anincreaseis usually expected
as tilt angles decrease with increasingkrAl, and an accompa-
nying increase in the magnetic frustration factorf (f is typi-
cally ,3 for unfrustrated cubic antiferromagnets and.10
for significantly frustrated materials).18 The current values
for f are intermediate but the magnetic frustration is never-
theless significant since it has measurable effects on the Neel
temperatures and saturation moments.

Magnetic frustration arises when a large fraction of the
magnetic sites in a lattice are subject to competing or
contradictorary constraints. When frustration arises purely
from the geometry or topology of the lattice it is termed
geometric frustration. The canonical example is any
lattice based on an equilateral triangle, such as the Kagome
lattice. In three dimensions, the antiferromagnetic face
centered cubic(fcc) and pyrochlore lattices are geometrically
frustrated. The former is based on edge-shared tetrahedra,
and the latter on corner-shared tetrahedra of interactions.

As discussed above, double perovskites have a rocksalt
orderedB-cation sublattice. The rocksalt sublattice consists
of interpenetratingB and B8 fcc sublattices, giving rise
to magnetic frustration. A suppression of magnetic order is
already known in the Sr2BReO6 sB=Mg,Cad double perov-
skites due to the geometrically frustrated Re-Re exchange
interactions.8,9 Most other insulating double perovskites,
such assLaAdCoNbO6 (A=Ca, Sr, and Ba) show long range
antiferromagnetic order and at first sight do not appear to be
magnetically frustrated. However, the decrease inTN and
ordered momentmCo and the increase inf for sLaAdCoNbO6

(A=Ca, Sr, and Ba) with increasingkrAl (Table III), and
similar trends in other double perovskites(Table IV), are
explained from the frustrated 90° interactions in the fcc Co-
sublattice.

Part of the fcc Co-sublattice for LaCaCoNbO6 is
depicted in Fig. 5. Atoms 1–4 each define a primitive
cubic sublattice, in which Co spins are connected
by 180° CouOuNbuOuCo bridges (180° refers
to the central OuNbuO angle in an undistorted
cubic double perovskite). The antiferromagnetic J180
superexchange interactions in each sublattice are fully
satisfied. The interactions between the four magnetic
sublattices (1–4) are via 90° CouOuNbuOuCo
exchange pathways. In a cubic fcc lattice, oneJ180 and
oneJ90 exchange interaction are present. For the monoclinic
double perovskite case, there are twoJ180 and fourJ90 inter-
actions, as illustrated in Fig. 5(b). The inequivalence of the
J90 interactions determines the magnetic arrangement. The
relative directions of the moments in the 3G2 or 3G4 solu-
tions (Table III) are consistent with the relative strengths

TABLE IV. Average A-cation radii(Shannon, Ref. 19), lattice constants at 300 K(RT), Neel temperatures, frustration factorssfd, and
magnetic propagation vectorsk for a variety of monoclinic cation ordered double perovskites.

Ref.
krAl
(Å) a (Å) b (Å) c (Å) b (deg)

TN

(K) f k

Ca2MnWO6 17 1.180 5.4694(2) 5.6504(2) 7.8122(3) 90.179(3) 17 3.6 s0 1
2

1
2

d
LaCaMnNbO6 20 1.198 5.5929(1) 5.7406(1) 7.9824(1) 89.897(1) 9 4.9 s0 1

2
1
2

d
LaSrMnNbO6 21 1.263 5.6918(2) 5.7453(2) 8.0689(3) 90.043(6) 8 5.0 s0 1

2
1
2

d
Sr2MnMoO6 17 1.310 5.6671(1) 5.6537(1) 7.9969(2) 89.927(2) 15 7.2 s 1

2 0 1
2

d
Sr2MnWO6 17 1.310 5.6803(2) 5.6723(2) 8.0199(2) 89.936(3) 14 5.1 s 1

2 0 1
2

d
LaBaMnNbO6 21 1.343 5.7713(1) 8.1687(3) 6.5 6.0 s 1

2 0 1
2

da

Ba2MnMoO6 22 1.470 8.1680(2) 11 8.5 s 1
2

1
2

1
2

d
Ba2MnWO6 23 1.470 8.1985(2) 9 7.2 s 1

2
1
2

1
2

d
LaSrFeNbO6 21 1.263 5.6707(2) 5.6665(2) 8.0006(3) 89.960(6) 23 4.8 s 1

2 0 1
2

d
Sr2FeWO6 24 and 25 1.310 5.6480(4) 5.6088(4) 7.9362(6) 89.99(2) 37 0.6 s0 1

2
1
2

d
LaCaCoNbO6 1.198 5.5509(1) 5.6555(1) 7.8909(1) 89.860(2) 17 3.6 s 1

2 0 1
2

d
LaCaCoRuO6 6 1.198 5.4977(1) 5.5687(1) 7.7939(2) 90.013(8) 96 2.0 s 1

2 0 1
2

d
La2CoRuO6 21 1.216 5.5711(1) 5.6289(1) 7.8813(2) 89.986(9) 25 3.5 s 1

2 0 1
2

d
LaSrCoNbO6 1.263 5.6423(3) 5.6500(2) 7.9684(3) 89.805(5) 16 3.9 s 1

2 0 1
2

d
LaSrCoRuO6 7 1.263 5.5890(1) 5.5623(2) 7.8743(2) 89.960(7) 85 0.2 s 1

20 1
2

d
Sr2CoWO6 15 1.310 5.6123(1) 5.5875(1) 7.8994(1) 90.041(3) 24 2.6 s 1

2 0 1
2

d
LaBaCoNbO6 1.343 5.7098(1) 8.0655(3) 10 4.8 s 1

2 0 1
2

da

ak= s 1
2 0 1

2
d and s0 1

2
1
2

d are equivalent for a tetragonal cell.
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J90s100d.J90s 1
2

1
2

1
2

d<J90s−1
2

1
2

1
2

d.J90s010d. Pairs of mo-
ments 1, 2 and 3, 4 are strongly coupled viaJ90s100d
but frustration arises because of the intermediate coupling
strengthsJ90s 1

2
1
2

1
2

d<J90s−1
2

1
2

1
2

d, so that moments 1 and
2 are perpendicular to 3 and 4. The collinear parallel solution
is consistent with J90s100d<J90s−1

2
1
2

1
2

d.J90s 1
2

1
2

1
2

d,
J90s010d, whereas the antiparallel solution hasJ90s100d
<J90s 1

2
1
2

1
2

d.J90s−1
2

1
2

1
2

d, J90s010d. In both cases, two
J90 interactions are satisfied while the remaining two are
frustrated.

In tetragonal double perovskites, two distinctJ90 superex-
change interactions are expected. However, the disordered
octahedral tilts observed forA=Ba (Sec. III A) lower
the local symmetry, resulting inJ90s100dÞJ90s010d and
J90s 1

2
1
2

1
2

dÞJ90s−1
2

1
2

1
2

d, as evidenced by the magnetic
propagation vectork = s 1

2 0 1
2

d. The A=Ba material adopts a
collinear antiparallel magnetic structure and the relative cou-
pling strengths are given above. The magnetic frustration
increases significantly compared toA=Ca and Sr, as evi-
denced by the lowered Neel temperatures10 Kd and reduced
saturation moments1.85mBd.

Experimentally, the magnetic structure is derived from the
magnetic propagation vector and the diffraction intensities.
For monoclinic double perovskites, magnetic propagation
vectors of s 1

2 0 1
2

d and s0 1
2

1
2

d are found, corresponding to
dominantJ90s100d or J90s010d interactions, respectively. For

the Mn double perovskites in Table IV, the magnetic period-
icity along the longer of thea or b cell axes is doubled, and
the J90 interaction in this direction is dominant, but no such
systematic behavior is observed for the Fe or Co double per-
ovskites. From representation analysis, two possible “per-
pendicular” and two possible “collinear” solutions for the
magnetic structure are found, which cannot be distinguished
experimentally in most materials because of the small mono-
clinic angle b. Competition between theJ90s100d and
J90s010d exchange pathways determines whetherk = s 1

2 0 1
2

d
or k=s0 1

2
1
2

d is adopted, whereas the full basis vector model
is determined by the competingJ90s 1

2
1
2

1
2

d and J90s−1
2

1
2

1
2

d
interactions. In higher symmetry cells, theJ90 exchange in-
teractions become more similar(and eventually identical in
cubic symmetry) and the amount of geometric frustration
increases, as evidenced by the lowered Neel temperatures
and larger frustration factors for the tetragonal and cubic
materials in Table IV, for examplef =8.5 for cubic
Sr2MnMoO6.

V. CONCLUSIONS

The crystal and magnetic structures of thesLaAdCoNbO6

(A=Ca, Sr, and Ba) double perovskites have been studied
and the importance of geometric magnetic frustration in an-
tiferromagnetic double perovskites is demonstrated. Neutron
powder diffraction shows thesLaAdCoNbO6 materials to
have an almost fully ordered rocksalt arrangement of Co2+

s3d7d and Nb5+ s4d0d and to have theb−b−c+ (A=Ca, Sr) and
a0a0c− sA=Bad Glazer ordered tilt systems.

All three phases order antiferromagnetically at low tem-
peratures, with as 1

2 0 1
2

d magnetic propagation vector. For
A=Ca and Sr, two “perpendicular” and two “collinear” mag-
netic structures are possible dependent upon competing 90°
exchange interactions between four simple cubic Co-
sublattices. These solutions cannot be distinguished experi-
mentally because of the small monoclinic distortion angle
sb<89.8°d. The tetragonalA=Ba material has a collinear
antiparallel magnetic structure.

The Neel temperaturedecreasesfrom 17 K sA=Cad to
16 K sA=Srd to 10 K sA=Bad where anincreasewith aver-
age A-site radius is generally expected. This decrease is
accompanied by a reduction in the saturation moment from
2.97s2dmB sA=Cad to 2.52s3dmB sA=Srd to 1.85s5dmB for
A=Ba. These observations are consistent with geometric
magnetic frustration in the fcc-Co lattice. This frustration
arises from competing 90° exchange interactions between
four simple cubic Co sublattices, in which the stronger 180°
exchange interactions are fully satisfied. Magnetic frustration
is a generally occurring phenomenon in antiferromagnetic
double perovskites and increases with cell symmetry as the
90° exchange interactions become more similar.
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FIG. 5. (a) Relative orientations of the crystallographic, and
magnetic cells and the underlying Co-fcc cell(broken line) for
LaCaCoNbO6, the spin directions shown are for the 3G2 solution.
(b) The topology of 90° CouOuNbuOuCo superexchange in-
teractions between the four Co sublattices.
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