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Diabetes mellitus induces bone marrow microangiopathy
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Abstract

Objective—The impact of diabetes on the bone marrow (BM) microenvironment was not
adequately explored. We investigated whether diabetes induces microvascular remodeling with
negative consequence for BM homeostasis.

Methods and results—We found profound structural alterations in BM from type-1 diabetic
mice, with depletion of the hematopoietic component and fatty degeneration. Blood flow
(fluorescent microspheres) and microvascular density (immunohistochemistry) were remarkably
reduced. Flow cytometry verified the depletion of MECA-32P% endothelial cells (ECs). Cultured
ECs from BM of diabetic mice showed higher levels of oxidative stress, increased activity of the
senescence marker p-galactosidase, reduced migratory and network-formation capacities and
increased permeability and adhesiveness to BM mononuclear cells. Flow cytometry analysis of
lineage™d c-KitP% Sca-1P% (LSK) cell distribution along an 7 vivo Hoechst-33342 dye perfusion
gradient documented that diabetes depletes LSK cells predominantly in the low-perfused part of
the marrow. Cell depletion was associated to increased oxidative stress, DNA damage and
activation of apoptosis. Boosting the anti-oxidative pentose phosphate pathway by benfotiamine
supplementation prevented microangiopathy, hypoperfusion and LSK cell depletion.

Conclusions—We provide novel evidence for the presence of microangiopathy impinging on
the integrity of diabetic BM. These discoveries offer the framework for mechanistic solutions of
BM dysfunction in diabetes.
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Diabetic patients suffer ischemic complications more frequently than non-diabetic subjects
and also show a worse clinical outcome after an ischemic event. This prognostic
disadvantage is partly dependent on diabetes-induced impairment of reparative
angiogenesis. The contribution of circulating cells in maintenance of vascular integrity and
recovery from ischemic complications has been also acknowledged. Tissue injury triggers
the bone marrow (BM) to release progenitor cells (PCs) and monocytes with pro-angiogenic
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capacities into the peripheral circulation.1-3 A default version of this cellular response may
account for the weakened healing capacity in diabetes. However, whether diabetes may
damage stem cells (SCs) inside the BM either directly or by altering their microenvironment
remains to be elucidated.

Maintenance of BM homeostasis is dependent on the interaction between SCs and cells of
the supportive microenvironment, where SCs self-renew, differentiate or die. Regulatory
components of the niche include endothelial cells (ECs), mesenchymal cells and adipocytes.
The cellular composition and location of the niche is associated with specialized functions.
For instance, the vascular niche, composed of lineage-committed PCs, mature hematopoietic
cells, stromal cells and cells of the fenestrated sinusoidal endothelium, preside over the
trafficking of cells and solutes between the marrow and circulation.4 The osteoblastic niche,
located near the endosteal bone and its trabecular projections, is regarded as the main
repository of primitive SCs of the marrow.5 The low-oxygenated osteoblastic
microenvironment is ideal to maintenance of SC quiescence, with SC differentiation
occurring along the oxygen ascent toward the vasculature.6, 7 However, some endosteal
niches are well perfused, being enmeshed in microvessels that penetrate the bone, and are
thereby equally influenced by signals from osteoblasts and ECs as well as by chemical cues
from the circulation.8 Furthermore, SCs scattered between the two main niches may
represent transition entities moving back and forward between the endosteum and
vasculature. 9

In this study we investigated the status of vascular cells, hematopoietic cells and their niches
in BM of diabetic mice. Results show profound marrow remodeling with depletion of the
hematopoietic component and presence of a so-far-unreported form of microangiopathy.
Importantly, cell depletion more prominently affected the osteoblastic niche, owing to the
generation of a steeper perfusion gradient across the marrow. Inhibition of oxidative stress
prevented BM microangiopathy, hypoperfusion and hematopoietic cell depletion.

METHODS

A detailed, expanded Methods section is available in the online data supplement.

Animal procedures

Experiments were performed in accordance with the Guide for the Care and Use of
Laboratory Animals (the Institute of Laboratory Animal Resources, 1996) and with approval
of the British Home Office. Type-1 diabetes (T1D) was induced in male CD1 mice (Charles
River) by streptozotocin (STZ).10 Age-matched male CD1 mice injected with the vehicle of
STZ served as controls (C). Diabetes was assessed by measurement of glycemia at fast and
glycosuria.

At 4 wk from diabetes induction, T1D subgroups were randomly assigned to receive
benfotiamine (BFT, 70mg/kg body weight per d) or vehicle (Immol/L HCI) in drinking
water for 24 wk. Non-diabetic age-matched vehicle-treated male mice served as controls.

Measurement of marrow blood flow (BF)

BF was assessed by fluorescent microspheres.

Bone fixation, decalcification and sectioning

Bones were cleaned from muscle and connective tissue, fixed, decalcified and finally
processed for paraffin-embedding.
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Morphometric measurements

Total volume of the marrow was computed from longitudinal and cross BM sections on an
Olympus BX40 microscope. Giemsa, Trichrome Masson and Gomori staining was
performed to identify the structural composition of BM.

Immunostainings

To determine capillary and sinusoid density, BM sections were stained with Isolectin IB4
(endothelial marker). Capillaries were recognized as small, regular endothelial structures,
whose lumen-size does not exceed the diameter of an erythrocyte, while sinusoids were
identified as irregular vessels, lined by a thin layer of Isolectin 1B, positive ECs and able to
contain several erythrocytes (Supplementary Fig. I). Arterioles were recognized by the
vascular smooth muscle cell (VSMC) marker a-smooth muscle actin (a-SMA) and Isolectin
IB4. The number of capillaries, sinusoids and arterioles was counted through the entire area
of marrow and expressed as average density per mm2 of tissue. Additionally, VE-cadherin-2
was used to visualize vascular niches. The endosteal surface lined by osteoblasts was
visualized by an anti-N-cadherin antibody.11 Mouse c-Kit and Sca-1 antigens were used to
identify hematopoietic PCs and Ter119 to identify erythroid cells. DNA damage was
assessed by staining for p-H2AX.12 List of used antibodies is reported in Supplementary
Table I.

Selection of Bone Marrow Endothelial Cells (BMECSs)

Freshly harvested BM cells were immunomagnetically depleted of CD11b-expressing cells
to eliminate myeloid/monocyte fraction and cultured on 0.1% gelatin in DMEM 20% FBS,
supplemented with AcSDKP in order to avoid SCs and fibroblasts contamination.13 When
confluent, cells were analysed by flow cytometry and immunocytochemistry to assess the
expression of endothelium-specific markers. Using the same isolation protocol, confluent
BMECs were used in functional studies.

Functional and western blot assays on BMECs

Cell senescence was assessed by measuring p-Gal activity and reactive oxygen species
(ROS) using MitoTracker® Red CM-H,XROS probe. Migration was assayed using a 24-
well transwell setup and 7 vitro network formation on matrigel.14 For static adhesion,
BMECs were cultured to confluence on 0.1% gelatin-coated glass covers and treated
overnight with Tumor Necrosis Factor-a (TNF-a, 10 ng/mL). Next, BM mononuclear cells
(BMMNCs) from C mice were pre-labelled with Calcein-AM, resulting in green-
fluorescence, and allowed to adhere for 30min on BMECs. Samples were then washed and
adherent BMMNCs were counted using confocal fluorescent microscopy. To study the
influence of flow, confluent BMECs were stimulated as above and mounted onto the
microscope stage using a POC-mini chamber system (LaCon) and connected to a perfusion
pump. Adhesion was visualized by phase-contrast microscopy and recorded in real-time.
Trans-endothelial electrical resistance (TER) was evaluated by Electric Cell-substrate
Impedance Sensing. To study trans-endothelial migration (TEM) of BMMNCs prepared
from C or T1D mice; cells were pre-labeled with PKH67 (Sigma) and then left to migrate
toward SDF-1 or vehicle through BMECs monolayers on coated transwell filters. Finally,
protein expression of phosphorylated VE-cadherin and Pyk2 in BMECs was measured by
western blot.

Isolation of marrow cells from trabecular bone

Hematopoietic Stem Cell Isolation Kit (Millipore UK) was used for isolation of marrow
cells from trabecular bone.

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2013 January 18.
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Colony forming cell (c.f.c) assay

Freshly harvested BM cells from trabecular bone were seeded on methycellulose (1x104
cells/dish) and cultured for 14d before scoring colonies.

Flow cytometry analysis

Statistics

RESULTS

Freshly harvested BM cells were washed with ice-cold Hank’s balanced salt solution
containing 0.5% bovine serum albumin and 0.02% sodium azide. BM cells were then
stained in the same buffer with anti Lineage Mixture (Alexa 488), anti-Sca-1 (PE), anti-
CD34 (Alexa 647) and anti-c-Kit (Alexa 750 or Alexa 647 when CD34 was omitted). To
recognize ECs, BM cells were stained with anti-MECA-32 (Biotin) followed by
Streptavidin-APC conjugate. To detect apoptosis, BM cells were stained with Annexin V
(FITC). ROS positive cells were identified using CM-H,DCFDA. Distribution of BM cells
according to BM perfusion gradient was evaluated using the Hoechst 33342 (Hoe) dye.7
Briefly, Hoe was injected through the tail vein and the animals sacrificed 10min later to
collect the hindlimb BM. Cells in microenvironments that are well perfused by blood are
those exposed to the highest concentrations of Hoe, whereas cells in microenvironments that
are less perfused are exposed to lower concentrations of Hoe. Flow cytometry identification
of cells stained high or low with Hoe (HoeMi9" and Hoe!oW, respectively) allowed for
recognition of cell distribution in high-perfused vs. low-perfused regions of BM
(Supplementary Fig. I1). Flow cytometry was performed on FACSCanto Il and FACSLSRI|I
(BD Biosciences) equipped with FACSDiva software (BD Biosciences). Data were
represented using “Logical” displays. List of used antibodies is reported in Supplementary
Table 1.

Differences between multiple groups were compared by analysis of variance (ANOVA)
followed by a Holm-Sidak multiple comparison test. Two-group analysis was performed by
t-test (paired or unpaired as appropriate). Probability-values of less than 0.05 were
considered significant.

Diabetes reduces BM volume and cellularity

First, we compared the BM structure of T1D mice at 27-30 wk from the onset of diabetes to
age-matched non-diabetic controls. Diabetes remarkably reduced the hematopoietic fraction
and caused fat accumulation and osteopenia (Fig. 1). No structural alteration was observed
at 10d after diabetes induction (data not shown), discounting an acute toxic effect of STZ on
the BM.

Microangiopathy in diabetic BM

Cumulative vascular density was reduced by 2.9-fold in BM of T1D mice (/<0.001 vs. C).
Analysis of perfused vessels, identified by binding of intracardially-injected isolectin 1By,
revealed a consistent reduction of sinusoids, capillaries and arterioles. Furthermore, the
microvasculature appeared fragmented with bleeding into the surrounding marrow (Fig. 2a-
d).

Flow cytometry analysis of BM-single cell suspensions, using an antibody specific for the
EC marker MECA-32, confirmed BMEC depletion and increased BMEC apoptosis in
diabetes (Fig. 2e,f).

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2013 January 18.
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Functional alterations of diabetic BMECs

BMECs were isolated from T1D and C mice and their purity was confirmed by flow
cytometry and imunocytochemistry (Supplementary Fig. I11). We found that T1D BMECs
express higher levels of mitochondrial ROS (Fig. 3a) and cell senescence marker -
galactosidase (Fig. 3b), are unresponsive to chemo-attractant stimuli, like SDF-1 and VEGF-
A (Fig. 3c), and fail to form network structures on matrigel (Fig. d). Furthermore, we
observed an increased adhesion of BMMNCs to T1D BMECs under static conditions and
after introduction of shear flow (Fig. 3e,f).

Another hallmark of diabetic microvasculature is its augmented permeability. Confluent
T1D BMECs showed a 14+2% reduction in trans-endothelial resistance compared to C
BMECs (P<0.05), which was abrogated by the ROS scavenger N-Acetyl-cysteine (N-Ac),
pinpointing oxidative stress as a determinant of altered cell-cell interaction. ROS facilitates
trans-endothelial migration of BM-derived PCs through phosphorylation of VE-cadherin by
the redox-sensitive protein tyrosine kinase 2 (Pyk2).15, 16 We found that T1D BMECs have
higher phosphorylation levels of VE-cadherin (at tyrosine 731, the p-catenin binding site)
and Pyk2 (at tyrosine 402, which is the auto-phosphorylation site for Pyk2) compared with
C BMEC:s (Fig. 3g). Furthermore, TLD BMMNCs transmigrate as efficiently as C
BMMNC:s in the presence of non-diabetic endothelium (Fig. 3h, left). In contrast, non-
specific migration of BMMNCs was enhanced and SDF-1-stimulated migration was
abolished in the presence of diabetic endothelium, thus suggesting endothelial barrier
dysfunction in T1D (Fig. 3h, right).

Diabetes causes depletion of BM Sca-1P%Sc-KitP°S cells

Immunohistochemical analysis documented the reduction of Sca-1P%c-KitP%s (SK) cells in
BM of T1D, especially at the level of the osteoblastic niche, identified by staining osteoblast
lining with N-cadherin (Fig. 4 and Supplementary Fig. IV). Furthermore, considering
longitudinal and coronal sections of BM, we verified that the distance of SK cell clusters of
the osteoblastic niche to sinusoids is longer in marrow of T1D mice (9.0+0.4 cell diameters)
compared to C (5.520.4 cell diameters, P<0.001).

Flow cytometry analysis confirmed the effect of diabetes on reducing the relative frequency
of Lineage™®d SK (LSK) cells in marrow of the femoral cavity or trabecular bone, a porous
plexus enriched of SCs and osteoblasts (Fig. 5a).5 We also found that the sub-fraction of
primitive CD34"9SK cells is remarkably reduced in T1D marrow (3.6+0.7 per 100,000
BM cells) compared to C (27.0£3.0 per 100,000 BM cells, P<0.01). Concordantly, colony
forming unit assays showed a reduced formation of multipotent PC colonies (c.f.u. GEMM)
by trabecular BM cells of T1D mice (Fig. 5b). However, the colony forming activity of
lineage-committed PCs was similar in diabetic and control mice, suggesting compensation
downstream to multipotent PCs.

Diabetes reduces BM perfusion

T1D mice showed a remarkably reduced BM perfusion at the level of femur (0.17+0.01 vs.
0.2740.02 mL/min/gm in C, P<0.01) and tibia (0.11+0.01 vs. 0.18+0.03 mL/min/gm in C,
P<0.01).

Predominant LSK cell depletion in the hypoperfused part of the marrow

We then determined the relative position of LSK cells with respect to /n vivo Hoe dye
perfusion gradient.7 Hoe was injected intravenously and then the degree of uptake of the dye
by BM cells from different locations was evaluated by flow cytometry. We found that 53%
of total LSK cells are located in the Hoe!" perfusion region of C BM, but this fraction
decreased to 21% in T1D BM (Fig. 6a, central panel). Reversing the gating procedure, we

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2013 January 18.
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analyzed the abundance of LSK cells in total cells and lympho-monocyte (LM) fraction of
each Hoe perfusion area (Fig. 6b). Results confirmed the selective depletion of LSK cells of
the low-perfused zone of T1D BM, whereas the high-perfused zone, which corresponds to
the predominant localization of MECA-32P% BMECs (e.g. the vascular niche) was
relatively preserved. MECA32P% ECs were overall reduced in T1D BM (Fig. 6c¢) and,
considering their relative distribution, also shifted from the low to the high Hoe perfusion
area (Fig. 6a, right panel).

Increased oxidative stress in diabetic BM

Next, we measured levels of oxidative stress in BM cells using CM-H,DCFDA, a cell-
permeable intracellular ROS indicator. Flow cytometry analysis showed that ROSN9" SK
cells are greatly increased in T1D BM (Fig. 7a). We also verified the presence of higher
mitochondrial ROS levels in BMMNCs from T1D trabecular marrow, using MitoTracker
Red CM-H,XROS (Fig. 7h).

Excessive oxidative stress reportedly causes DNA damage and reduces the lifespan of
BMSCs.17 Levels of p-H2AX (Ser139), a marker of double DNA strand breaks, were 2.5-
fold higher in T1D BM cells compared to C (Fig. 7c). Since H2AX is phosphorylated by
ATM, we analyzed ATM expression by qPCR and found it 2.6-fold higher in T1D BM cells
compared to C. Furthermore, flow cytometry analysis of Annexin V-positive cells
unravelled the increased apoptosis of SK cells from BM of T1D mice (Fig. 7d).

Stimulation of anti-oxidative mechanism prevents microangiopathy and LSK cell depletion

We found that diabetes reduces the activity of transketolase and G6PDH, the rate-limiting
enzymes of the pentose phosphate pathway, which represents a fundamental source of anti-
oxidant equivalents and substrates for DNA synthesis and repair (Fig. 8a,b).

We then asked whether activation of the above anti-oxidative mechanism may protect BM
from diabetes-induced damage. Boosting the thiamine-dependent enzyme transketolase by
BFT supplementation (Fig. 8a) restored G6PDH activity (Fig. 8b) and prevented
microangiopathy (Fig. 8c) and hypo-perfusion of diabetic BM (Fig. 8d). Furthermore, BFT
prevented oxidative stress (Fig. 8e) and p-H2AX elevation (Fig. 8f) in T1D BM cells.
Importantly, these effects of BFT were associated to prevention of LSK cell depletion, both
in terms of absolute number (Fig. 8g) and relative proportion to total BM cells (Fig. 8h), and
inhibition of apoptosis (Fig. 8i). Analysis of cell distribution across the Hoe perfusion
gradient confirmed BFT’s protective action against diabetes-induced LSK cell depletion
(Fig. 8jKk).

DISCUSSION

Here we show for the first time the presence of diabetic microangiopathy altering the
marrow milieu. Microvascular rarefaction was associated with endothelial dysfunction,
encompassing reduced migratory capacity, impaired angiogenic activity, increased
adhesiveness and endothelial barrier disruption. Importantly, these defects were observed
after culturing diabetic bone marrow endothelial cells in normal glucose, in line with the
recent demonstration of epigenetic changes caused by transient hyperglycemia.18

Previous studies have documented the important role of the bone marrow endothelium in
maintenance of marrow homeostasis through paracrine and physical interaction with other
cells of the marrow.19, 20 Another important function of BM vasculature is to deliver
nutrients and oxygen to marrow cells. The peculiar distribution of microvasculature creates
differentially perfused environments across the marrow. The most primitive stem cells are
believed to reside in the osteoblastic niche at the lowest end of the physiologic perfusion

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2013 January 18.
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gradient, protected from oxidative stress.6, 7 However, recent studies demonstrated that a
large fraction of endosteal stem cells is enmeshed in vessel networks.21 In diabetic BM, the
ongoing microvascular rarefaction inevitably alters the path-length for oxygen and nutrient
diffusion and, as a consequence, an increasing fraction of marrow becomes critically hypo-
perfused and secluded from the influence of the vascular niche. Our results indicate that
LSK cells of the osteoblastic niche can barely survive in such a harsh environment.
However, the bone marrow vasculature can offer an ultimate shelter, as documented by the
relative conservation of LSK cells in the peri-vascular space. To the best of our knowledge,
the only precedent for marrow cell depletion in the hypoxic microenvironment, often
identified with the osteoblastic niche, is represented by the hematopoietic decline described
in aging rodents.6 The model of accelerated senescence fits very well with diabetic BM
remodeling, since in both conditions fat accumulation occurs along with osteopenia. The
mechanism which underpins aging- and diabetes-induced increases in adipocyte abundance
remains unknown. Fat accumulation could serve not only to fill the empty marrow, pushing
marrow cells toward the vasculature, but also participate in the ongoing diabetic remodeling
by secreting paracrine factors and pro-inflammatory cytokines.22 Of note, a similar
remodeling was observed in obese leptin-receptor mutant mice, a model of insulin-resistant
type-2 diabetes (P. Madeddu, unpublished observations, 2009).

The physiological gradient of ROS acts as a signaling mechanism governing functional
compartmentalization of stem cells. Those precious cells, necessary for regeneration of
almost all the rest of the whole organism, reside in the “low risk zone” ideal for maintenance
of quiescence. The function of the ROSM9" zone adjacent to the marrow vasculature is
instead to facilitate stem cell maturation.6 Under pathologic conditions, however, excessive
production of ROS might endanger the viability of stem cells. Genetically modified mice,
lacking essential components of the regulatory system that maintain ROS within the
physiologic range, show accelerated stem cell senescence and progressive bone marrow
failure,23-25 replicating the situation observed in mice exposed to the oxidant buthionine
sulfoxime.17 Our data show that an elevation in intra-cellular ROS infringes on DNA
integrity and compromises marrow cell function in a model of common human disease.
Different mechanisms might contribute to increase oxidative stress in LSK cells, including
critical hypoperfusion and high glucose, which are both potent activators of ROS generation
by mitochondrial complex 111,26, 27 as well as exposure to ROS from other cellular sources.
For instance, transition metal iron from extravasated erythrocytes can be a potent source of
ROS viathe Fenton reaction. Another mechanism consists of the reduced activity of anti-
oxidative mechanisms, such as the pentose phosphate pathway. In line with the latter,
benfotiamine buffered the diabetes-induced disruptive effect on LSK cells.

The extensive remodeling of bone marrow observed in diabetic mice may not inspire
therapeutic optimism. However, previous studies showed that glucose-lowering therapies
can restore progenitor cell function to some extent.reviewed in 28 Simijarly, in genetically-
modified animals unable to modulate ROS production, anti-oxidant administration restored
the reconstitutive capacity of hematopoietic stem cells, thereby preventing bone marrow
failure.23, 24 Our study newly shows that benfotiamine stimulates anti-oxidative defense
through activation of tranketolase and protects vascular and LSK cells from oxidative stress
and apoptosis.

In conclusion, our results demonstrate the deleterious effect of diabetes on bone marrow
homeostasis. Our characterization of the molecular and cellular signature of diabetic
pathology in bone marrow along with successful results of benfotiamine treatment may lead
to beneficial therapies for human disease. Whether thiamine-derivatives may clinically
reverse BM failure in diabetes represents the objective of future investigation.

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2013 January 18.
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CONDENSED ABSTRACT

We newly demonstrate the presence of microangiopathy in BM of diabetic mice,
associated with LSK cells depletion according to a steeper perfusion gradient from the
vascular to osteoblastic niche. We show that diabetic microangiopathy can be prevented
together with LSK depletion by improving anti-oxidative defense mechanism.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. BM remodellingin T1D mice

(a) Representative images of H&E staining of femurs from C and T1D mice (scale bars: 500
pm). High magnifications of epiphysis and metaphysis show decreased cell density and
empty spaces corresponding to fat accumulation in the marrow of the T1D mouse (scale
bars: 100 wm). Box and whiskers graphs show min to max values of marrow volume (b),
marrow cellular density (c), relative abundance of fat (d) and bone thickness (€). n=7 mice
per group. *£<0.05 and **/<0.01 vs. C.
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Figure 3. T1D-induced phenotypic alterations of BMECs

Microphotographs (scale bars: 100um) and bar-graph illustrating ROS levels (a) and p-Gal
activity (b) in BMECs. (c) Migration of BMECs toward SDF-1 and VEGF-A. (d)
Endothelial network formation by BMECs plated on matrigel (Scale bars: 500m).
Adhesion of BMMNCs to non diabetic (C) BMECs or T1D BMECs under static conditions
(e) and under the influence of shear flow (f). Western blot analysis of VE-cadherin-pY731
and Pyk2-pY402 (g). Trans-endothelial migration of BMMNCs towards SDF-1 (100 ng/mL)
or vehicle (V) using BMECs isolated from C (h, left panel) or T1D mice (h, right panel)
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seeded on transwell inserts. For each assay, three separate experiments in triplicates were
averaged. */<0.05, **/<0.01 and ***F<0.001 vs. C.
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Figure4. T1D reducesthe abundance of SK cells
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vascular niche (VE-cad). An individual cell (*) and clusters of cells (arrows) expressing c-
Kit (ii) and Sca-1 (iii). Double-positive cells (purple fluorescence, iv). One cell expresses
Sca-1 only (#). Scale bars: 20 um. n=7 mice per group. */<0.05,**/<0.01 and ***/<0.001
vs. C.

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2013 January 18.



Page 16

Oikawa et al.

*%
T1D

S o
3
o <
) = m
L o
Q5
a —— | o 88
e < -] ©w - ~N =] I B
* F ¢ &8 8 & & o © €3
(sl192 W1 30 %) N8
auoq Jejndaged) Jo S||99 YS c©
O =) [F) o ) ) © < ~ =) w =
- - b = £
SI122 WG 000°0L 12d © 'N'y'0 Jo "ON SI1120 NG 000°0L Jod 3 'N°y'q Jo "ON % .m
FO a 8 -
. " 5 8
1 (%]
8 S
e ® © = ~§ o w5
< 8 & &8 &8 o =) a g =
(s1192 g 12303 30 %) b s = L
Aj1Aaed 2U0q JO S|129 YST & g
1
© =z
2 O
S =
r T T T T i [
S ® © = & 9 FE  :
- o o o <o < FO _| FO D o C
(uonoey W7 40 %) £ 0 4
Ajaed auoq jo s||22 — >
31} q JO S92 1S 0 85
' T T _ T T T = 2 Q
% g § & ° & o & 5 Bacg
. s1120 IE 000°0L Jod WD 'N°¥2 Jo "ON S|129 Wg 000°01 42d 3 ‘N0 Jo "ON % © S R
= N IRZ Rl
a . PR
- 30 M NJ =
- - 0 c =0
N mw c DO O
- o>
2 =] o T W,.m .Wn
o)) 1- * - - wl [<5} e .
01,04 0} © © F F ©TEES
LR D Q 0 Nnoo3
— )
= = o = o
w2Og
o 9 in o
5w [}
_l [© _| 0 S8
GRS
O %+ ®m N = o © < ~ o
SI120 NG 000°01 J2d WINZD 'N°¥d Jo "ON S1192 Ng 000°0L J2d A 'N'yD JO "ON
Ko}

® Europe PMC Funders Author Manuscripts

® Europe PMC Funders Author Manuscripts

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2013 January 18.



s1duosnuBlA Joyny sispund OINd edoin3 g

s1dLIOSNUBIA JouIny sispund OINd 8doin3 ¢

Oikawa et al.

Page 17
a Total BMCs LSK MECA-32
T1D C T1D
Q ) © ) )
= 23 2 23 23
— 3 E E
£ "o e "o "o
2 o 3 P - g
5 £ £3 £ e
8 [ o= [ o=
- B ; B B
3 e 1S
o 10" 10 10 0100 10* 10° o 10° 10 10° o1’ 10 10°
Hoechst Red
2
» 2 100 '3 100
3 100 Oc ] §(.)
[} [ ReD) » o~ o
3 80 X 80 g 80
- - o
° ° w
§ 6o S 6o 2 60
‘5 ‘5 *k °
2 2 s
2 o *x E 40 £ 40
= a
k-] ° . 2
E 20 *k § 20 '-g 20 i
o S o
0 low di high low medium high 4 low medium high
Hoechst perfusion gradient Hoechst perfusion gradient Hoechst perfusion gradient
b Hoe low Hoe medium Hoe high
'oc 'oo 'oc
iy <5 bl 07, Oc
2,3 o, 3 o - 2 0.6
- -3 : g c 32
o o {ED P SHEP¥ 5808
- =T = % =2 as
E  Trrryromy gy T T Ty Ty Ty Smo4
!I o 10 10 1 o 10° 10* 10° o 10 10* 10 ° 5
QO w w, 2903
(=3 o Q-
v—} v’} ..—!. % s *
g d =1 380%2
o OCP - GC, - <
46 - e "Hir'E
=L o PSP A = 00
S = II l I lllllll)llllq‘l IIII‘s 3 Iow medlum hlgh
0 100 100 10 Hoechst perfusion gradient
Sca-1
Cc Hoe low Hoe medium
& & = : 6
=E ERS &
e g 42
23 24 2 o 4
& & # § =
Q ey L R AL AL T Ty == **
w 010’ 10 10 10 010 10 10 10 010’ 10° 10 10 “6 %
LL 25 & &3 8%,
hE R b2 £
&3 &3 &5 €
23 23 23 5 *k
H 2 | TID 2 .
o o o] o[ | wim [ ]
3 3 3 low medium high
Ty T D A Al R TIE T TS ———

MECA-32

Figure 6. Depletion of L SK cellsfollows perfusion gradient in diabetic BM

(a) Representative plots of Hoe uptake by BM cells and percent distribution of cells across
the perfusion gradient. Abundance of LSK cells (b) and MECA32P% ECs (c) in each level
of perfusion gradient. n=7 mice per group. */<0.05, **/<0.01 vs. C.
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Figure 7. Diabetes activates oxidative stress

(a) Intracellular ROS assessed by CM-H,DCFDA; *P<0.05,*** £<0.001 vs.

ROS!oW, #p<0.05,##P<0.01 vs. C (b) Mitochondrial ROS assessed by MitoTracker Red CM-
H2XROS. (c) Levels of p-H2AX (7 controls; /7. T1D. Scale bars=50um). (d) Annexin \/P%S
SK cells. n=7 mice per group. */<0.05,** A<0.01 and ***/<0.001 vs. C.
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Figure 8. BFT prevents microangiopathy
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(d), ROS (e), and p-H2AX in BMMNC:s (f). BFT prevents diabetes-induced depletion of
LSK cells, assessed as absolute number (g) or percent of total BM cells (h), and reduces
apoptosis (i). Bar graphs represent the percent of LSK cells in total BM cells (j) or LM (k)
across the Hoe perfusion gradient. n=7 mice per group. */~<0.05,**£<0.01,***<0.001 vs.

C; #P<0.05 # P<0.01, ##pP<0.001 vs. vehicle.
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