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Abstract 

Organic carbon (OC) and elemental carbon (EC) together constitute a substantial proportion 

of airborne particulate matter (PM). Insight into the sources of this major contributor to PM is 

important for policies to mitigate the impact of PM on human health and climate change. In 

recent years measurement of the abundance of the radioisotope of carbon (carbon-14 or 14C) 

in samples of PM by accelerator mass spectrometry has been used to help quantify the relative 

contributions from sources of fossil carbon and contemporary carbon. This review provides an 

introduction to the different sources of carbon within PM and the role of 14C measurements, a 

description of the preparation of PM samples and of the instrumentation used to quantify 14C, 

and a summary of the results and source apportionment methods reported in published studies 

since the mid-2000s. All studies report a sizable fraction of the carbonaceous PM as of non-

fossil origin. Even for PM collected in urban locations proportions of non-fossil carbon 

generally exceed 30%; typically the proportion in urban background locations is around 40-

60% depending on the local influence of biomass burning. Where values have been measured 

directly, proportions of non-fossil carbon in EC are lower than in OC, reflecting the greater 

contribution of fossil-fuel combustion to EC and the generally small sources of contemporary 

EC. Detailed source apportionment studies point to important contributions from biogenic-

derived secondary organic carbon, consistent with other evidence of a ubiquitous presence of 

heavily oxidised background SOC. The review concludes with some comments on current 

issues and future prospects, including progress towards compound-class and individual 

compound specific 14C analyses. 

 

Keywords: carbon-14; accelerator mass spectrometry; atmospheric particulate matter; organic 

carbon (OC); elemental carbon (OC). 
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List of acronyms 

 

AMS  accelerator mass spectrometry 

BVOC biogenic volatile organic compound 

CARBOSOL name given to the EU project A study of the present and retrospective state of 

the organic versus inorganic aerosol over Europe 

CPI   carbon preference index 

EC  elemental carbon 

HULIS  humic-like substances 

IMPROVE the US Interagency Monitoring of Protected Visual Environments program 

IQR  inter-quartile range 

MS  mass spectrometry 

MW  molecular weight 

NIOSH National Institute for Occupational Safety and Health 

NIST  National Institute of Standards and Technology 

OC  organic carbon 

OM  organic matter 

PAH  polycyclic aromatic hydrocarbon 

PM  particulate matter 

PM10, PM2.5 particulate matter fraction consisting of particles with aerodynamic diameter 

<10 µm or <2.5 µm, respectively 

pMC  percent modern carbon 

POC  primary organic carbon 

SOA  secondary organic aerosol 

SOC  secondary organic carbon 

SRM  standard reference material 

TC  total carbon 

TSP  total suspended particles 

VOC  volatile organic compound 

WHO  World Health Organisation 

WINSOC water-insoluble organic carbon  

WSOC  water-soluble organic carbon 
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1 Introduction 

 

Ambient airborne particles have extremely diverse physicochemical properties, sources and 

impacts – the latter including effects on transport, transformation and deposition of chemical 

species, on radiative forcing and on human health [1;2]. The magnitude of the net direct and 

indirect radiative forcing induced by particles is the most uncertain component in estimation of 

anthropogenic global warming [3]. Part of this uncertainty derives from lack of detailed 

knowledge of the chemical composition of particles that affects optical scattering and 

hygroscopicity. The deleterious impact of ambient particulate matter (PM) on human health is 

well established in the literature and the World Health Organisation (WHO) publishes 

advisory air quality guidelines for mass concentrations of PM in the PM10 and PM2.5 size 

fractions (particles with aerodynamic diameters <10 µm and < 2.5 µm, respectively) [4]. A 

recent WHO review reports a strengthening of the evidence for the association between PM 

and a number of adverse health outcomes [5]. It has been estimated that 89% of the world’s 

population live in areas where ambient PM2.5 exceeds the WHO guideline of 10 µg m-3 [6] and 

outdoor PM air pollution is ranked ninth in the list of risk factors contributing to the global 

burden of disease (indoor air pollution is ranked fourth) [7]. Given the lack of unequivocal 

evidence for either a threshold concentration for adverse health effects or of differential 

toxicity for different components, current air quality legislation and policies to limit and 

reduce health effects from PM put equal emphasis on all PM mass reductions [8].  

 

The major chemical constituents contributing to bulk ambient PM are well known – elemental 

carbon, organic carbon, ammonium sulphate, ammonium nitrate, sodium nitrate, sea-salt, other 

inorganic dusts – but the exact composition varies markedly with particle size range and 

locality. The elemental and organic components comprise a substantial proportion of total 
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particle mass, at least one third on average [9-13]. However, the characterisation and source 

apportionment of these components remains a major challenge [14-18]. The organic 

component may comprise hundreds or thousands of individual organic species, the majority of 

which are individually present at ultra-trace concentrations. The difficulty even of demarcating 

between organic and elemental carbon is well known and methodologically defined [19-21].  

 

An important issue in both scientific and policy terms is the relative contributions of 

anthropogenic and biogenic sources to the carbonaceous component. Natural biogenic sources 

will not be readily amenable to control through policy action. The radioisotope of carbon (14C) 

is an ideal tracer for distinguishing between fossil and contemporary carbon. Living material is 

in equilibrium with CO2 in the atmosphere containing a known abundance of 14C. On death, 

the 14C isotope decays with a half-life of 5370 years [22] which is negligible in comparison 

with the age of fossil carbon sources. Thus, in principle, determination of the ratio of 14C 

abundance in a sample of PM to its contemporary abundance directly yields the proportion of 

contemporary to fossil carbon in the sample. However, it is important to recognise that 

division between fossil and contemporary sources of carbon is not equivalent to a division 

between anthropogenic and natural sources. Data from 14C analyses are therefore usefully 

combined with other information to inform a source apportionment of carbonaceous PM.  

 

An analytical challenge is the very high level of accuracy and precision to which the very low 

abundances of 14C (of the order of 10-12 atom ratio) need to be quantified. This requires the use 

of accelerator mass spectrometry (AMS), a technique that is becoming more widespread. 

Consequently, the last decade or so has seen increasing application of 14C analysis to 

atmospheric PM. The aim of this article is to summarise this methodology, highlighting 



6 
 

advantages and disadvantages, to review the state-of-the-art of recent studies and to comment 

on current issues and future prospects. 

 

2  The origin of 
14

C in the environment 

 

Cosmic rays passing through the atmosphere generate neutrons which on capture by nitrogen 

in the air produce 14C at a relatively stable rate,  

14N  +  n   →  14C  +  p 

where n and p are, respectively, a neutron and proton. This cosmogenic 14C is rapidly oxidised  

to 14CO2 which in turn becomes equilibrated within the carbon of all living material through 

the balance of photosynthesis and respiration fluxes. Therefore all living material has a 

constant characteristic abundance of 14C. On death, the uptake of 14C ceases and the amount of 

14C present at death starts to decrease exponentially with a half-life of 5370 years. 

Consequently, the carbon in fossil fuels, which are millions of years old, effectively contains 

zero 14C.    

 

Two global anthropogenic effects perturb this neat picture. One is an atmospheric 14C dilution 

effect caused by the increasing amount of CO2 released by the burning of fossil fuels since the 

start of the industrial revolution. The second is the significant release of 14C into the 

atmosphere from nuclear bomb tests in the middle of the last century. The correction for these 

effects is described in Section 4.3. In addition, there are instances of local controlled release of 

14C into the air via, for example, the incineration of medical or biological material where 14C 

has been used as an isotopic tracer (Section 6.1).   

 

3  An overview of the broad sources of carbonaceous PM and the role of 
14

C data 



7 
 

 

Figure 1 illustrates a heuristic ‘top down’ apportionment of PM total carbon (TC) into broad 

categories: first into EC and OC, which are further sub-divided according to anthropogenic or 

contemporary sources and into direct primary emissions to the atmosphere or within-

atmosphere secondary formation. These divisions lead to the following 8 broad categories of 

carbonaceous PM:   

• anthropogenic primary fossil EC (burning of fossil fuels);  

• anthropogenic primary contemporary EC (deliberate burning of contemporary 

biomass/biofuel);  

• natural primary contemporary EC (natural burning of contemporary biomass, e.g. 

wildfires);  

• anthropogenic primary fossil OC (burning of fossil fuels);  

• anthropogenic primary contemporary OC (deliberate burning of contemporary 

biomass, and sources such as cooking, cigarette smoke and natural rubber tyre wear); 

• natural primary contemporary OC (natural burning of contemporary biomass 

(wildfires); primary biological material derived from pollen, spores and mechanical 

attrition from living and detritus vegetation; suspended soil humic material, etc.);   

• anthropogenic secondary fossil OC (in-atmosphere production of secondary organic 

aerosol (SOA) from emissions of fossil-fuel derived VOC precursors such as toluene, 

xylene, 1,3-butadiene, etc.);  

• natural secondary contemporary OC (in-atmosphere production of SOA from 

emissions of biogenic VOC precursors, principally from vegetation, such as isoprene, 

pinene, limonene, etc.).  

It is assumed the EC fraction only has primary sources, and that all fossil carbon is 

anthropogenic. (The latter may not be strictly true where genuinely natural burning of seams 
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of fossil fuel contribute to measured PM.) It is also assumed impractical to distinguish 

between natural and anthropogenic contemporary SOC, i.e. between biogenic SOC derived 

from BVOC emissions from truly natural land cover or from BVOC emissions from human-

influenced land cover.  

 

Many localities may experience negligible contribution from natural contemporary EC and 

POC if natural wild fires are not an issue, although long-range transport from further afield 

may still be important. 

 

The aim of 14C measurements is to help constrain the broad source apportionments, principally 

between fossil and contemporary sources. Whilst initially this apportionment was applied only 

to the TC content, a two-step preparative combustion approach can, in principle, allow the 

fossil-contemporary split to be determined in the OC and EC components separately [23;24]. 

The categories then directly quantifiable by 14C determination are highlighted in Figure 1. This 

figure, and the above discussion of contributing sources to carbonaceous PM, illustrate the 

point that a fossil-contemporary apportionment is not equivalent to an anthropogenic-natural 

apportionment; for example, POC from the combustion of biomass/biofuels or from cooking, 

or natural rubber tyre wear are all anthropogenic activities releasing contemporary carbon. 

Likewise, deliberate land-use change that alters BVOC emissions and SOA production is an 

anthropogenic rather than a natural source.   

 

4 Determination of 
14

C abundance by AMS 

 

The essence of the methodology is that the PM sample is combusted to convert all (or 

particular components) of the carbon to CO2, which is then reduced to a graphite target for the 
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accelerator mass spectrometer. A general description of the sample preparation and mode of 

operation of an AMS is given here; individual approaches and instrumentation will vary, as 

described in individual studies.   

 

4.1 Sample preparation 

 

Samples of PM (size fractionated as required) are collected onto quartz filters, usually with hi-

vol samplers so as to collect a few hundred µg C within a 24 h period.  Filters are pre-baked 

(typically at temperatures > 500 °C for > 12 h) to remove any contaminant carbon. Prior to 

combustion, the filter sample may be pre-washed in dilute HCl to remove any carbonate 

(CO3
2−) [25;26]. Many studies assume negligible CO3

2− in comparison to the organic and 

elemental carbon and exclude this step. Filters are sealed in a quartz combustion tube. In the 

general case of determination of 14C in TC only, the tube typically contains CuO as oxidizer, 

plus Ag to remove any liberated halogen, and is combusted for at least 4 h at 800 °C. The 

evolved gas, principally CO2, is released into a gas-handling line for purification. This may 

consist, first, of further combustion at 850 °C in the presence of e.g. CuO and MnO2, to ensure 

complete oxidation of any CO to CO2, followed by passage through an ethanol/solid CO2 cold 

trap (−72 °C) to remove water vapour and a liquid nitrogen trap (−196 °C) in tandem with 

cryogenic pumping to remove any non-condensing contaminants [27]. The volume of CO2 is 

measured by capacitance manometer.  

 

For the reduction step an aliquot of CO2 is transferred to a further combustion tube containing 

a few tens mg Zn powder and a few mg of Fe powder and is heated to 450-550 °C. The Zn 

reduces the CO2 to CO, and the Fe reduces the CO to a graphite coating on the Fe powder 
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[28]. The Fe/graphite is then compressed into a small-diameter hole in an Al target holder to 

form the target for the AMS. 

 

4.2 AMS instrumentation  

 

In accelerator mass spectrometry the abundance of the 14C nuclei is measured directly, rather 

than via counting of radioactive β-decays [29]. Key features of AMS which facilitate the high 

discrimination required to quantify 14C at sub 10-12 atom ratio include:  

• initial production of negative ions to eliminate isobars with low electron affinity (e.g. 

14N); 

• acceleration of ions to high energy to increase sensitivity during m/z and m/E 

selections; 

• stripping of electrons to dissociate molecular isobars and produce multiply-charged 

positive ions; 

• energy-loss detection that is sensitive to atomic number.      

 

A general schematic of the components of an AMS instrument is shown in Figure 2. 

Individual instrument set-ups may differ from this figure and from the following description.  

Sputtering of the graphite target, usually with Cs+ ions, gives an intense, short pulse of 

negative sample ions. This includes molecular anions such as hydrides of carbon (CH−). The 

first magnet performs initial mass separation. The m/z 14 ions enter an accelerator which 

generates voltages up to 5 MV and accelerates ions through a low pressure gas (e.g. Ar) or a 

thin metal foil ‘stripper’ that removes electrons from the ions to yield multiply-charged 

positive ions with energies of several tens MeV. Any molecular ions are destroyed since these 

are not stable with greater than +1 charge. A subsequent electrostatic deflector with a narrow 
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exit slit separates ions by energy and charge. The selected multiply-charged carbon ions then 

pass through a further magnetic selector before reaching an energy-loss detector. This consists 

of a gas path with a longitudinal series of electrical sensors that determines the rate at which 

the incoming ion loses energy as it passes down the gas path. Although all ions arriving at the 

entrance of the detector have the same kinetic energy, the rate at which the energy of a 

particular ion loses energy in collision with the gas in the detector is dependent on the atomic 

number of the incoming ion. Therefore by only counting ions that have an energy-loss profile 

in the detector that matches the profile for an ion with the atomic number of carbon it is 

possible to discriminate between ions from 14C and, for example, 14N. The ability of the 

energy-loss detector to discriminate between atomic number very approximately requires ~1 

MeV of energy per atomic number, i.e. distinguishing between 14C and 14N requires an 

incoming ion energy of ~14 MeV. This is another reason why large initial accelerator voltages 

are required.  

 

The use of AMS rather than β-decay counting gives greater precision overall, and a large 

reduction in measurement time. Of particular relevance to the application to samples of 

ambient PM is the considerably smaller size of sample required.  

 

4.3 Calibrations and determination of fraction contemporary 

 

The abundance of 14C is expressed relative to the abundance of 12C and the value of this ratio 

for a sample, F14Csample is expressed relative to the equivalent ratio for a standard called the 

Modern Carbon standard, F14CModern. The ratio of F14Csample to F14Cmodern is the fraction modern 

carbon, fM, of the sample:  
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�M(sample) =

C
�

C
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C
�

C
� (Modern	)

=
F14Csample

F14CModern
 

An alternative nomenclature to fM is percent modern carbon, pMC, where pMC = 100 × fM. 

The extensive release of fossil CO2 from burning of fossil fuels, and of 14C from nuclear bomb 

tests, have significantly perturbed the value of F14C in the last century or so. The latter led to 

an almost doubling of atmospheric 14C in the northern hemisphere in the 1960s. Following the 

ban on above-ground bomb tests the abundance of 14C in the atmosphere has been declining, 

as illustrated in Figure 3, as it gets taken up by the oceans and terrestrial biosphere [30;31]. 

The recent variability in 14C is why measured abundances are reported against a defined 

standard value of F14CModern that is related to the equilibrium 14C content of living material in 

an atmosphere (largely) unaffected by anthropogenic perturbations.     

 

The primary radiocarbon standard is the international Oxalic Acid II (HOXII) standard (SRM-

4990C). Each batch of samples analysed by AMS will typically also contain targets produced 

from the HOXII primary standard, a secondary standard of known near-contemporary age 

and/or a secondary old-age standard (e.g. ancient wood sample), and a ‘blank’ standard of zero 

14C activity derived from either calcite mineral or interglacial wood with an age in excess of 

100,000 years. A typical AMS blank value might be fM ~ 0.0002 (pMC = 0.02) or better.  

 

If the potential contribution of carbon from the filter material on which the PM samples are 

collected is a concern then fM values from loaded sample filters (fM(loaded)) can be corrected 

for positive organic artifacts using fM(blank) values derived from analysis of blank filters: 
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where Lloaded and Lblank are the carbon masses in the analysed regions of, respectively, the 

loaded sample filters and the blank filter [32;33]. 

 

In a simple two-member model, in which it is assumed the carbon in the sample comprises 

only of fossil carbon (F14C = 0) and of contemporary carbon from a single source with a single 

age of carbon, then the fraction of contemporary carbon, fc, that is present in the sample is 

derived directly by dividing fM(sample) by the value for the 14C excess prevalent at the point in 

time when the contemporary carbon was living. For example, if the contemporary carbon 

source was derived only from material from an annual crop growing in 2010 then fM would be 

divided by the factor F14C = 1.04, which is the 14C excess in living material in 2010 (see 

Figure 3) [31]. In practice, the non-fossil carbon in PM will derive from multiple 

‘contemporary’ sources spanning the range from truly contemporary, e.g. SOC derived from 

BVOC emissions from the year in which the sample was collected, to mature tree-wood laid 

down several decades ago when atmospheric 14C abundance was substantially higher. 

Estimates of  F14C for wood biomass are usually based on tree-growth models [34] and depend 

on assumptions about the age profiles of the trees contributing to the wood stock. Values used 

in the literature have ranged from 1.08 to 1.30 [35-40], which shows that this correction can be 

important otherwise fM is a substantial overestimate of the true fraction fc contributed by the 

biomass-derived carbon. Unfortunately, circularity arises in that the 14C analyses are 

undertaken to help constrain proportions of fossil and contemporary carbon but the appropriate 

correction to apply to fM requires knowledge of the contributing sources of contemporary 

carbon. Sensitivity analyses to certain assumptions are often undertaken [27;40;41].  
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4.4 Preparation of samples for determination of 
14

C in OC and EC separately 

 

Figure 1 illustrates the benefit of determining the fractions of contemporary carbon in the OC 

and EC fractions of TC separately. The methodology to apportion TC into its OC and EC 

fractions has been subject to much debate, and still remains essentially a methodologically-

defined split [19-21;42]. The physical separation of samples of PM into OC and EC fractions 

for 14C determination was pioneered by Szidat and co-workers [23;24;35;43].  In their original 

procedure (‘THEODORE’: two-step heating system for the EC/OC determination of 

radiocarbon in the environment), combustion of the sample in a stream O2 for 10 min at 340°C 

was used to evolve CO2 from a fraction assigned as OC [24]. These workers reported that 

although the OC/TC ratio increased with temperature between 340 and 440 °C the fM value 

remained unchanged, indicating that whilst additional OC was combusted at higher 

temperatures there was negligible interference to fM from EC at temperatures up to 440 °C, i.e. 

the chosen temperature of 340 °C was sufficient to determine an accurate value of fM(OC) 

even if some OC remained non-combusted. A sequential combustion in O2 for a further 10 

min at 650°C yielded further CO2. Mass balance with the volumes and fM values for the CO2 

evolved from the two combustions provided fM(TC). To determine the fM(EC) value required 

>4 h combustion at 375 °C performed off-line in a muffle furnace on a parallel sample.  

 

Szidat et al. [23;35] refined the above technique to provide further distinction between water-

soluble and water-insoluble components of OC (WSOC and WINSOC) and to recognise that 

EC may also contain high MW, low volatility organic species. Some classes of organic 

compounds associated with WSOC include polyols, polyethers and mono-, di- and poly-

carboxylic acids, whilst organic compounds associated with WINSOC include n-alkanes, 
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aromatic compounds (e.g. PAHs) and long-chained carboxylic acids. Figure 4 reproduces the 

flow procedure for determining mass and 14C in each fraction. 

• TC was obtained by combustion for 10 min at 650 °C in a stream of O2. Mass of C and 

14C content in this fraction are determined directly from the sample. 

• OC was obtained by combustion for 10 min at 340 °C in a stream of O2. Mass of C and 

14C content in this fraction are determined directly from the sample.  

• WINSOC was obtained by first soaking a filter overnight in 10 mL of high-purity 

water and then drying it prior to the OC combustion. Mass of C and 14C content in this 

fraction are determined directly from the sample. 

• WSOC was determined by difference: WSOC = OC – WINSOC. Thus mass of C and 

14C content in this sample are determined indirectly by subtraction. 

• ‘EC+polymerizable_WSOC’ was determined by first heating the filter for 4 h at 375 

°C in a muffle furnace to eliminate OC and then combusting for 10 min at 650 °C in a 

stream of O2. Mass of C and 14C content in this fraction are determined directly from 

the sample. The ‘polymerizable_WSOC’ (or pyrolizable OC) represents ‘polymeric 

polar OC’ (e.g. polyacids, HULIS) which chars and remains on the filter rather than 

being driven off in the prior heating at 375 °C, and which often interferes with OC-EC 

separations. 

• EC was obtained by first soaking a filter overnight in 10 mL of high-purity water prior 

to the elimination of OC at 375 °C and the subsequent combustion in O2 at 650 °C. 

This fraction is most readily equated to ‘true EC’. Mass of C and 14C content in this 

fraction are determined directly from the sample. 

• ‘Polymerizable_WSOC’ was determined by difference: ‘Polymerizable_WSOC’ = 

‘EC+polymerizable_WSOC’ – EC. Thus mass of C and 14C content in this sample are 

determined indirectly by subtraction.  
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Zhang et al. [44] conducted further extensive evaluations towards a protocol for the isolation 

of OC and EC fractions from filter samples of PM for 14C determinations. They present a four-

step protocol that minimises the positive and negative artefacts associated with the charring of 

OC and the premature combustion of OC. However, these authors also acknowledge the 

continuum that exists in reality between refractory OC and non-refractory EC such as derived 

from wood-burning. Zhang et al. [44] stress the importance of pre-treatment of filters destined 

for EC analysis with acidified ultrapure water to remove high molecular-weight polyacidic 

species; otherwise the non-fossil contribution may be overestimated due to the positive bias 

from charring. The four consecutive steps are: 

(1) combustion at 375 °C in pure O2 of untreated filters for separation of OC, and of water-

extracted filters for separation of WINSOC. The WSOC fraction is determined by the 

subtraction of the water-soluble fraction of TC from the untreated TC; 

(2) combustion at 475 °C in O2 of the latter filter, immediately followed by 

(3) combustion at 650 °C in He for 2 min, for the complete removal of OC prior to EC 

isolation; 

(4) combustion at 760 °C in O2 for recovery of EC.  

The authors recommend that 14C results of EC should be presented together with a description 

of the methodology employed and of the EC recovery. Bernardoni et al. [45] similarly report 

that an additional high temperature combustion in He (corresponding to step (3) above) prior 

to the final combustion in O2 for the isolation of the EC is effective at removing the refractory 

OC, although these workers’ choice of temperature was 750 °C. Both these latter studies 

emphasise the pre-washing of filters prior to EC isolation.      

 

4.5 Reference PM material and 
14

 C values 
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The only PM reference material for which certified 14C values are available is the USA 

National Institute of Standards and Technology (NIST) 1649a urban dust standard reference 

material (SRM), originally collected in 1976-77 [46]. This is a total suspended particle size 

fraction. The original certificate for this SRM [47] has been revised twice [48;49], the latter to 

coincide with the re-issue of samples of this SRM in 2007. The revisions relate principally to 

provision of additional data on proportion of individual carbon fractions and additional fM 

values. NIST have created a PM2.5 sub-fraction of the original 1649a bulk TSP reference 

material which has been dispersed onto quartz filters [50] and is now being issued as RM 8785 

[51]. Whilst the TC, OC  and EC mass contents of this filter-based PM2.5 matrix have been 

issued as information values, the 14C content of these fractions has not.  

 

Aside from the NIST certificate values themselves, there are almost no other published data 

for the fM values of the SRM-1649a urban dust. Table 1 summarises the data. The fM values for 

TC are fairly consistent, since the preparation of a sample of TC for 14C is relatively 

straightforward. No certified data for fM(OC) are presented by NIST but the two values 

reported by Szidat et al. [24] and Heal et al. [27] are in good agreement.  In contrast, the fM 

values for the EC fraction in Table 1 vary by a factor 4, even on the NIST certificate [49]. This 

highlights the considerable method-dependent issues in defining and isolating an EC fraction 

already discussed, as also manifest by the range of EC/TC values quoted for this SRM. The 

NIST [49] certificate reports the results of EC/TC determinations by several methodologies in 

three clusters of values: cluster 1 has mean EC/TC = 0.075 (IQR 0.071-0.78, n = 4), cluster 2 

has mean EC/TC = 0.28 (IQR 0.27-0.29, n = 4), and cluster 3 has mean EC/TC = 0.46 (IQR 

0.44-0.50, n = 5); the mean EC/TC ratios in these 3 clusters vary by more than a factor 6. For 

the PM2.5 NIST 8785 SRM, mean EC/TC is reported as 0.279 for determination using the 
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NIOSH thermal optical transmittance method originally developed by Birch and Carey [42], or 

0.490 using the IMPROVE thermal optical reflectance method [52]. 

 

5 A review of published studies 

 

5.1 Fraction non-fossil in TC 

 

Table 2 summarises the fraction of particulate matter TC of contemporary (non-fossil) origin, 

fc, reported in studies published since about the mid-2000s. Meta-data on geographical 

location, site type and PM size fraction are included. Values of fc, for OC and EC are also 

presented in Table 2, where these are available. These latter values may derive from 

measurement on the carbonaceous fraction itself, or be inferred by mass balance or a source 

apportionment approach. In some instances, fM rather than fc values are presented in Table 2. 

In some studies it is difficult to interpret whether data presented are fc or fM.  

 

The studies listed in Table 2 are from all over the world, except South America, with data 

from Europe predominating. It is important to note that the number of individual samples 

analysed in some studies is very low, which reflects the considerable resource requirements 

associated with collecting sufficient PM onto filter media, its preparation for AMS analysis, 

and the AMS analyses themselves.  

 

The principal observation from Table 2 is that all studies report a sizable fraction of the 

carbonaceous PM to be of non-fossil origin, on average, even for PM collected in urban 

locations. Even the lowest fc(TC) values in Table 2 indicate non-fossil contributions in the 

range 0.3-0.4. These lower non-fossil contributions tend to be associated with east Asia, e.g. 
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Tokyo [53;54], Beijing [55] and Lhasa [26] and at kerbside in Marseille and Geneva [56]. At 

the other extreme, contemporary carbon fractions approaching unity are reported at rural sites 

well away from urban centres in the USA [32;33;57] or where residential wood-burning 

completely dominates, e.g. Launceston, Tasmania [25]. fc(TC) values in the range 0.4-0.8 are 

typical, with PM in urban areas having fc(TC) values at the lower end of this range (except 

where residential biomass burning makes a substantial contribution to urban emissions) and 

PM at suburban, rural and coastal locations having values at the higher end.  

   

5.2 Fraction non-fossil carbon in EC and OC  

 

Where direct 14C measurements have been made, the fraction non-fossil in EC is universally 

lower on average than in OC. In their original OC-EC separation work, Szidat et al. [23] report 

average fc(OC) and fc(EC) values of 0.75 and 0.30 for PM10 in Zürich. Subsequent 

measurements in the same city gave fc(OC) values in the range 0.68-0.72 and fc(EC) values in 

the range 0.06-0.25, varying with season [35]. In Göteburg, fM(OC) and fM(EC) values were 

0.59-0.78 and 0.05-0.17, respectively [36], whilst in Birmingham (UK), they averaged 0.76 

and 0.11, respectively [27], and in Barcelona they were 0.52-0.75 and 0.09-0.34, respectively 

[39]. These findings show that fossil-fuel burning is, in most areas, the predominant source of 

EC. 

 

5.3 Examples of more detailed source apportionment 

 

Measurements of 14C in EC and OC separately, alongside appropriate conversions of fM values 

into fc values, permits direct apportionment of TC into five source categories [27;35;36]. Refer 

also to Figure 1 and Section 3.  
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Biogenic emissions do not give rise to EC, so fc(EC) directly yields the division between fossil 

and biomass combustion contributions to total EC:  

  ECbiomass = fc(EC)×EC  

ECfossil = (1 – fc(EC))×EC  

Sources of ECbiomass include burning of biomass in residences or for power generation, biofuel 

blends in transport fuels and long-range transport of EC from vegetation fires. With the 

exception of genuinely natural wild fires, all these sources are anthropogenic, even though the 

radiocarbon signature is contemporary.  

 

The OC can likewise be apportioned between fossil-fuel and biomass combustion, and also to 

secondary organic aerosol products of biogenic VOC emissions: 

  OC = OCfossil + OCbiomass + OCbiogenic 

It must be noted that this OCbiogenic component also includes other contemporary OC material 

not explicitly accounted for elsewhere, for example spores, plant detritus, tyre rubber, etc. This 

is discussed further later. The contribution of OCfossil is obtained directly from the 

measurement of fc(OC): 

  OCfossil = (1 – fc(OC))×OC 

The OCfossil component is both fossil-derived POC and any SOC from fossil-derived VOC. A 

value for OCbiomass can be estimated from the ECbiomass value already derived using an assumed 

OC/EC emission ratio for biofuel burning, (OC/EC)ER(biomass), from the literature: 

  OCbiomass = ECbiomass × (OC/EC)ER(biomass)  

The value for OCbiogenic is determined by mass balance of OC: 

  OCbiogenic = OC – OCfossil − OCbiomass  
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Figure 5 shows an example application of this source apportionment approach to TC in 

samples of PM2.5 collected at an urban background site in Birmingham, UK [27]. The average 

apportionment (2% biomass EC; 27% fossil EC; 20% fossil OC; 10% biomass OC; 41% 

biogenic and other contemporary OC) is similar to that in Zürich [35] and Göteburg [36] 

although the two continental European cities are more strongly influenced by wood-burning 

sources.  

 

The category OCfossil will comprise both primary and secondary OCfossil, the latter derived 

from atmospheric oxidation of fossil-derived VOC emissions, e.g. toluene (Figure 1). It can be 

sub-divided using an assumed POCfossil/ECfossil ratio for the sampling site, with the remainder 

of OCfossil assumed to be SOCfossil. Recent values of this ratio for traffic emissions are reported 

in the range 0.3-0.4 [58;59] and 0.65 for a background site in Birmingham [58]. Table 3 shows 

the division of OCfossil for measurements in Birmingham using a ratio of 0.35. 

 

As noted already, the category designated OCbiogenic in this 5-source apportionment approach 

includes, in addition to BVOC-derived SOC, other sources of non-fossil OC not explicitly 

allocated to biomass/biofuel combustion. These may include primary biological material such 

as viruses, spores, pollen, plant detritus and particle-bound carbohydrates, amino acids, etc., as 

well as particles derived from vehicle tyre wear (where tyres are composed of natural rubber) 

and cigarette smoke. Sources of contemporary OC from cooking may be incorporated within 

the OCbiomass category. The magnitudes of the contributions of these sources to individual size 

fractions of PM OC is highly uncertain, but information can be derived from identification and 

parallel quantification of specific marker compounds in the PM. The most widely used are 

levoglucosan, as a marker for wood burning, and cellulose, as a marker for primary particles 

from vegetation. With these data it is possible to devise an apportionment into similar source 
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categories as described above even when fM has been determined only for TC, as has been 

described by Gelencser et al. [41] for PM2.5 from the European CARBOSOL sites.  

 

As before, EC is assumed to derive only from two sources, 

 EC = ECbiomass  +  ECfossil 

where ECbiomass is again derived from OCbiomass/ECbiomass mass emissions ratios reported for 

wood burning in the literature, and ECfossil is obtained by difference from EC. The OC is 

divided into three primary and two secondary sources, 

 OC = POCfossil  +  POCbiomass  +  POCprimary_bio  +  SOCfossil  +  SOCbiogenic 

where 

• POCfossil from fossil-fuel combustion is derived from ECfossil by using 

(POCfossil/ECfossil)prim mass emission ratios for fossil-fuel combustion taken from the 

literature;   

• POCbiomass from biomass burning is calculated from measured levoglucosan 

concentrations and reported OC/levoglucosan mass emission ratios; 

• POCprimary_bio derives from plant debris and is calculated from measured cellulose 

concentrations and an assumed POCbio/cellulose mass ‘emission’ ratio; 

• SOCbiogenic (secondary PM carbon derived from plant VOC emissions such as isoprene 

and pinene) is derived from: 

SOCbiogenic × fM(nonfossil) = TC×fM(TC) − OCbiogenic×fM(biogenic) − (OCbiomass + ECbiomas)×fM(biomass) − 

(OCfossil + ECfossil + SOCfossil)×fM(fossil)    

The value fM(TC) is as measured in the sample; the value of fM(biogenic) is assumed to be 

that of contemporary atmospheric CO2 at the time of sampling, the value of  fM(biomass) 

is more uncertain ranging from the value at sampling for burning of contemporary 

agricultural residues to 1.25 for burning of old trees, the value of fM(fossil) = 0 by 
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definition, the value of fM(nonfossil) is taken to be the value at sampling, i.e. that 

SOCnonfossil is derived from contemporary biomass VOC emissions. 

• The final source contribution term, SOCfossil, (secondary PM carbon derived from 

emissions of fossil-fuel derived VOC precursors) is derived as the residual after 

subtraction of all other terms from TC. There is no circularity in deriving SOCfossil 

because the parameter fM(fossil) = 0 so the term containing SOCfossil in the above 

equation is in fact zero. 

Because several assumptions are made regarding appropriate emissions and concentration 

ratios, and for fM values, Gelencser et al. [41] undertook a comprehensive Latin hypercube 

sampling approach to provide a Monte-Carlo type probability distribution for concentration 

and contribution of each source based on the estimated ranges and uncertainties attributed to 

each contributing parameter. 

 

Other studies have also measured concentrations of arabitol and mannitol as specific markers 

for fungal spores, enabling a further separation of contemporary POC between this source and 

the vegetation detritus estimated from cellulose concentrations [37;60;61]. Details of extension 

of the apportionment of TC into seven [61] or even eight [37] carbonaceous sources have been 

described. These latter studies all also investigate the impact of uncertainties in assumptions 

through Latin hypercube sampling approaches. 

 

5.4 Scaling up from carbon to PM mass 

 

A pertinent output is to scale the mass of OC in each source to determine the contribution of 

each to total PM mass (EC has unity scaling factor). In their pragmatic mass closure model, 

Harrison et al. [62] assumed an average OM/OC ratio of 1.4 for urban background PM10 in 
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Birmingham. However, recent literature suggests earlier values used for OM/OC may be 

rather too low, particularly for the more heavily oxidised secondary organic aerosol 

component, for which OM/OC ratios in the approximate range 1.5-2.4 have been reported [63-

67]. The scaling factors assumed by AQEG [13] for the PM2.5 data from Birmingham are 

given in Table 3, and range from 1.2 for biogenic POC to 2.0 for biomass burning POC. It is 

emphasised that all values for ratios and scaling factors used in Table 3, and in other studies, 

are subject to uncertainty and to inter-site variablity.  

 

It is clear from all studies apportioning OC into fossil and non-fossil POC and SOC sources is 

that carbonaceous PM, even in many urban areas, is substantially influenced by both biomass 

burning and by BVOC-derived SOA. The latter is consistent with other evidence for a 

ubiquitous presence of heavily oxidised regional/hemispheric background SOC presumed to 

derive in large part from BVOC emissions [68]. 

 

6 Issues and prospects 

 

6.1 Sample contamination 

 

The unintended sampling of PM that derives from, or has been contaminated by, emissions 

from incinerators combusting medical or biological wastes containing 14C used as a 

radioactive tracer can significantly bias the derived fM and consequently cause overestimation 

of the true proportion of contemporary carbon in the rest of the sample. Measured values of fM 

substantially greater than 1 could be indicative of contamination unless a substantial 

proportion of the carbon in the PM is assumed to derive from tree-wood several decades old. 

From data for two monitoring sites in the USA where 14C contamination is apparent, Bukhholz 



25 
 

et al. [69] suggest that such contamination is uncommon but is also not rare (~10%) for PM 

sampling sites. The extent to which contamination may be an issue more widely is not possible 

to gauge because the vast majority of authors do not comment on this. However, the 

possibility of the occasional artificially inflated value for fraction modern needs always to be 

borne in mind.  

    

6.2 Improvements in AMS analyses 

 

Sputtering a CO2 gas sample directly, rather than a graphitized target, gives a lower intensity 

ion beam but, with additional time, it is possible to utilize the entire source in order to acquire 

sufficient ions. It is then possible to work with samples down to a few tens µg C [70] which 

opens the way for shorter durations of sample collection (e.g. sub-diurnal) or analyses of 

different classes of organic compounds, or even individual compounds (Section 6.4). The 

facility to analyse filters with shorter sampling duration is also an advantage from the 

perspective that the OC fraction can be prone to losses during sampling. The increased 

sensitivity comes at extra cost because of the additional beam time required. 

 

The Cs+ sputter source that is normally used in AMS instruments can have some chemical 

effects on analytes. Use of other ions such as Kr+ and Xe+ that avoid these interferences has 

been proposed [29]. Another development is the insertion of an additional reaction cell 

between the initial electric analyser and the accelerator to separate out some rare and stable 

anions with energies of about 20 keV that interfere with isobar separation [29].  

 

6.3 Separation of OC-EC 
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The distinction and isolation of fractions of carbon into OC and EC will likely remain a 

methodologically-defined process. In reality anyway, a sample of PM containing material 

derived from many sources will contain a continuum of carbonaceous material spanning 

elemental graphitic carbon, non-refractory and partially functionalised elemental and ‘brown’ 

carbon, polymeric (and ‘humic-like’) organic material and individual organic compounds with 

a wide range of functionality and hygroscopicity [14-17;71]. Considerable progress has been 

made in refining protocols for OC-EC demarcation for  application to 14C studies that can form 

the basis for reporting to standard analyses [44;45]. An alternative, or parallel, approach is to 

subdivide the carbonaceous material according to gradations in external properties such as 

polarity and solubility in different solvents, or to pursue compound-class or individual 

compound isolation for 14C determination (Section 6.4).  

 

The determination in parallel to 14C of marker compounds in the PM, such as levoglucosan for 

wood burning, and cellulose, mannitol and arabitol for primary biological material, has been 

shown invaluable in helping discriminate and quantify different carbon sources 

[37;38;60;61;72]. Other potential source markers include PAH ratios, which are diagnostic of 

different combustion sources, and the carbon preference index of n-alkanes (organic matter of 

recent biogenic origin shows pronounced predominance towards n-alkanes with odd carbon 

numbers (CPI >1), whilst n-alkanes of fossil-fuel origin typically show CPI of one or less) 

[73;74]. The introduction of high-resolution MS techniques (e.g. orbitraps) will push forward 

the identification and quantification of marker compounds, particularly for the more complex 

highly oxidized OC components. 

 

6.4 Compound-specific 
14

C determinations 
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A few studies have investigated fossil/non-fossil contributions to classes of organic 

compounds isolated from ambient PM, or even at the level of an individual compound. Aside 

from the time consuming nature of such studies, the major limiting factor is the collection of 

sufficient material from which can be extracted sufficient mass of the component of interest to 

prepare as an AMS target. Work to date has focused on polycyclic aromatic hydrocarbons 

(PAH).  

 

Mandalakis et al. [75] combined several hi-vol samples from 3 background sites in Sweden, 

Greece and Croatia into a single sample per site, and used extensive preparative GC clean-up 

and pre-concentration to obtain sufficient material (14 to 68 µg total) for 14C analysis on a 

combined sample of the 9 most abundant PAHs in each sample. They found that biomass 

burning contributes nearly 10% of the total PAH burden in the two southern European sites 

(with fossil fuel combustion making up the 90% balance) but contributed about 50% of total 

PAHs at the Swedish site. In a similar study, sampling at a number of sites across the western 

Balkans, Zencak et al. [76] reported significantly higher non-fossil contributions to  

atmospheric PAH, even in urban and industrialized areas, than for the previous single 

measurement at a remote Croatian site [75].  

 

In suburban Tokyo, compound-class specific 14C analysis revealed that biomass burning 

contributed 17-55% of the PAH burden, and that the increase in the biomass PAH accounted 

for ~27% and 22% of winter-time elevation of low molecular weight PAH and high molecular 

weight PAH, respectively [77]. For PM2.5 samples collected in North Birmingham, Alabama, 

USA, compound-class 14C determinations showed that only 3-8% of the PAHs were of non-

fossil origin, and that the non-fossil contribution was greater in winter than in summer, which 

was attributed to increased contribution of PAHs from biomass burning [78]. Biomass burning 
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contributed more to heavier PAHs (modern source accounting for 6–8%) than lighter ones 

with a modern contribution of 3%. 

 

Sheesley et al. [79] claim the first compound-specific radiocarbon analysis of atmospheric 

PAHs, for a set of samples collected in Lycksele, Sweden. Five individual/paired PAH isolates 

from three pooled fortnight-long filter collections were analyzed: phenanthrene, fluoranthene, 

pyrene, benzo[b+k]fluoranthene and indeno[cd]pyrene plus benzo[ghi]perylene. A simple 

isotopic mass balance model was applied to estimate the fraction biomass, which was 

constrained to 71–87% for the individual PAHs. Indeno[cd]pyrene plus benzo[ghi]perylene 

had a fraction biomass of 71%, while fluoranthene had the highest biomass contribution at 

87%. The authors concluded that residential wood combustion is the dominating source of 

atmospheric PAHs to this region with some variations in contribution to specific PAHs. 

 

These studies reveal wide variation in the relative contributions of fossil and biomass sources 

to atmospheric PAHs with geographic region, and with season. It is anticipated that as the 

capability to utilize smaller masses of carbon in 14C determinations improves additional 

studies of other compound classes, e.g. organic acids, will be undertaken.   

 

7  Summary 

 

Carbon-14 (14C) is an ideal tracer for distinguishing between contemporary and fossil carbon 

since carbonaceous material derived from sources of contemporary carbon (e.g. biomass 

burning, cooking, SOA from biogenic VOC emissions) contains a known abundance of 14C 

whereas carbonaceous material derived from fossil-fuel source contains none. In principle, 

measurement of the abundance of 14C in a sample directly yields the relative proportions of 
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each. To measure accurately the very low abundances of 14C in the small amounts of carbon 

available in filters samples of PM requires accelerator mass spectrometry. The PM sample is 

combusted in O2 to CO2 and the carbon reduced to graphite. AMS derives high sensitivity 

through a number of instrumental features, including the acceleration of ions through a 

stripper to dissociate molecular isobars and produce multiply-charged elemental ions, and 

atomic-number-sensitive detection.  

The increasing availability of AMS facilities (albeit that it remains a specialist and expensive 

technique) has led to a number of investigations of its application to atmospheric PM. All 

studies report a sizable fraction of the carbonaceous PM as of non-fossil origin. Even for PM 

collected in urban locations proportions of non-fossil carbon generally exceed 30%; typically 

the proportion in urban background locations is around 40-60% depending on the local 

influence of biomass burning. A number of studies have sought to thermally isolate the carbon 

in the PM into CO2 derived from OC and EC and to measure the 14C in each fraction 

separately. Issues remain with unambiguously achieving such a separation, but where this 

speciation has been undertaken, proportions of non-fossil carbon in EC are lower than in OC, 

reflecting the greater contribution of fossil-fuel combustion to EC and the generally small 

sources of contemporary EC.  

Sophisticated source apportionment work has been undertaken incorporating data from 

parallel determinations of other organic tracers such as levoglucosan for wood burning, 

cellulose for primary plant material, and mannitol or arabitol for fungal spores, together with 

assumptions of ratios for the concentrations of these markers to bulk mass emissions from 

these sources. An important contribution from BVOC-derived SOC is identified, consistent 

with other evidence of a ubiquitous presence of heavily oxidised background SOC. The best 

prospects for maximizing information from application of 14C analyses to PM are in 
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conjunction with other source markers, facilitated through application of high-resolution MS 

techniques, and through increases in AMS sensitivity enabling 14C determinations in 

compound-class specific and individual compound components of PM.  
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Tables 

 

Table 1: Values of fraction modern 14C determined in carbonaceous fractions of NIST urban 

dust SRM-1649a.  

 
 
      fM(TC)     fM(EC)    fM(OC) 

NIST [49] certificate 

0.61 ± 0.08  (combustion manometry) 0.065 ± 0.014 (thermal oxidation)    no value given a 

0.505 ± 0.006 (H3PO4-combustion-manometry) 0.153 ± 0.004 (chemical oxidation)   no value given a 

0.517 ± 0.007 (combustion-GC) 0.038 ± 0.024  (thermal kinetic 
oxidation) 

  no value given a 

Szidat et al. [24] 

0.522 ± 0.018 0.066 ± 0.020 0.70 ± 0.05 

Heal et al. [27] 

0.515  (single combustion)   

0.570 ± 0.014 (two-step combustion) 0.15 ± 0.08 0.66 ± 0.02 
 

a No information value(s) are supplied on the certificates for fM of the OC fraction, although the 
associated paper [46] provides the following fM values for certain organic fractions: polar carbon,  fM = 
0.43; aromatic carbon, fM = 0.17; aliphatic carbon, fM = 0.024;  
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Table 2: A summary of studies reporting the fraction non-fossil carbon in atmospheric PM published since the mid-2000s. The focus is on data 
relating to the fraction non-fossil carbon in PM total carbon (TC) but data for non-fossil carbon in the OC and/or EC components are also 
presented where these were measured. Data are for fraction contemporary, fc, except where stated to be fraction modern, fM. The emphasis is on 
summarising reported fc (or fM) values but some data in this table are from source apportionment calculations presented by the study authors or 
has been inferred by this author. In some instances reported data were difficult to interpret exactly. Abbreviations: KERB – kerbside; URB – 
urban; SUB – suburban; RUR – rural; COAST – coastal; MAR – marine; sum – summer; win – winter; spr – spring; aut – autumn (fall). All site 
and season assignments as presented by study authors. 
 
Reference Location Site type PM 

fraction  

Approx. period 

during which 

samples collected 

Fraction non-fossil 

TC (mean and/or 

range) 

Fraction non-

fossil OC 

Fraction non-

fossil in EC 

Comments 

Bench [32] Yosemite NP, 
USA 

RUR TSP Jul-Sep 2002 fM = 0.801-1.04 
(n=23) 

- -  

Lewis et al. [34] Nashville, 
USA 

AIRPORT PM2.5 Jun-Jul 1999 0.60 – 0.80 - -  

Endo et al. [80] Tokyo, Japan URB 5 fractions 
from <1.1 
µm to >7.0 
µm 

Apr 2002 ~0.60 for largest 
size to 0.40 for 
smallest size 

- - Increasing contribution of fossil 
carbon in smaller size fraction 

Szidat et al. [23] Zürich, 
Switzerland 

URB PM10 Aug 2002 0.63 (n=3) 0.75 (n = 4) 0.30 (n = 4) 
 

 

Szidat et al. [43] Zürich, 
Switzerland 

URB PM10 Aug 2002 (day and 
night) 

- 0.69 (0.51-
0.80) (n = 13) 

  

Szidat et al. [35] Zürich, 
Switzerland 

URB PM10 Aug-Sep 2002 (sum); 
Feb 2003 (win);  
Mar 2003 (spr) 

- 0.70 (sum);  
0.68 (win); 
0.72 (spr); 

0.06 (sum);  
0.25 (win);  
0.12 (spr); 

 

Jordan et al. [25] Launceston, 
Tasmania 

SUB TSP & 
PM10 

May 2002 - Dec 2003 
(win) 

0.86-1.0 - - Very large contribution from 
wood burning stoves 
 

Gelencser et al. 
[41] 

5 × European 
‘CARBOSOL
’ sites 

RUR PM2.5 Oct 2002- Jul 2004 0.57-0.82 - - Fossil carbon dominates EC; 
consistency in relative source 
apportionment across the 5 sites. 

Yamamoto et al. 
[53] 

Tokyo, Japan URB PM1.3 Jun 2002 – Feb 2003 0.30-0.40 - -  

Zencak et al. [81] Stockholm, 
Sweden 

URB, RUR TSP Oct - Dec 2005 - - URB 0.70 
RUR 0.88 

 

Bench et al. [33] & 
Schichtel et al. [57] 

12 × USA 
‘IMPROVE’ 
sites 

URB, 
NEAR-
URB, RUR 

PM2.5 Various Jun-Aug 
(sum) &  Dec-Feb 
(win) periods 2000-
2006 

URB ~0.50; NEAR-
URB 0.70-0.97; 
RUR ~0.82-1.0. 

- - At RUR sites non-fossil C 
generally lower in winter than 
summer, although still the major 
component 



42 
 

Szidat et al. [36] Göteburg, 
Sweden 

URB PM10 (win) 
PM2.5 (sum) 

Feb - Mar 2005 
Jun-Jul 2006 

  fM OC = 0.69 
(0.59-0.78 
(n=7) 

fM EC = 0.12 
(0.05-0.17 (n=7) 

No sig. difference with season or 
PM fraction. Apportionment 
model gives mean fc(TC) = 0.54 
(sum), = 0.45 (win) 

Gustafsson et al. 
[82] 

Singahad, 
India & 
Maldives 

RUR TSP Feb-Apr2006 0.67 ± 0.03 - ‘EC’: 0.46 
±0.08 
‘soot’: 0.68 ± 
0.06  

EC also includes ‘brown carbon’; 
‘soot’ is a more recalcitrant 
component of EC 

Huang et al. [26] Lhasa, Tibet URB TSP Aug 2006-Jul 2007 0.357-0.702 - - Higher fc in winter c.f. in summer 
Hodzic et al. [72] Mexico City URB, SUB PM1 Mar 2006 URB 0.37-0.67; 

SUB 0.50-0.86 
   

Andersson et al. 
[83] 

Stockholm, 
Sweden 

URB, RUR TSP Aug – Oct 2006 
Nov 2006 – Mar 2007 

- - URB 0.38 
(win), 0.45 
(aut); 
RUR 0.43 
(win), 0.35 (aut) 

 

Heal et al. [27] Birmingham, 
UK 

URB PM2.5 Jun-Aug 2007; Jan-
May 2008 

0.50 (range 0.27-
0.66) (n =26)  
 

fMOC = 0.76 
(n = 26) 

fMEC = 0.11 
(n = 26) 

No sig. difference with  season. 
Enhanced contemporary OC with 
continental trajectories 

El Haddal et al. 
[84;85] 

Marseilles, 
France 

URB PM2.5 Jun-Jul 2008 Not directly 
reported 

- - Authors infer average fc(OC) of 
0.63, based on assumption that all 
EC is fossil 

Gilardoni et al. [37] Po Valley, 
Italy 

RUR PM2.5 Jan-Dec 2007 0.73±0.16 (win) 
0.59±0.26 (sum) 

see notes see notes apportionment of TC into 8 
sources of fossil-non-fossil 
carbon isdescribed 

Ceburnis et al. [86] Mace Head, 
Ireland 

COAST, 
MAR 

PM1.5 Jan-Nov 2006 0.86 (clean air 
mass); 
0.63 (continental air 
mass)  

  Clean air mass: 0.79 marine 
biogenic, 0.07 continental non-
fossil, 0.14 fossil; Polluted 
continental air mass: 0.32, 0.31, 
0.37 resp.  

Genberg et al.  [38] Vavihill, 
Sweden 

RUR PM10 Apr 2008-Apr2009 0.56 (win) 
0.71(spr) 
0.85 (sum) 
0.72 (aut) 

  These values for TC from source 
apportionment but some 
uncertaint because not all TC 
accounted for 

Yttri et al. [61] Oslo, Norway URB, RUR PM10 & 
PM1 

Jun-Jul 2006 
Mar 2007 

fM values: 
URB PM10 0.61 
(win), 0.73 (sum); 
RUR PM10 0.68 
(win), 0.93 (sum); 
URB PM1 0.64 
(win), 0.65 (sum); 
RUR PM1 0.70 
(win), 0.83 (sum); 

  apportionment of TC into 7 
sources of fossil-non-fossil 
carbon is described 
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Yttri et al.  [60] 1 each 
Sweden, 
Norway,  
Finland, 
Denmark 

RUR PM10 Aug-Sep 2009 Averages across the 
4 locations range 
0.74-0.84. 

  apportionment of TC into 5 
sources of fossil-non-fossil 
carbon is described 

Fushimi et al. [54] Kanto 
(Tokyo) Japan 
(2 sites) 

SUB PM2.0 Aug 2007 0.37±0.15 & 
0.37±0.15 for each 
site 

- - fc(TC) sig. higher at night 

Glasius et al. [56] 5 European 
cities 

KERB, 
URB, SUB, 
RUR   

PM2.5 2002-04 0.43±0.11 overall 
av. 

- - Progression in fc(TC) ranging 
from 0.36±0.07 (KERB) to 
0.54±0.11 (RUR) 

Minguillón et al. 
[39] 

Barcelona, 
Spain 

URB, RUR     PM1 Feb-Mar 2009 (win),  
Jul 2009 (sum) 

 URB 0.60 
(win), 
 0.52 (sum); 
RUR 0.69 
(win), 
 0.75 (sum) 

URB  0.13 
(win), 
 0.09 (sum); 
RUR 0.21 
(win), 
 0.34 (sum) 

fc in EC and OC separately 

Sun et al. [55] Yufa 
(Beijing), 
China 

RUR    PM2.5  sum & win 2007 0.30-0.38 (win) (n = 
6 day, n= 6 night) 
winter,  
0.31-0.44 (sum) (n 
= 6 day, n= 6 night) 
winter, 

- Inferred  fc(EC) 
0.13-0.20 in 
both seasons 

fc in TC only  

Minoura et al. [87] 6 in Kanto 
area, Japan 

URB, SUB, 
RUR  

PM2.5 sum 2008, win 2009 Overall mean: 0.51  0.58  0.39 Only 1 sample per site. In Tokyo 
fc(TC) 0.29 (sum) & 0.48 (win). 
fc(TC) higher by 10% for SUB & 
RUR 

Dusek et al. [40] Amsterdam & 
Petten, The 
Netherlands 

URB, 
COAST  

PM10 
(URB), TSP 
(COAST) 

Jan-Jun 2006 (URB) 
Jul-Sep 2009 
(COAST) 

- URB 0.68 
±0.05 (n=10)  
COAST  0.83 
±0.04 (n=8)  

- fc in OC only 
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Table 3:  Estimation of primary and secondary splits to the OCfossil and OCbiogenic source 

apportionment of TC provided by Heal et al. [27] for samples of PM2.5 collected in 

Birmingham, UK. An estimation for scaling mass carbon to total mass within PM2,5 is also 

provided. Table taken from AQEG [13].     

 

Component % Mass C  

/ µg m
-3

 

OM/OC 

factor 

Mass OM  

/ µg m
-3

 

% 

Fossil EC 27 1.35 1.0 1.35 18 
Fossil OCa 
- primary 
- secondary 

20 1.00 
0.47 
0.53 

 
1.25 
1.80 

 
0.59 
0.95 

 
8 

13 
Biomass EC 2 0.10 1.0 0.10 1 
Biomass OC 10 0.50 2.0 1.00 13 
Biogenic OCb 
- primary 
- secondary 

41 2.05 
0.20 
1.85 

 
1.2 

1.80 

 
0.24 
3.33 

 
3 

44 
TOTAL 100 5.00  7.56 100 
a Split of fossil OC into primary and secondary is based upon primary OC = 0.35 fossil EC [59]. 
b Based upon average ratio of 0.10 between vegetative detritus and ‘other’ OC in Birmingham reported 
by Yin et al. [88].  
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Figure captions 

 

Figure 1: Illustration of a ‘top down’ apportionment of particulate matter carbon into broad 

categories, first into elemental or organic carbon, with further sub-division into anthropogenic 

or contemporary sources and into direct primary emissions or in-situ secondary formation. 

The categories it is possible to quantify directly by 14C determination by accelerator mass 

spectrometry are highlighted. 

 

Figure 2: A general schematic of an accelerator mass spectrometer. Ions from the Cs+ sputter 

source undergo rudimentary separation in the first electric and/or magnetic analyser before 

being accelerated to high energies to dissociate molecular ions and form multiply-charged 

elemental ions. Further electric and magnetic discrimination follows. Reproduced with 

permission from Litherland et al. [29]. 

 

Figure 3: Temporal change of observed atmospheric F14CO2 in the northern and southern 

hemispheres. A value of 1000 ‰ equates to a doubling of atmospheric 14C compared with the 

modern standard. The 2010 value of F14CO2 is ~40 ‰ (fM = 1.04). Figure reproduced from 

Levin et al. [89] (Creative Commons License). 

 

Figure 4: Schematic of methodology of Szidat et al. [23;35] to isolate different categories of 

carbon within PM for contemporary-fossil apportionment. The 14C values are directly 

measured in TC, OC, WINSOC, EC and the mixture ‘EC + polymerizable WSOC.’ The 14C 

values in WSOC and ‘polymerizable WSOC’ are deduced from subtraction. Reproduced with 

permission from Szidat et al. [35]. 

 

Figure 5: Average (n = 26) % source apportionment of PM2.5 from Birmingham (UK), from 

the work of Heal et al. [27]. OCbiomass is POC from combustion of biofuels/biomass, OCfossil is 

both fossil-derived POC and any SOC from fossil-derived VOC, and OCbiogenic is SOC formed 

from BVOC oxidation together with any other contemporary OC material not explicitly 

accounted for elsewhere, for example spores, plant detritus, tyre rubber, etc. 
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Figure 1: Illustration of a ‘top down’ apportionment of particulate matter carbon into broad 

categories, first into elemental or organic carbon, with further sub-division into anthropogenic 

or contemporary sources and into direct primary emissions or in-situ secondary formation. 

The categories it is possible to quantify directly by 14C determination by accelerator mass 

spectrometry are highlighted.     
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Figure 2: A general schematic of an accelerator mass spectrometer. Ions from the Cs+ sputter 

source undergo rudimentary separation in the first electric and/or magnetic analyser before 

being accelerated to high energies to dissociate molecular ions and form multiply-charged 

elemental ions. Further electric and magnetic discrimination follows. Reproduced with 

permission from Litherland et al. [29]. 
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Figure 3: Temporal change of observed atmospheric F14CO2 in the northern and southern 

hemispheres. A value of 1000 ‰ equates to a doubling of atmospheric 14C compared with the 

modern standard. The 2010 value of F14CO2 is ~40 ‰ (fM = 1.04). Figure reproduced from 

Levin et al. [89] (Creative Commons License).   
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Figure 4: Schematic of methodology of Szidat et al. [23;35] to isolate different categories of 

carbon within PM for contemporary-fossil apportionment. The 14C values are directly 

measured in TC, OC, WINSOC, EC and the mixture ‘EC + polymerizable WSOC.’ The 14C 

values in WSOC and ‘polymerizable WSOC’ are deduced from subtraction. Reproduced with 

permission from Szidat et al. [35].  
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Figure 5: Average (n = 26) % source apportionment of PM2.5 from Birmingham (UK), from 

the work of Heal et al. [27]. OCbiomass is POC from combustion of biofuels/biomass, OCfossil is 

both fossil-derived POC and any SOC from fossil-derived VOC, and OCbiogenic is SOC formed 

from BVOC oxidation together with any other contemporary OC material not explicitly 

accounted for elsewhere, for example spores, plant detritus, tyre rubber, etc. 
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