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Abstract

We present GStream, a method that combines genome-wide SNP and CNV genotyping in the Illumina microarray platform
with unprecedented accuracy. This new method outperforms previous well-established SNP genotyping software. More
importantly, the CNV calling algorithm of GStream dramatically improves the results obtained by previous state-of-the-art
methods and yields an accuracy that is close to that obtained by purely CNV-oriented technologies like Comparative
Genomic Hybridization (CGH). We demonstrate the superior performance of GStream using microarray data generated from
HapMap samples. Using the reference CNV calls generated by the 1000 Genomes Project (1KGP) and well-known studies on
whole genome CNV characterization based either on CGH or genotyping microarray technologies, we show that GStream
can increase the number of reliably detected variants up to 25% compared to previously developed methods. Furthermore,
the increased genome coverage provided by GStream allows the discovery of CNVs in close linkage disequilibrium with
SNPs, previously associated with disease risk in published Genome-Wide Association Studies (GWAS). These results could
provide important insights into the biological mechanism underlying the detected disease risk association. With GStream,
large-scale GWAS will not only benefit from the combined genotyping of SNPs and CNVs at an unprecedented accuracy, but
will also take advantage of the computational efficiency of the method.
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Introduction

Over the last years, Genome-Wide Association Studies (GWAS)

using microarray-based technology have played an important role

in the identification of common genetic variations and their

relationship with disease susceptibility [1,2,3,4]. Genotyping

microarrays [5] have enabled this success through the parallel

genotyping of thousands of Single Nucleotide Polymorphisms

(SNPs), capturing most of the common variation in the human

genome. Very recently, the new generation of microarrays have

integrated the extensive knowledge revealed by the 1KGP [6] and,

together with the decreasing costs of this technology, are now

allowing the use of the GWAS approach to the association of rare

genetic risk variants or more complex human traits.

In addition to SNPs, Copy Number Variants (CNVs) have

shown to play an important role in disease susceptibility [7]. CNVs

are relatively large (.500 bp) genomic variations and include

deletions, tandem duplications and insertions [8]. Recent studies

based either on specific CGH arrays or genotyping microarrays

have demonstrated the importance of CNVs due to their global

contribution to the human genome variation, their functional

impact and their role in human disease [7,9,10,11,12,13,14].

Some of these reference studies have contributed to elaborate a

map of regions containing highly polymorphic CNVs called Copy

Number Polymorphisms (CNPs) [9,10,15]. These common

variations have appeared as a significant area of interest, since

they segregate in the population at an appreciable frequency and

their analysis over big sample collections could potentially lead to

significant disease risk associations.

The development of the two mentioned technologies (CGH

arrays and genotyping microarrays) for high throughput CNV

screening has prompted the inclusion of CNVs in GWAS studies

[16,17,18,19]. When comparing both technologies, genotyping

microarrays offer the practical advantage of obtaining at the same

time SNP and CNV genotype data. However, there is still a major

need to develop methods that can best deal with the signal-to-noise

ratio deficiencies and genomic coverage of genotyping microarray

data when attempting to identify and quantify CNVs. So far, most

of the commonly used methods for CNV detection and genotyping

at the genome-wide scale [20,21,22] are based on independent

per-sample analyses that use summarized measurements relative to

a reference set of samples. This type of approach has proven to

work well for large genomic variations, but it fails to use the

powerful information generated by analyzing multiple samples,

leading to high false negative rates with small CNVs [23].

In this study we present GStream, a method for SNP and

CNV/CNP genotyping that is tailored to GWAS objectives.

GStream integrates a substantially improved version of our

previous CNV calling software CNstream [24]. Our new method

achieves a superior accuracy in both SNP and CNV genotyping

compared to well-established methods. Indeed, GStream obtains

an unprecedented accuracy within CNV regions, with a perfor-

mance close to that obtained from purely CNV-oriented
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technologies like CGH arrays. All these improvements have been

quantitatively compared against previous state-of-the-art methods

and accurately assessed using different Illumina genotyping

microarrays together with publicly available SNP [25] and CNV

[9,10,15] reference datasets based on Next-Generation Sequenc-

ing (NGS), CGH array and genotyping microarray technologies.

Finally, the computational efficiency of the method has been

optimized, enabling the large-scale SNP and CNV analyses to be

performed in a short amount of time.

In addition to presenting this new method and demonstrating its

superior performance over reference datasets, we have also

performed different relational analyses concerning previously

known risk loci. Using GStream we have been able to identify,

for the first time, several CNVs in strong linkage disequilibrium

(LD) with risk-associated SNPs [26] as well as CNVs spanning

disease-associated genes [27]. Together, these results could reveal

important insights into the causality of these disease risk

associations.

Materials and Methods

We first introduce the Illumina BeadChip microarrays and

describe the algorithms for SNP and CNV genotyping. Next, we

provide information about the datasets used in this study and the

Figure 1. GStream method for SNP genotyping. This figure shows how GStream genotyping method works on two example markers, the first
one representing a typical marker capturing a SNP (A and B) and the second one capturing both a SNP and a CNV (C and D). The leftmost graphs
show the effects of the normalization procedure for the two markers, where the dotted blue lines enclose the ranges where candidate homozygotes
and heterozygotes are identified in order to compute the scaling factors for each channel (black points over the axes). The rightmost graphs give an
overview of the genotyping procedure: Upper subfigures represent the scaled BAF probability density function with the solid vertical lines setting the
identified genotype centres, the dotted vertical lines setting the genotype limits and the horizontal lines representing the sequential search of
genotype cluster peaks. Medium and lower subfigures represent genotype calls and quality call scores respectively.
doi:10.1371/journal.pone.0068822.g001

GStream: Improving SNP and CNV Coverage on GWAS
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implemented metrics for evaluating SNP and CNV genotyping

accuracy. Finally, we describe the methods used for the CNV

association studies that we have run using the GWAS catalog [26]

and the OMIM [27] databases.

Illumina BeadChip Data
Illumina BeadChips have been largely used in large-scale

genome-wide association studies and are based on the Infinium

assay technology [28]. This type of genotyping array consists on

hundreds of thousands of probe pairs designed to capture genomic

variation at the SNP and CNV level. In each probe pair, each

probe has been designed to specifically bind one of the two SNP

alleles (i.e. alleles A and B) generating a pair of fluorescence

intensities. These signals are then measured and processed in order

to infer the presence or absence of these alleles in each sample.

GStream software uses these raw measurements to extract SNP

and CNV genotypes for each sample at each probe pair. From

here on, fluorescence measurements of alleles A and B will be

called channel A and B intensities and samples will be categorized

at each SNP as homozygotes (i.e. AA or BB) or heterozygotes (i.e.

AB).

GStream method for SNP genotyping
Before identifying the clusters corresponding to the AA, AB and

BB genotypes at each probe, raw intensity data of each probe must

be normalized in order to equalize the overall sample intensity

distribution at each channel (Figure 1). This step is crucial since

the sensitivity differences of each probe and channel can lead to

bias affecting the genotyping performance. The method used by

GStream is based on the scaling correction used by Peiffer et al.

[29]. In this method, the intensity centroids of a set of pre-

computed AA and BB candidate homozygote samples are

identified and used to scale channel A and B intensities. However,

GStream adds two modifications in order to improve the

normalization in those cases involving probes capturing both

SNP and CNV variation. First, instead of using candidate

homozygote intensity centroids, the scaling parameter is computed

by weighting the candidate homozygotes intensity distributions

(the higher the intensity, the higher the weight) and by finding the

maximum over the resulting curve (Figure S1). This modification

helps GStream to better deal with the particularities of intensity

distributions coming from probes within CNV regions. The

second modification introduced by GStream uses heterozygote

intensity data when no homozygote candidates are found, thus

helping to better deal with probes capturing low MAF SNPs.

Once the intensities from both A and B channels have been

normalized, GStream proceeds to identify the clusters correspond-

ing to each SNP genotype (i.e. AA, AB and BB). Developing an

accurate SNP genotyping method is crucial not only for SNP

analysis itself, but also because GStream CNV genotyping method

uses this information to improve the accuracy of the CNV call.

GStream applies the following procedure to assign a SNP

genotype to each sample at each marker:

1. Channel A and channel B intensities from the analyzed marker

are transformed to B allele frequencies (BAF) and absolute

intensities [29].

2. Absolute intensities are used to detect samples without any

allele (homozygous deletions) which are characterized by very

low intensities at both channels. In order to compute the

absolute intensity threshold between homozygous deletion

samples and the other samples, the absolute intensities are

sorted and then differences between each pair of consecutive

intensities are computed. If high intensity differences are found

within the expected threshold range ([0, 0.5]), the zero-

threshold is fixed to the corresponding intensities (Figure S2).

3. The BAF probability density function (PDF) is estimated by

computing the scaled histogram of all the sample BAF values.

Peaks over this PDF corresponding to genotype clusters will be

identified sequentially starting by the peak generated by the

major allele frequency homozygote cluster. The algorithm

establishes a minimum separation between peaks in order to

assign them to different genotype clusters and it stops when

three peaks have been found or when no more peaks are found.

Once genotype peaks have been found, genotype limits are

computed by finding the PDF minimum between each

consecutive pair of centres (Figure 1). These limits will define

the BAF intervals assigned to each genotype and each sample

will be genotyped accordingly to them.

4. If the number of genotype peaks identified is less than three,

each genotype cluster is re-analyzed with a better resolution

(i.e. increasing the number of histogram bins to estimate the

BAF PDF) in order to identify sub-clusters corresponding to

different genotypes. This procedure avoids common errors

seen in others algorithms where, for example, genotypes of

SNPs with highly discordant sensitivities at each channel are

incorrectly assigned.

5. Finally, a global genotyping quality score and an individual

score for each sample genotype are computed (Figure 1). The

global score is proportional to the standard deviation mean of

the BAF values assigned to each genotype and the individual

score corresponds to the distance between the sample BAF

value and its corresponding genotype peak divided by the

distance between genotype centres.

Both genotypes and quality control measurements for each

sample are extracted by GStream to the output files. This

information is also required by the CNV genotyping method,

which is based both on the normalized channel intensities and the

SNP genotype information. Further algorithm details are given in

Text S1.

GStream method for CNV genotyping
CNV identification and genotyping is one of the principal

contributions of GStream to the current state-of-the-art micro-

array genotyping methodology, clearly outperforming previous

approaches. Although this method has been based on our previous

CNstream method [24], multiple changes have been introduced in

order to improve performance and computational efficiency.

GStream uses normalized intensities and SNP genotypes

computed in the SNP genotyping stage to identify the presence

of deletions and amplifications characterized by variable clustering

patterns on the intensity data (i.e. high frequency CNVs) or by

slight deviations from the diploid distribution (i.e. low frequency

CNVs).

One of the improvements incorporated in the algorithm is that

each SNP genotype cluster is independently analyzed taking only

into account the intensity channel that carries valuable informa-

tion. This way, the CNV algorithm is divided in four parallel steps

(Figure 2A):

i. Analysis of channel A intensities from the samples previously

genotyped as AA homozygotes.

ii. Analysis of channel B intensities from the samples previously

genotyped as BB homozygotes.

iii. Analysis of channel A intensities from the samples previously

genotyped as heterozygotes (i.e. AB).

GStream: Improving SNP and CNV Coverage on GWAS
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Figure 2. GStream method for CNV genotyping. (A) Each CNV analysis is divided in four independent sets where the number of allele copies
per channel intensity is estimated. Here, the homozygote intensities over its respective informative channels (upper rightmost and leftmost graphs)
are fitted with a two-component model (in this case, capturing a deletion) while heterozygote intensities over each channel are better fitted with a
one-component model (upper centre graphs). Lower graphs show the intensity distributions (solid black lines) together with the corresponding copy
number score (red points) assigned to each sample. AA homozygotes are mostly classified as deletions (scores near to 1), BB homozygotes are
divided into diploids (scores,2) and deletions (scores,1) while heterozygotes are classified as diploids (i.e. one allele detected at each channel). (B)
Final representation of the analyzed probe where points represent samples and colour their relative copy number scores. SNP and CNV genotypes are
assigned along the BAF and the intensity axis respectively.
doi:10.1371/journal.pone.0068822.g002
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iv. Analysis of channel B intensities from the samples previously

genotyped as heterozygotes (i.e. AB).

As well as dividing the analysis in four independent steps, the

algorithm is based on the following assumptions:

i. Homozygous deletions (0 allele copies) are previously

detected during the SNP genotyping stage.

ii. Due to the technical limitations of genotyping microarrays,

the intensity measurements show a saturation effect when

amplifications are found. For this reason, intensity clustering

patterns corresponding to amplifications are very rare and

hard to detect unless they span multiple probes [30].

iii. Samples categorized as homozygote samples (i.e. AA and BB)

can correspond to hemizygous deletions (i.e. A and B) or

amplifications (i.e. AA+ and BB+). Due to the saturation

effect the algorithm does not stratify amplifications by the

number of allele copies.

iv. Samples characterized as heterozygotes (i.e. AB) can have

two or more copies (i.e. AB, AAB, ABB …). The total

number of copies can be inferred by independently

computing the number of copies of each allele and then

adding the results for each sample.

Below we describe the procedure for determining the CNV

genotypes from the set of channel intensities of each one of the

four analysis steps.

Model selection. For each SNP genotype, the algorithm

starts identifying clusters over the channel intensities that carry the

corresponding allele information (i.e. channel A for AA homozy-

gotes, channel B for BB homozygotes and both channels for AB

heterozygotes). Due to the mentioned saturation effects, it is very

uncommon to observe more than two intensity clusters in

microarray data and, for this reason, only two models will be

fitted to the intensity data: a one- and a two-component Gaussian

mixture model (GMM). The first one will be fitted using the mean

and the variance of all the intensities while the second one will be

fitted using the Expectation-Maximization algorithm [31]

(Figure 2A). A set of requirements in order to select the second

model have been carefully developed and only if all of them are

accomplished, the two-component model (indicating a pattern

corresponding to a common CNV) will be selected (Figure 2A).

Component labeling. If the two-component model has been

selected, a copy number category will be assigned to each one of

the two components. As no prior knowledge is available to assign

the two components either to a deletion pattern (i.e. CN = 1 and

CN = 2) or to an amplification pattern (i.e. CN = 2 and CN = 3), a

disambiguation method is necessary. GStream bases the compo-

nent labelling both on the relative weight of each component (i.e.

proportional to the copy number frequency) and on the presence

of homozygous deletions (Figure S3A). When the one-component

model has been selected, the component will be labelled by default

to CN = 2 (i.e. diploid), which is assumed to be the most common

state.

Outlier identification and CNV scoring. Outlier identifi-

cation is intended to capture low frequency CNVs that are not

captured by a two-component GMM and is based on identifying

samples showing high or low deviations from the intensity

distributions defined by the selected model. CNV scoring assigns

to each sample i a score S between 0 and 3 depending on its copy

number posterior probabilities (Figure S3B). At the end of this

step, GStream has obtained a CNV score for all the samples that

allows the identification of deletions and amplifications as well as a

quantification of the reliability of the assignment (Figure 2B).

Additional algorithm details are given in Text S1.

Microarray data from HapMap samples
In order to evaluate and compare the performance of GStream

SNP and CNV genotyping methods we have used raw Illumina

microarray data from HapMap samples available at the Gene

Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/)

[32] (Table 1). This data has been also used as the input of state-of-

the-art SNP and CNV genotyping algorithms in order to extract

accurate comparison measures as well as to ensure a performance

assessment independent from the technical biases of the raw data.

Only markers having available NCBI Build 37 mapping

information were kept for further analysis.

SNP genotyping performance evaluation and
comparison with previous methods

Golden standard genotypes. In order to correctly evaluate

the SNP genotyping algorithm performance, a set of independent

and high-quality genotype calls is required. The genotype calls of

HapMap samples have been established as a golden standard

commonly used in the literature for performance evaluation of

SNP genotyping methods. These calls are available for download

through the online HapMap tool HapMart (http://hapmap.ncbi.

nlm.nih.gov/biomart). For this study, we downloaded the

genotypes corresponding to the samples having available micro-

array data and used them as the golden standard. SNPs used for

performance evaluation were chosen in order to fulfil three

criteria: (i) to have available Build37 mapping information, (ii) to

be present both in the analyzed microarray platform and in the

golden standard HapMap dataset, and (iii) to have concordant

reference alleles both in the microarray and in the golden standard

annotations (Table 1).
Algorithms. GStream SNP genotyping accuracy has been

evaluated and compared with three methods: (i) GenoSNP [33]

which is a well-known genotyping algorithm based on a within-

sample approach; (ii) GenCall, which is the proprietary (Illumina,

San Diego, US) algorithm [34], and it is used by the vendor

genotyping software; (iii) M3 [35], which is a recently published

method for SNP genotyping that re-analyzes the data in order to

increase the accuracy over the low MAF SNPs and has shown to

have increased performance.

Copy number genotyping performance evaluation
Copy number evaluation was performed at two levels:

Evaluation of the GStream ability to detect structural variation

obtained from the 1000 Genomes Project [6] next-generation

sequencing (NGS) data and evaluation and comparison of CNV

population association results using different algorithms and

golden standard calls from three recently published studies

[9,10,15]. Below we describe materials, methods and metrics used

for this two-stage evaluation.
Evaluation of CNV genotyping accuracy over the 1KGP

Structural Variants. In order to test the ability of GStream to

detect copy number variation, we have used the HumanOmni1-

Quad GStream calls and a golden standard dataset from a public

release of the 1KGP. HumanOmni1-Quad platform was chosen

due to its highest coverage and resolution which allowed an

evaluation over a major number of loci. The golden standard

dataset consisted of the last variant call files that have been

released by the 1KGP (version v3_20110521, ftp://ftp.

1000genomes.ebi.ac.uk/vol1/ftp/release). From all the variants

included in the 1KGP release we chose those that corresponded to

structural variations (i.e. CNVs) and we filtered out variants with a

GStream: Improving SNP and CNV Coverage on GWAS
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MAF lower than 2% within all the populations. The resulting set

included 2,531 structural variants (SV) with their respective calls

over N = 353 unrelated HapMap samples. From these 2,531 loci,

1,956 are covered by HumanOmni1-Quad markers and GStream

calls were available for 149 out of the 353 1KGP samples, which

jointly formed the final evaluation set.

The evaluation procedure consisted of finding the markers

whose GStream calls are in maximum LD with each SV:

max
i[Sk

r2 CNi,SVkð Þ
� �

where Sk is the set of microarray markers within the region

spanned by the SV, CNi is the copy number genotypes assigned by

GStream at marker i and SVk is the 1KGP calls for the analyzed

SV k.

Evaluation of the power to detect genome-wide

associations over CNV markers and comparison with

previous methods. The objective of this section is to evaluate

the power to detect CNV associations and to compare GStream

performance with other well-known methods. This comparison

was performed using Human1M-Duo and HumanOmni1-Quad

platforms. Using these two platforms also allowed an assessment of

the specific platform power to detect CNV associations, comparing

platforms with (i.e. HumanOmni1) and without (i.e. Human1M) a

specific design to cover CNV.

The genome-wide association study over CNV markers was

performed at the population level aiming to identify CNVs

significantly associated to specific populations and comparing the

association statistics with those obtained from golden standard

datasets.

The CNV algorithms used are described below:

i. PennCNV [22] is one of the most frequently used methods

for analyzing CNVs using Illumina microarrays. This

software implements a CNV estimation method based on

Hidden-Markov-Models (HMM), in which copy number calls

are performed sample by sample by analyzing the sample

LRR (i.e. absolute intensity) and BAF values at each marker.

Default settings were used in the analysis of the available

HapMap samples generating the PFB file (i.e. population

frequency of B allele) from their genotyping data.

ii. QuantiSNP is also one of the well-known methods for CNV

analysis over Illumina microarrays. It is based on an

Objective Bayes Hidden-Markov Model that is used to set

certain hyperparameters in the HMM priors (for details see

Colella et al. [20]). Default settings were used in this analysis

with the provided Infinum HD parameter files and the local

GC content files.

iii. CNstream [24] was also evaluated in order to demonstrate

how our new method overperforms the previous one due to

the major critical modifications introduced.

Association statistics obtained by each algorithm were com-

pared with those obtained from three recently published reference

studies:

i. The first dataset was obtained from a study published by

McCarroll et al. [15]. In this study a hybrid genotyping array

was designed to simultaneously measure SNPs and CNVs.

Almost half (N = 1,320) of the targeted CNV regions were

observed in multiple unrelated individuals and were defined

as CNPs. From this set of CNPs we selected the autosomal

CNPs (N = 1,292) over the 270 HapMap samples as the first

golden standard dataset.

ii. We used the data published by Conrad et al. [10] as the

second golden standard dataset. In this study, an Agilent

CGH based array was used to generate a map of CNVs

greater than 443 base pairs. For 4,978 of these CNVs

reference genotypes from 450 HapMap samples are available

to download. We used the corresponding sample calls for all

the 4,899 autosomal CNVs.

iii. The last dataset used for CNV performance evaluation was

obtained from the results published by Campbell et al. [9]. In

this study a custom Agilent CGH microarray targeting

regions of known CNPs was designed and evaluated over

HapMap samples of diverse ethnic backgrounds. For this

analysis we used the published discrete CNV calls of

polymorphic loci represented in the reference genome

assembly (N = 874) for the 487 HapMap samples included

in the analysis.

In order to provide a measure of genome-wide association

power, pairwise population-association tests (CEU:YRI,

CEU:CHBJPT and YRI:CHBJPT) were performed using the

calls from the three golden standard datasets. Loci that either were

not covered by the microarray platform or did not obtain

significant associations (P-value,0.05) in any population test

(Table 2) were filtered out. Chi-square test P-values were then

computed at each locus and compared to those obtained using the

calls of the four methods across the markers covering the locus.

For each algorithm, the marker obtaining the best result across the

region was selected for comparison.

Copy number variation and disease susceptibility
Using microarray data to accurately extract information from

copy number variation can be particularly relevant when trying to

identify all the type of variants that convey risk to disease

susceptibility. Using two available catalogues of disease genomic

Table 1. Public microarray data used in this study.

PLATFORM POPULATION SAMPLES GEO ACCESSION AUTOSOMAL MARKERS EVALUATION

Human610-Quad CEU/CHBJPT/YRI 73/75/77 GSE17205/GSE17206/GSE17207 596528 568182

Human660W-Quad CEU/CHBJPT/YRI 89/89/89 GSE17208/GSE17209/GSE17210 638582 552529

Human1M-Duo CEU/CHBJPT/YRI 89/90/90 GSE16894/GSE16895/GSE16896 1141594 1058827

HumanOmni1-Quad CEU/CHBJPT/YRI 88/89/90 GSE17197/GSE17201/GSE17203 1103791 882445

The used microarray data comes from four different Illumina BeadChip platforms and the sample data comes from three HapMap populations. The total number of
autosomal markers and the number of markers used for SNP genotyping evaluation are shown.
doi:10.1371/journal.pone.0068822.t001

GStream: Improving SNP and CNV Coverage on GWAS
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associations we have used two different approaches to demonstrate

the joint capacity of microarray platforms and the GStream

method to identify new CNV disease associations. The two

analysis explained here have been performed using the CNV calls

inferred by GStream over the HapMap samples genotyped with

the Illumina HumanOmni1-Quad platform.

Catalog of published genome-wide association

studies. Since microarray genotyping platforms became avail-

able, a large number GWAS have allowed the discovery of

important SNP-trait associations. However, some of these SNPs

have limited or no known functional impact. In these cases, the

possibility that they act as proxies of other types of variations (i.e.

CNVs [36,37]) with a deeper functional impact is more likely.

In order to identify putative causal CNVs we have analyzed the

LD patterns between all the trait-associated SNPs reported by the

catalog of published genome-wide association studies (http://

www.genome.gov/gwastudies) [26] and the CNV microarray

markers detected over the HumanOmni1-Quad platform. Trait-

associated SNP genotypes were extracted from the 1KGP data

reported previously and CNV genotypes were called with

GStream. All the HumanOmni1-Quad markers that presented a

non-diploid frequency greater than 1% (CNV markers) were

included in the analysis (NCNV = 90,892) together with the 7,571

trait-associated SNPs.

The conditions used for selecting the candidate SNP-CNV pairs

where the CNV could provide new functional information on the

reported association are described below:

i. Distance between the SNP and the CNV markers not greater

than 50 kb.

ii. Correlation coefficient r2 greater than 0.7 in any of the three

analyzed HapMap populations (CEU, YRI and CHB+JPT).

iii. Distance between the CNV marker and the nearest gene not

greater than 100 kb or CNV marker spanning binding

transcription factor regions as defined by the Transcription

Factor ChIP-seq track on the UCSC browser [38].

From the 7,571 trait-associated SNPs, 382 were paired with one

or more CNV markers fulfilling these conditions. A final set of 333

SNP-CNV pairs was obtained after filtering out repeated

associations of SNPs with the same trait by different GWAS

studies.

CNV overlapping analysis with disease-related

genes. In this second approach, we examined the CNV variants

called by GStream spanning genes known to be involved in disease

based on the OMIM database (http://www.omim.org) [27]. In

order to characterize CNVs with a high probability of conveying

functional effects on the disease-related OMIM genes we set

multiple strict selection criteria:

i. From the initial set of CNV markers (NCNV = 90,892) only

those located less than 15 kb away from an OMIM gene and

with at least two more CNV markers covering this gene were

selected (NCNV = 5,836).

ii. We defined CNV loci as sets of three or more nearer CNV

markers (i.e. distance between them not greater than 5 kb) in

high LD (r2.0.7) spanning the same OMIM gene. After

applying this filter we obtained a final set of 212 CNV loci

spanning OMIM genes.

iii. Finally, when more than one CNV locus spanned the same

gene, only the one showing the greatest r2 measurements

between its CNV markers was kept for further analysis.

The final set of candidates consisted of 149 CNV loci spanning

disease-related OMIM genes.

Software availability
An executable version of GStream along with the documenta-

tion and example data files can be freely downloaded from our

website http://www.urr.cat/GStream. This web site also provides

regularly updated results of new CNV associations within known

human risk loci identified with this method.

Results

Performance assessment of SNP genotyping
For each available Illumina platform, the golden standard

genotype calls were compared with the calls generated by

GStream, GenoSNP, GenCall and M3 software tools. The global

accuracy results over autosomal SNPs (Table 3) show a moderate

improvement for GStream with respect to GenoSNP and a

substantial improvement with regards to GenCall and M3

methods. GenCall performed very well when ‘‘non-called’’

genotypes where discarded, but its global performance decreased

due to its low call rate. M3 algorithm could only be evaluated over

the Human610-Quad and the Human660W platforms due to

code incompatibilities with the Human1M-Duo and the Huma-

nOmni1-Quad platforms. Although the improvement of GStream

SNP-genotyping method regarding its competitors may not appear

very high, they can represent a significant improvement from an

absolute point of view (i.e. the accuracy differences when using

HumanOmni1-Quad would be equivalent to a gain of 2,300

completely genotyped SNPs). Chromosome X genotyping accu-

racy was also evaluated, obtaining a similar decrease in

performance (,0.5%) for all the algorithms and maintaining the

accuracy differences between algorithms.

The second performance test consisted of computing the global

accuracies at different levels of drop rate, where drop rate refers to

the percentage of markers which are removed from the accuracy

Table 2. CNV regions for each dataset and platform used to evaluate the power to detect genome-wide associations.

HumanOmni1-Quad Human1M-Duo

Study Technology NCNVRs NCNVRs covered NASSOCS (P-value,0.05) NCNVRs covered NASSOCS (P-value,0.05)

McCarroll Affymetrix 1292 1290 929 1288 927

Campbell Agilent CGH 874 874 962 873 962

Conrad Agilent CGH 4899 4899 3659 4899 3671

NCNVR refers to the number of CNV loci selected from each study. Coverage with at least one marker within the CNV loci of both platforms is very similar although the
marker density differs considerably. NASSOCS column refers to the total number of associated regions for the three population tests detected over the golden standard
calls.
doi:10.1371/journal.pone.0068822.t002
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computation based on low call confidence measures (as defined by

Ritchie et al. [39]). When markers are discarded by low global

marker quality score - a common filtering procedure in GWAS

quality control steps - GStream reaches the best performance for

all the evaluated drop rates (Figure 3). Furthermore, the difference

in accuracy between low and high drop rates is much lower on

GStream, which implies a robust genotyping performance, even

for those markers with lower quality scores. The low accuracy

values obtained using GenCall at low drop rates can be explained

from its low call rate (i.e. only when the drop rate exceeds the

uncall rate, GenCall performance is comparable to the other

algorithms, otherwise uncalled SNPs are included in the perfor-

mance evaluation). When discarding markers by low quality

sample calls, the results show a similar pattern but with reduced

accuracy differences between the algorithms (Figure S4A). These

results place GStream as the best option for SNP genotyping, since

its genotyping accuracy reaches its maximum at lower drop rates

compared to the other algorithms.

We also examined the performance with respect to the minor

allele frequency (MAF, Figure S4B). Two key conclusions result

from this analysis: First, probes capturing rare SNPs (MAF,0.05)

showed a slight accuracy reduction (,0.5%) on all the platforms

and algorithms tested and, second, GStream accuracy gain with

respect to the other algorithms was practically independent of the

SNP MAF.

Finally, we tested the effect of sample size on GStream accuracy

(Figure S4C). The computed accuracy was compared to the

accuracies obtained for the other algorithms when using all the

Human610-Quad samples (N = 225). However, even for sample

sizes as low as N = 20, the global accuracy of GStream is clearly

higher than the accuracies obtained by the other algorithms, even

if the highest sample size (N = 225) is used, demonstrating the

superior sensitivity of GStream genotyping algorithm.

Performance assessment of CNV genotyping
1KGP Structural Variants. SV calls from 1KGP for 149

unrelated HapMap samples (i.e. NCEU = 32, NYRI = 37 and

NCHBJPT = 80) were compared with their respective GStream calls

in order to measure the ability to detect this type of variation using

GStream on microarray data. For each SV (N = 1,956), we

computed the CNV genotyping accuracy by finding the maximum

LD measurement between its golden standard calls and the

GStream calls over the HumanOmni1-Quad markers covering the

region. The results showed a high correlation between GStream

and 1KGP calls: 75.7% of the SVs were captured by GStream

with an r2.0.8, 18.3% with an r2,0.8 and only 6.0% were not

detected by GStream (Figure 4A).

Once demonstrated the power of GStream to capture these

variants, we examined the variance of the LD measurements

across the markers spanning the same SV loci. This analysis was

stratified by the maximum LD measurement of the SV as

explained in the previous paragraph. From the results (Figure 4B)

we can conclude that the calls inferred over probes spanning the

same structural variant obtain consistent values with a slight

variance due to the quality differences across markers.

Finally, we also observed that the calling performance slightly

decreases with the frequency of the analyzed SVs due to an

increment of the r2 interquartile ranges (Figure 4C). Nevertheless,

lower quartiles exceeded r2 = 0.7 within almost all the frequency

ranges tested.

Table 3. Global accuracy results for SNP genotyping.

Method call rate (%) accuracy (%) global accuracy (%) CNstream differential (%)

Human610-Quad

GStream 99.952 99.798 99.750

GenoSNP 100.000 99.577 99.577 20.173

GenCall 96.724 99.868 96.596 23.154

M3 99.584 99.585 99.171 20.579

Human660W-Quad

GStream 99.990 99.804 99.794

GenoSNP 100.000 99.650 99.650 20.144

GenCall 95.411 99.879 95.295 24.499

M3 99.798 99.635 99.434 20.360

Human1M-Duo

GStream 99.970 99.768 99.738

GenoSNP 100.000 99.561 99.561 20.177

GenCall 98.024 99.825 97.853 21.885

M3 NA NA NA NA

HumanOmni1-Quad

GStream 99.971 99.671 99.643

GenoSNP 100.000 99.435 99.435 20.208

GenCall 97.083 99.747 96.838 22.805

M3 NA NA NA NA

Call rate refers to the percentage of called genotypes while the accuracy is computed as the number of correct genotypes over the number of called genotypes. Global
accuracy summarizes both measurements by computing the number of correct genotypes over the total number of genotypes available within the golden standard
dataset.
doi:10.1371/journal.pone.0068822.t003
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We conclude this section by stressing the power of GStream to

detect structural variation identified with more advanced technol-

ogies (i.e. NGS), obtaining CNV calls with an r2.0.8 over 75.7%

of the 1KGP variants and calls with an r2.0.9 over 62.3% of the

variants.

Genome-wide CNV association study. In order to evaluate

the power to detect CNV associations we have performed a

Figure 3. Evaluating SNP genotyping performance. Plots comparing SNP genotyping algorithms for each microarray platform are tested. The
vertical axis represents the percentage of SNPs that are excluded from the accuracy calculation by the lowest quality score criteria. GStream
performed better at all the drop rate levels in all the platforms. A high decrease in performance is observed for GenCall when drop rate values are
lower than its uncall rate (i.e. ,2% in Human610Quad).
doi:10.1371/journal.pone.0068822.g003
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pairwise association study between three HapMap populations

using golden standard data from three reference studies [9,10,15].

The association statistics obtained by the golden standard calls

were compared with those obtained by GStream, CNstream1,

PennCNV and QuantiSNP across two microarray platforms,

HumanOmni1-Quad and Human1M-Duo. These two platforms

were chosen since they represent the first and the second

generation of the Infinium HD genotyping microarrays, which

mainly differ by the inclusion of additional probes to obtain a

better coverage of CNV loci. These differences (Figure S5) are

clearly visible and the coverage analysis over the CNV regions

defined by the three published studies showed how the marker

density is doubled within these CNV regions between the first and

the second platform generations (i.e. from 10 to 20 markers/

region).

The main metric used to test CNV methods was the 2log10P-

value ratio between the association values obtained by the calls of

each method and those obtained from the golden standard calls.

Under this metric, ratios near 1 represent a good performance for

the method since the obtained association P-value is very similar to

the golden standard. A performance summary statistic was

computed as the percentage of 2log10P-value ratios giving values

between 0.9 and 1.1 over all the associated CNV loci.

Firstly, the obtained results showed a high performance

decrease in the detection of CNV associations when comparing

HumanOmni1-Quad results with Human1M-Duo (Table 4). This

loss was common to all the methods tested but PennCNV and

QuantiSNP showed a higher percentage decrease (,70%) than

GStream and CNstream (,40%). When comparing GStream to

the other state-of-the-art methods, results showed a major

performance gain on all the golden standard sets and on both

microarray platforms. Results for each platform are described

below.

HumanOmni1-Quad results show that GStream is able to

precisely capture an average of 23.6% more associated loci than

the other methods (Table 4) and that the number of false negatives

(Figure S6) decreased considerably. Examining the association

ratio distributions (Figure 5A), we also observed how GStream

outperforms CNstream and, to a greater extent, PennCNV and

QuantiSNP: while GStream ratio distribution resembles a

unimodal distribution with a high kurtosis and centred around

0.95 (i.e. precisely captured loci), the rest of the distributions from

CNstream, PennCNV and QuantiSNP showed a lower kurtosis

with more ratio values distributed between 0 and 0.75 (i.e. loci not

or poorly captured). To conclude, HumanOmi1-Quad compar-

ison, we examined the association ratio distributions stratified by

the P-value obtained by the golden standard calls (Figure S7).

GStream obtains very good results within all the P-value ranges,

with medians around 1 and decreasing interquartile ranges (from

0.2 to 0.02) as the P-value ranges decreased (i.e. greater evidence

of association). Interquartile ranges obtained by the other methods

were at least twice the obtained by GStream and increased as the

P-value ranges decreased, losing performance when comparing

higher associated loci. Poorer ratio medians were also obtained

when using the other methods.

When comparing Human1M-Duo results, the performance

differences between methods are similar to the previous compar-

ison but with an absolute decrease in performance for all the

methods due to previously referred differences on the platform

design. Despite this global performance loss, GStream was able to

precisely capture three times as many associations as PennCNV

and QuantiSNP (Figure 5B). The number of associations not

detected was also increased by a factor of 3 with respect to

HumanOmni1-Quad results (Figure S6). When analyzing

2log10P-value ratio distributions by their respective golden

standard association P-values, ratio medians were only maintained

near one when using GStream (Figure S8). Instead CNstream,

PennCNV and QuantiSNP showed a significant loss with ratio

medians below 0.5.

Copy number variation and disease susceptibility
Here we describe CNV associations that have been found by

mining two available catalogues of disease genomic associations in

order to demonstrate the power of GStream to identify new and

functionally relevant CNV disease associations.

Catalog of published genome-wide association

studies. A set of 333 SNP-CNV pairs have been identified

when searching for CNV markers in high LD with trait-associated

SNPs reported in the GWAS catalog (Table S1). From this set of

paired associations, 94 spanned the HLA region, reflecting the

known genomic complexity of this region. On the other hand,

previously reported disease-associated CNVs were detected using

Figure 4. 1KGP structural variants captured by GStream. (A) Percentage of 1KGP structural variants that are captured by GStream within
different ranges of r2 between the 1KGP calls and the GStream calls over the best marker within the respective structural variant loci. (B) Distribution
of the r2 values when more than one marker is found within the structural variant loci. Structural variants are stratified according to the best r2

obtained by all the markers covering the loci. (C) r2 distribution stratified by the frequency of the structural variation.
doi:10.1371/journal.pone.0068822.g004

Table 4. Power to detect CNP associations.

HumanOmni1-Quad Human1M-Duo Platform diff.

McCarrollA CampbellB ConradB Average McCarrollA CampbellB ConradB Average

GStream 56.40 46.80 63.87 55.69 45.09 27.65 24.38 32.37 23.32

CNstream 31.11 30.67 30.06 30.61 29.13 17.57 13.89 20.20 10.42

PennCNV 34.66 29.94 29.57 31.39 13.70 9.36 3.73 8.93 22.46

QuantiSNP 33.80 31.50 30.86 32.05 16.50 10.08 4.37 10.32 21.74

ACNV dataset provided by custom genotyping microarray-based studies.
BCNV datasets provided by CGH-based studies.
Percentage of 2log10P ratios higher than 0.9 and lower than 1.1 over the CNV population-associated regions computed for each study. Platform difference refers to the
percentage differences between HumanOmni1-Quad and Human1M-Duo platforms.
doi:10.1371/journal.pone.0068822.t004
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this approach (Table 5 and Figure S9) like, for example, well- known deletions spanning IRGM, LCE3 and ARMS2 loci, which

Figure 5. Evaluation of the power to capture genome-wide CNP association. Plots comparing Chi-square test P-values obtained with the
golden standard calls (i.e. McCarroll, Campbell and Conrad datasets) with those obtained with the four tested methods using HumanOmni1-Quad (A)
and Human1M-Duo (B) platforms. Comparison is performed by observing the distribution of the P-value association ratios (i.e. tested method versus
golden standard). A high performance difference was obtained between the two platforms tested (i.e. due to their high difference in coverage
density) and between GStream and the rest of algorithms tested.
doi:10.1371/journal.pone.0068822.g005
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have been respectively associated to Crohn’s disease [37], psoriasis

[36] and age-related macular degeneration [40]. A 45-kb deletion

near NEGR1 gene and a 50-kb deletion upstream of GPRC5B gene

previously associated to obesity and body mass index [41] were

also identified.

A thorough study of the CNVs in high LD with trait-associated

SNPs revealed several interesting loci. Some of these loci are

described below (Table 5 and Figure S10):

i. A synonymous exonic SNP rs2240335 (PADI4 gene) has been

associated to Rheumatoid Arthritis (RA) in a previous

GWAS (P-value = 2E-8) using a Japanese cohort (1247 RA

cases and 1486 controls) [42]. GStream found 12 CNV

markers 2 kb away and spanning PADI4 intron (length

= 800 bp) in high LD with rs2240335 both on CEU

(r2 = 0.82) and CHB+JPT (r2 = 0.95) HapMap populations.

ii. An intergenic SNP rs2867125 (50 kb downstream TMEM18

gene) has been associated to body mass index in previous

GWAS (P-value = 3E-49) [41]. Two CNV loci near this SNP

have been identified by GStream in high LD (r2 = 1 both on

CEU and CHB+JPT populations) with this SNP.

iii. Levels of glycated hemoglobin have been associated to the

ABCB11 intronic SNP rs552976 (P-value = 8E-18) [43]. A

deletion variant 3 kb upstream of this gene showed a high

correlation (r2 = 0.94 CEU) with the associated SNP

genotypes.

iv. Intronic SNP rs6815464 on MAEA gene has been associated

(P-value = 2E-20) with type 2 diabetes [44]. This SNP has

been found to be highly correlated with another intronic

deletion spanning ,2 kb.

v. 59UTR SNP rs6904029 (HCG9 gene) has been previously

associated with Vitiligo (P-value = 1E-21) [45]. Here we

report a CNV locus spanning the 59 region of the HCG9 gene

found in high LD with this SNP.

vi. Intronic SNP rs3077 (HLA-DPA1 gene) has been recently

associated to chronic Hepatitis B (P-value = 2E-61) on a

Japanese cohort [46]. A deletion potentially spanning three

HLA-DPA1 exons has been identified to be highly correlated

with this SNP both on the CHB+JPT and the YRI

populations.

Table 5. CNV loci highly correlated with trait-associated SNPs.

CHR SNP SNPbp CNVbp N r2CEU r2YRI r2CHBJPT pval genes GWAS_trait PMID Reported

1 rs2240335 17674537 17677196 12 0.82 0.65 0.95 2.E-08 PADI4 Rheumatoid arthritis 21505073 No

2 rs2867125 622827 623693 8 1.00 1.00 0.94 3.E-49 TMEM18 Body mass index 20935630 No

2 rs552976 169791438 169776139 5 0.94 0.26 0.32 8.E-18 ABCB11 Glycated hemoglobin
levels

20858683 No

4 rs6815464 1309901 1290281 3 1.00 0.38 0.91 2.E-20 MAEA Type 2 diabetes 22158537 No

6 rs6904029 29943067 29942384 5 1 1 0.89 1E-21 HCG9 Vitiligo 20410501 No

6 rs3077 33033022 33030885 3 0.61 0.94 1.00 2.E-61 HLA-
DPA1

Hepatitis B 21750111 No

6 rs9296736 53924697 53930407 11 1.00 1.00 0.96 3.E-09 MLIP Liver enzyme levels 22001757 No

7 rs2075671 100345106 100329189 12 0.87 0.00 0.91 1.E-09 ZAN Red blood cell count 19862010 No

19 rs7247513 12691185 12694963 13 1.00 1.00 0.81 2.E-06 ZNF490 Bipolar disorder 21254220 No

1 rs2568958 72765116 72769429 14 1.00 1.00 1.00 1.E-11 NEGR1 Body mass index 19079260 Yes

1 rs2568958 72765116 72769429 14 1.00 1.00 1.00 2.E-08 NEGR1 Weight 19079260 Yes

1 rs2815752 72812440 72769429 14 1.00 1.00 1.00 2.E-22 NEGR1 Body mass index 20935630 Yes

1 rs4085613 152550018 152557073 46 1.00 1.00 0.97 7.E-30 LCE3E;
LCE3D;
LCE3C

Psoriasis 19169255 Yes

1 rs4112788 152551276 152557073 46 1.00 0.46 0.97 3.E-10 LCE3E;
LCE3D;
LCE3C

Psoriasis 20953190 Yes

5 rs13361189 150223387 150178347 27 1.00 1.00 1.00 2.E-10 IRGM Crohns disease 17554261 Yes

5 rs1000113 150240076 150181492 13 1.00 0.39 0.91 3.E-07 IRGM Crohns disease 17554300 Yes

5 rs11747270 150258867 150203780 12 1.00 0.71 1.00 3.E-16 IRGM Crohns disease 18587394 Yes

5 rs7714584 150270420 150212972 8 1.00 0.69 1.00 8.E-19 IRGM Crohns disease 21102463 Yes

10 rs10490924 124214448 124217287 10 1.00 0.94 0.90 0.E+00 ARMS2 Age-related macular
degeneration

21665990 Yes

10 rs3793917 124219275 124216893 10 1.00 1.00 0.95 4.E-60 ARMS2 Age-related macular
degeneration

20385819 Yes

10 rs11200638 124220544 124216893 10 1.00 1.00 0.95 8.E-12 ARMS2 Age-related macular
degeneration

17053108 Yes

16 rs12444979 19933600 19949684 8 1.00 1.00 0.00 3.E-21 GPRC5B Body mass index 20935630 Yes

This table shows significant SNP-CNV pairs found in high LD. N stands for the number of CNV microarray markers correlated with the SNP genotypes, and r2CEU, r2YRI
and r2CHBJPT stand for the linkage disequilibrium measures between the SNP and the CNV. Reported GWAS P-value is also shown together with a field indicating if the
CNV association has been previously reported.
doi:10.1371/journal.pone.0068822.t005
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vii. A deletion highly correlated with intronic SNP rs9296736

(MLIP gene) has been identified spanning 5 kb MLIP intron.

This SNP has been associated with liver enzyme levels (P-

value = 3E-9) [47].

viii. Intronic SNP rs2075671 (ZAN gene) has been associated to

red blood cell count (P-value = 1E-9) on a GWAS exploring

erythrocyte phenotypes [48]. A deletion locus spanning

multiple exons of the same gene has been found with a high

correlation with the associated SNP genotypes both on the

CEU (r2 = 0.87) and the CHB+JPT (r2 = 0.91) populations.

ix. Finally, the 39UTR SNP rs7247513 (ZNF490 gene), modestly

associated with bipolar disorder (P-value = 2E-6) [49], was

also found in high LD with a 2 kb deletion covering ZNF490

intron.

A complete list of all the 333 associations can be consulted on

Table S1 and, as previously mentioned, will be regularly updated

in our website.

CNV overlap with disease-related genes. In this second

approach we examined the CNV variants called by GStream

spanning genes known to be involved in disease. A set of 149 CNV

consistent loci spanning OMIM genes were obtained (Table S2)

with a mean length of 6 kb and a mean number of 7 probes per

CNV loci.

In this analysis, well-known associated deletions were found. For

example, a common CFH haplotype with deletion of CFHR1 and

CFHR3 genes associated with lower risk of age-related macular

degeneration [50] was identified using the GStream CNV calls. A

CNV spanning CCL3L-CCL4L genes has been extensively

associated with various human immunodeficiency virus-related

outcomes [51] and was also identified in this analysis. SMN, GHR

and PKHD1 gene deletions respectively associated to spinal

muscular atrophy [52], responsiveness to growth hormone [53]

and polycystic kidney disease [54] were also detected using

GStream (Figure S11). Besides these deletions that have already

been associated to disease risk, GStream has also allowed us to

identify new exon spanning deletions within disease-associated

genes (Table S2). Some examples of these findings are the

deletions covering SLC2A9, DAZL and MBL2 gene exons.

In almost all these identified CNV loci, GStream calls across the

probes within the loci showed a high concordance demonstrating a

high performance for a high variety of CNV cluster intensity

patterns (Figure S12).

Discussion

In this study we present GStream, an integrated tool for SNP

and CNV genotyping addressed to Illumina microarray data. This

new tool has been carefully designed to obtain a high performance

in genotyping accuracy when analyzing GWAS data from

Illumina BeadChip arrays. The performance of GStream has

been assessed using reference data, extracted from the latest

releases of the 1KGP and the HapMap projects, as well as from

reference studies on CNV characterization. First, we show that

GStream has superior SNP and CNV genotyping performance

than current state-of-the-art methods. Second, we demonstrate its

power to detect new structural variation recently identified with

Next-Generation Sequencing technology. Finally, we also dem-

onstrate the utility of GStream in the identification of CNVs

within trait risk loci as well as known disease-associated genes. The

newly identified CNV associations could help to advance in the

understanding of the genetic basis of several human traits.

In a current scenario where genotyping microarrays are

decreasing in cost and widening their spectrum of analyzed SNPs

to more rare variations [55], the need of developing methods

which increase SNP genotyping accuracy is even more funda-

mental. To this end, GStream provides a way of facilitating this

success by obtaining the best performance results compared to the

available state-of-the-art methods (i.e. GenCall [34] and GenoSNP

[33]). This increased performance can be particularly meaningful

in the case of identifying rare disease-associated SNPs, tradition-

ally more exposed to genotyping errors and to the subsequent

statistical bias [56,57]. On the other hand, the accuracy of current

SNP imputation methods [58], which expand the number of

analyzed SNPs and also help to integrate the results obtained with

different microarray platforms (GWAS meta-analysis), also

depends on the quality of the originally genotyped SNPs.

Therefore, prioritizing accurate SNP genotyping methods is a

key success factor in order to obtain reliable imputation results

[59].

Besides the importance of SNPs as a source of genetic variation,

CNVs have also emerged as important variations for common trait

risk [60] as evidenced by recent GWASs [61,62,63,64,65]. In the

present study we tested our algorithm power to detect CNV loci

that have been recently identified with the Next-Generation

Sequencing technology. This NGS CNV data provided by the

1KGP includes not only previously known CNVs (i.e. detected

with CGH arrays), but also new CNV loci that have not been

previously detected. Since part of these loci are covered by

microarray probes, their detection with microarray-based tech-

nologies is therefore possible. On the other hand, previous state-of-

the-art methods for copy number genotyping [20,22] present a

lack of performance when CNVs span a few number of probes or

when intensity distributions corresponding to the different copy

number states partially overlap. The multi-component intensity

distribution models implemented in GStream will allow research-

ers to deeply scan the genome for additional CNVs, widening their

range to shorter, population-specific and/or previously unchar-

acterized CNVs.

In this study we also present a two-level comparison of the

power of GStream to detect CNV associations in a population-

based study. First, we have performed a comparison between the

different algorithms tested and, second, we have performed a

comparison between the two genotyping microarray generations

represented by the Human1M-Duo and HumanOmni1-Quad

platforms, this last one including a specific set of markers covering

known CNV loci [55]. On the one hand, we confirmed the

improvement introduced by the new generation microarrays as a

consequence not only of their major density coverage within

predefined CNV regions, but also of their improved signal quality.

The number of correctly genotyped CNV regions (i.e. character-

ized in previous reference studies) increased in ,20% when using

HumanOmni1-Quad rather than Human1M-Duo, regardless of

the CNV genotyping method being used. On the other hand,

when comparing the results obtained by each algorithm tested,

GStream showed a higher performance within all the scenarios. Its

power increase for detecting and correctly genotyping CNVs (i.e.

defined by three different reference studies based either on CGH

or custom genotyping arrays) ranges from 50% to 100% compared

with the best scoring of the other state-of-the-art methods.

Therefore, we present GStream as an integrated SNP-CNV

genotyping tool that shows a remarkable leap in performance with

respect to previous methods.

One of the most important tasks when analyzing GWAS results

is to link the associated variant to a functional effect that can

explain the disease risk association. Identifying this link is not

always easy since the identified variation can act as a proxy to the

underlying causal mutation and may not be covered by the
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microarray platform. Actually, microarray probe design is based

on the study of the linkage disequilibrium patterns and the

resulting haplotypes that are inherited in blocks [66]. In this

regard, we have identified several CNVs in high LD with SNPs

that have been previously associated to disease susceptibility. A

clear example of these linked CNVs are the IRGM1 [37] and the

LCE3B/LCE3C [36] deletions which have been associated to

Crohn’s Disease and Psoriasis, respectively. Furthermore, these

two deletions have been demonstrated to affect the expression of

the deleted genes. In addition to these previously known

associations, we have identified additional CNVs previously not

associated with the disease that could also have functional impact.

For example, several CNVs spanning hundreds of bases of gene

introns have been found to highly correlate with disease-associated

SNPs. These CNVs could provide a functional link to the

associated risk modifying, for example, RNA splicing [10,67].

Furthermore, as CNV are known to span from hundreds of

bases to multiple kilobases, it is interesting to analyze not only

those that correlate previously associated SNPs, but also those that

overlap coding sequences of genes that have been previously

associated to human disease (i.e. OMIM genes). The results from

this analysis include several known CNV associated loci, as those

spanning CFHR1/CFHR3 [65], CCL3L/CCL4L [51], SMN [52],

GHR [53] and PKHD1 [54] genes. More importantly, new

interesting CNV loci also appeared, as those spanning SLC2A9,

DAZL and MBL2 disease-associated gene exons. The SLC2A9 gene

(OMIM 606142) deletion has been identified by GStream within

eight microarray probes spanning two gene exons and two gene

introns (chr4:9,929,128-9,966,793). Since mutations within this

gene have been previously associated to uric acid concentration

[68] and to Hypouricemia [69], the functional effects of this

deletion should be further evaluated in relation to these traits.

Indeed, GLUT9LN (resulting from alternative splicing of SLC2A9

gene) is predominantly expressed in the kidney and expression

association signals reported by Doring et al. [68] link this gene to

the regulation of urate concentrations. The described exon

deletion could probably imply a similar effect by modifying the

resulting transcribed protein. On the other hand, DAZL (OMIM

601486) deletion was identified over 4 microarray probes spanning

5.8 kb (chr3:16,638,525-16,644,130). This deletion could affect

multiple gene exons resulting in a drastic functional modification.

Previous studies [70] have linked variants within this gene with

susceptibility to spermatogenic failure and therefore, this deletion

should be evaluated in the context of this human trait. GStream

also found a relevant deletion spanning the last exon of the MBL2

gene. MBL2 mutations and the consequent Mannose Binding

Lectin deficit have been previously associated with cystic fibrosis

[71] and recovery from infections [72]. This deletion could

drastically modify MBL2 gene expression and subsequently involve

a Mannose Binding Lectin deficit whose association has also been

demonstrated.

In a time of rapidly evolving technologies and where Next-

Generation Sequencing is becoming available for the study of

common diseases, microarray-based technologies are still a

commonly used strategy to identify the genetic basis of human

traits. First, they allow the analysis of large sample collections at an

affordable cost and, second, they have anincreasing global genome

coverage, expanding their analysis scope to rarer variants.

Therefore, accurate genotyping methods are basic to discover

new associated loci that can be then further studied in more detail

using Next-Generation Sequencing. The tool that we present in

this study, GStream, provides an unprecedented accuracy when

analyzing GWAS data from previous and recent Illumina

microarray platforms. Furthermore, our software tool implemen-

tation allows large-scale GWAS projects to be analyzed in a very

short time, providing both SNP and CNV in a single analysis.

With these results, we encourage researchers conducting GWAS

on these genotyping platforms to use GStream in order to leverage

the power of their SNP and CNV loci association analyses.

Supporting Information

Figure S1 Example of raw intensity normalization. The

intensity distribution of candidate homozygote samples (i.e. AA)

across its specific allele channel (i.e. channel A) is plotted together

with its centroid scaling value as computed by Peiffer et al. [29].

GStream first weights this distribution and computes its maximum

to scale the channel intensities by the corresponding intensity

value. This example shows a typical CNV pattern where the error

produced by the first approach is magnified.

(PDF)

Figure S2 Example of how zero-threshold is computed.
(A) BAF and absolute intensities of an example marker where

some homozygous deletion samples with low intensity values can

be observed. (B) Absolute intensities are sorted and differences

between consecutive sorted intensities normalized to one. The

observed peak over these differences points to the intensity value

that will be set as threshold.

(PDF)

Figure S3 CNV labelling and scoring. (A). Category

disambiguation when the two-component model is selected. The

leftmost graph shows a case where the higher intensity component

(blue) is more frequent and it is assigned to the diploid state while

the lower intensity component (red) is assigned to the deletion

state. This assignment is due to the fact that high frequency

amplifications are very uncommon and undetectable with this

technology. The centre graph shows a case where the higher

intensity component is less frequent and homozygous deletion

samples have been found (magenta). In this case, the higher

component (blue) is assigned to the diploid state and the lower

component (red) to the deletion state fulfilling the expected Hardy-

Weinberg equilibrium frequencies. Finally, the rightmost graph

shows the last case where the higher intensity component is less

frequent and no homozygous deletion samples have been found.

In this case the higher component is assigned to the amplification

state and the lower component to the diploid state. (B) Posterior

probability of each copy number depending on the score assigned

by GStream: From 0 to 0.5 samples can be categorized as

homozygous deletion, from 0.5 to 1.5 as hemizygous deletion,

from 1.5 to 2.5 as diploid and from 2.5 to 3 as amplification.

(PDF)

Figure S4 Genotyping performance. (A) Genotyping per-

formance depending on the drop rate, where calls dropped from

the accuracy analysis were selected according to the genotype call

quality score. (B) Genotyping performance depending on the SNP

minor allele frequency. (C) Genotyping accuracy of GStream at

different sample sizes (i.e. N = 20, 40, 60, 80, 160 and 225)

compared to the accuracies obtained by GenoSNP and M3 with

the highest sample size (N = 225).

(PDF)

Figure S5 Microarray coverage density. Coverage density

of each microarray platform over the CNV regions defined by

each reference study. There are major differences between the first

Infinum HD platforms (Human610-Quad and Human1M-Duo)

and their succesors including specific CNV coverage (Hu-

man660W-Quad and HumanOmni1-Quad). Both Human610-

Quad and Human1M-Duo have a mean number of ,10 markers
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covering CNV regions, while Human660W was designed with a

highest coverage (,20 markers/region) for almost 50% of the

regions. Finally, HumanOmni1-Quad increased the global

coverage to ,20 markers/region.

(PDF)

Figure S6 Missed associations. Percentage of associations

(i.e. P-value,0.05 over the golden standard dataset) that were not

captured by the different methods tested (i.e. P-value.0.05 over

the tested method).

(PDF)

Figure S7 HumanOmni1-Quad P-value distributions.
Distributions of the P-value association ratios depending on the

golden standard dataset used for evaluation (i.e. represented by

different colours) and on the P-value range obtained over the

golden standard calls (i.e. horizontal axis).

(PDF)

Figure S8 1M-Duo P-value distributions. Distributions of

the P-value association ratios depending on the golden standard

dataset used for evaluation (i.e. represented by different colours)

and on the P-value range obtained over the golden standard calls

(i.e. horizontal axis).

(PDF)

Figure S9 Previously reported CNV associations detect-
ed by LD analysis between GStream CNV genotypes and
trait-associated SNPs. (A) LCE gene cluster deletion associated

with Psoriasis risk. (B) NEGR1 deletion associated with body mass

index. (C) IRGM deletion associated with Chrohn’s disease. (D)

ARMS2 deletion associated with age-related macular degeneration.

(E) GPRC5B upstream deletion associated with body mass index.

(PDF)

Figure S10 Interesting CNV associations detected by LD
analysis between GStream CNV genotypes and trait-
associated SNPs. (A) PADI4 gene deletion associated with

Rheumatoid Arthritis. (B) TMEM18 downstream deletion associ-

ated with body mass index. (C) 39-deletion of gene ABCB11

associated with glycated hemoglobin levels. (D) MAEA gene intron

deletion associated with type 2 diabetes. (E) HCG9 deletion

associated with Vitiligo. (F) HLA-DPA1 deletion associated with

Hepatitis B. (G) MLIP intron deletion associated with liver enzyme

levels. (H) ZAN gene deletion associated with red blood cell count.

(I) ZNF490 intron deletion associated with bipolar disorder.

(PDF)

Figure S11 GStream detected CNP loci spanning dis-
ease-related genes (OMIM) where CNVs have been
previously associated with disease. (A) CNP spanning

CFHR1 and CFHR3 previously associated to age-related macular

degeneration. (B) Deletion of GHR exon 3 that has been previously

associated with increased responsiveness to growth hormone and

Laron dwarfism. (C) Detected SMN gene deletion previously

associated with spinal muscular atrophy. (D) PKHD1 deletion

associated with polycystic kidney. (E) CCL3L1/CCL3L3 deletion

previously associated with susceptibility to HIV/AIDS.

(PDF)

Figure S12 GStream calls across consecutive markers
spanning the same CNV loci. These 6 microarray probes

cover the same CNV loci but show very different CNV intensity

patterns. GStream is completely adapted to these types of

variations and its calling procedure is able to obtain very

concordant calls when analyzing probes spanning the same CNV.

(PDF)

Table S1 CNV markers in high LD with trait-associated
SNPs reported in the GWAS catalog.

(XLSX)

Table S2 Set of 149 CNV consistent loci spanning
OMIM genes.

(XLSX)

Text S1 GStream algorithm details.

(PDF)
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