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Abstract 

The ligand bis(5-tert-butyl-2-hydroxy-3-hydroxymethyl-phenyl)methane, a flexible calix[n]arene analogue, is 

employed to construct an unusual linear [Ln3] trimer. 

 

Main text 

The chemistry of homo- and heteronuclear lanthanide clusters continues to attract intense academic interest. 

The stimulus for such varied research activity lies in the potential downstream applications of properties such 

as luminescence
1
 and magnetism,

2
 their use as building blocks in directed assembly,

3
 and also in the 

aesthetically pleasing and diverse structures the clusters adopt. Examples of the latter include, supertetrahedral 

Ln20 and Ln60 species,
4a,b

 a Gd36Ni12 cluster
4c

 and an icosidodecahedral Ni
II
 cluster encapsulating a 

dodecahedron of La
III

 ions.
4d

 In terms of molecular magnetism the interest is two-fold. Magnetic 

refrigerants
2c,d

 and Single-Molecule Magnets
2e

 both require large-spin ground states, with the former requiring 

isotropy and the latter anisotropy in their ground state electronic configurations (among other desirable 

phenomena) and thus the rare-earth elements (particularly Gd, Tb and Dy) are logical candidates for 

constructing polymetallic clusters possessing interesting physical properties. 

Our primary interests lie in the preparation, structural characterisation and magnetic analysis of polynuclear 

transition metal or lanthanide clusters. The metal core of such systems can vary in both shape and nuclearity, 

and moreover it is important to understand the effects that chemical structure has on the resulting magnetic 

exchange interactions, and ultimately the mechanisms by which they are influenced. Therefore the choice of 

cluster supporting ligand(s) is critical and a large exploration of ligand type (size, shape and donor ability) is 

crucial in ultimately gaining a degree of control of these (sometimes) complex and fascinating systems. Work 

in our group, and in others, has primarily focussed on using p-tert-butylcalix[n]arenes (TBC[n]s), 

predominantly TBC[4]
5
 and TBC[8],

6
 as ligands to support a range of 3d, 3d-4f and 4f polynuclear clusters. 

Calix[n]arenes are cyclic polyphenols that adopt well defined conformations as a consequence of the 

complementary hydrogen bonding interactions present at what is termed the lower-rim.
7
 TBC[4] exists as a 

bowl-shaped molecule with an inherent cavity ideally suited to sequester a lanthanide (Ln, or a transition 

metal, TM) ion. This is exemplified with the isolation of a series of octahedral [Ln
III

6(TBC[4])2] clusters (Ln = 

Gd, Tb, Dy).
5g

 TBC[8] is a considerably more flexible ligand capable of adopting several conformers 

depending on the degree of phenolic deprotonation, as demonstrated via the synthesis of Lnx clusters (where x 

= 1-2 and 4-8).
6b

 Polylanthanide cluster chemistry has also been explored with p-tert-

butyldihomooxacalix[4]arene (TBHOC[4]), a ligand in which one methylene bridge has been replaced by an 

ethereal CH2OCH2 bridge between two adjacent phenol moieties. In this case a series of isostructural Ln5 

clusters were isolated.
8
 It is therefore clear that the nature of the polynuclear cluster isolated (and its 

corresponding magnetic properties) is strongly dependent on the supporting ligand. In this communication we 
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continue to examine the role of polyphenolic ligands, and have chosen bis(5-tert-butyl-2-hydroxy-3-hydroxy-

methylphenyl)methane, LH4,
9
 as a candidate for polynuclear lanthanide cluster formation. LH4 is of particular 

interest because it bears a striking similarity to calix[n]arenes, and can essentially be considered as half of a 

TBC[4]; it contains two p-tert-butylphenol moieties linked by a methylene bridge, and in addition contains 

methanol arms which resemble the ethereal linkages found in the oxacalixarenes (Figure 1). The four oxygen 

atoms of LH4 represents an attractive binding site to explore coordination chemistry, and it is somewhat 

surprising to discover that to date there is only one reported crystal structure where LH4 is coordinated to a 

metal of any type,
10

 and no examples where LH4 is coordinated to a TM or Ln metal. 

 

 

Figure 1. Structure of bis(5-tert-butyl-2-hydroxy-3-hydroxymethyl-phenyl)methane, LH4. 

 

The reaction of Ln(NO3)3·6H2O and LH4 in a mixture of DMF/MeOH and in the presence of triethylamine, 

followed by vapour diffusion with acetonitrile, produced colourless crystals of 1–3 with general formula 

[Ln
III

3(LH3)4(DMF)4] (1 = Gd; 2 = Tb; 3 = Dy; Figure 2). Crystals of 1 are in an orthorhombic cell and 

structure solution was performed in space group Pnnn. Compounds 1-3 are isostructural and thus a generic 

description of 1 is given here. The asymmetric unit in 1 contains a quarter of the molecule and symmetry 

expansion reveals that the metal core is a perfectly linear Gd
III

 trimer (Gd1···Gd2, 3.723 Å; Gd1-O1-Gd2, 

106.86º; Figure 2A) and is supported by four LH1.75 ligands.
11 

The µ3-bridging mode of the symmetry unique LH1.75 ligand is shown in Figure 2B. The peripheral alcoholic 

O-atoms are of two types: one (O1) bridges Gd1 and Gd2, while the other (O4) is terminally bound to Gd1 

(Gd1–O4, 2.489(3) Å), while H-bonded to the co-crystallised solvent (vide infra). The phenolic O-atoms (O2, 

O3) are and terminally bound to Gd2 and Gd1, respectively. Two DMF ligands (that are disordered over two 

positions) occupy coordination sites on each of the terminal Gd
III

 ions. Gd1 (and its symmetry equivalent, s.e.) 

has a distorted square antiprismatic geometry; its coordination sphere is occupied by the aforementioned DMF 



Page 3 of 9 

ligands (O5–Gd1 2.438(3) Å), two phenolic oxygens (O–Gd1 2.393(2) Å) and two -bridging methanolic 

oxygens (O–Gd1 2.271(2) Å). The central Gd2 is also distorted square antiprismatic, and its coordination 

sphere is occupied by four s.e. -bridging methanolic oxygens (O1–Gd2 2.363(2) Å), and by four s.e. 

phenolic oxygen atoms (O2–Gd 2 2.384(2) Å). Gd1 and Gd2 are thus housed within the two binding pockets 

present between the methanolic and phenolic oxygens of each LH1.75. 

 

 

Figure 2. A) Symmetry expanded single crystal X-ray structure of 1. B) Ligand coordination mode in 1. Non-

coordinating solvents and H atoms omitted for clarity. Colour code: C-grey; O-red; N-blue; Gd-green. 

 

Further analysis of the extended structure reveals the presence of several co-crystallised solvent molecules 

(Figure 3). A methanol molecule is disordered over four positions and displays a s.e. close contact of 2.680 Å 

with the methanolic oxygen (O4) bonded to Gd1. This H-bonding interaction directs the assembly of 

molecules of 1 into linear chains along the direction coincident with the polynucear Ln
III

 axis (in the plane of 

the page in Figure 3A). Along one axis perpendicular to the Ln3 chain, co-crystallised water and acetonitrile, 

both present at partial occupancy, reside in cavities generated by adjacent molecules of 1 (Figure 3B). A 

search of the CSD for Ln3 complexes (Ln = Gd, Tb or Dy), where Ln is bonded to a phenolate reveal ca. 10 

entries for Gd and Tb, about half of which conform to linear or near linear chains. For Dy there are ca. 20 

entries, of which approximately half are Dy3 chains. Complexes 1 – 3 are therefore rare examples of phenolate 

based Ln3 chains. We believe that the combination of the ligand design (shape, binding mode and donor 

atoms) and the oxophilic nature of the lanthanides creates a predisposition of LH4 and presumably related 

linear oligomers to construct Ln chains, although the latter will be the subject of future work.  

The dc molar magnetic susceptibilities, χM, of polycrystalline samples of 1-3 were measured over the 5 to 300 
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K temperature (T) range in an applied magnetic field (H) of 0.1 T. The experimental results for complex are 

plotted shown in Figure 4 in the form of the χMT product, where χ = M/H and M is the magnetisation of the 

sample. At 300 K the χMT products of 1 (23.2 cm
3
 K mol

-1
), 2 (35.5 cm

3
 K mol

-1
) and 3 (42.2 cm

3
 K mol

-1
) are 

close to that expected for three non-interacting Gd
III

 (S=7/2, L=0, J=7/2, g=2, 
8
S7/2), Tb

III
 (S=3, L=3, J=6, 

g=3/2, 
7
F6) and Dy

III
  

 (S=5/2, L=5, J=15/2; g=4/3, 
6
H15/2) ions, respectively. On cooling in all three cases, the χMT product remains 

essentially constant until approximately 100 K, below which the value begins to slowly decrease. For 

complexes 1 and 2, this decrease continues to the lowest temperatures measured, indicative of the thermal 

depopulation of the single-ion ligand-field states and/or very weak antiferromagnetic exchange between the 

Ln centres.
12

 For complex 3 a minimum of ~38.5 cm
3
 K mol

-1
 at T = 20 K is observed, before the χMT product 

increases at lower temperatures to a maximum value of 42.3 cm
3
 K mol

-1
 at 5 K. 

 

 

Figure 3. A) H- bonding with disordered and co-crystallised MeOH along the axis of the Ln
III

 trimer. B) 

Perpendicular view of (A) showing disordered solvent occupying cavities between adjacent molecules of 1. 
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This low temperature increase is suggestive of very weak ferromagnetic exchange between the constituent 

Dy
III

 ions. We have used the isotropic spin-Hamiltonian (1) to model the magnetic properties of complex 1: 

 

where i and j are integers that index the constitutive single-ions in 1, J is the isotropic exchange interaction 

parameter, Ŝ is a spin operator, μB is the Bohr magneton and g is the g-factor. For the numerical 

diagonalisation of the matrix representation of spin-Hamiltonian (1), we employed home written software 

(ITO-MAGFIT)
13

 and spin-Hamiltonian (1) was fitted to the experimental data by use of the Levenberg–

Marquardt algorithm.
14

 For 1, employing a model that assumes just one exchange interaction between nearest 

neighbours, this resulted in the best-fit parameter JGd-Gd = −0.07 cm
−1

, keeping the g-value fixed to 2. The 

magnetisation versus field data (Figure 4 and Figures S1-S2) for the same complex is satisfactorily fitted 

using the same parameter set. The so-obtained exchange interaction is comparable with previously reported 

alkoxide-bridged Gd
III

 ions and is as expected for very weakly interacting 4f ions.
12

 In order to check for 

potential SMM behaviour in the Tb (2) and Dy (3) complexes, ac susceptibility studies were undertaken at 

temperatures below 10 K and in frequencies up to 1000 Hz. For complex 2 no out-of-phase behaviour was 

observed, but the tails of frequency dependent signals for 3 are observed below 6 K, indicative of the onset of 

slow magnetisation relaxation and SMM behaviour (Figure S3). 

 

)1(ˆˆˆ2ˆ

,

 
 i

iiB

iji

jiijiso SgHSSJH 

← Figure 4. A) Plot of the χMT product 

versus T for complexes 1-3 in the 300 – 5 K 

temperature range, in an applied field of 0.1 

T. Solid red line is a fit of the experimental 

data to Hamiltonian (1), see text for details. 

B) Plot of magnetisation (M/NµB) versus 

field (B) for complex 1. Solid lines are a fit 

of the experimental data to Hamiltonian (1), 

see text for details. 
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In summary LH4 has been shown to act as a ligand support for three isostructural polynuclear Ln3 chains (Ln 

= Gd, Tb and Dy). The Dy analogue displays weak ferromagnetic exchange. Compounds 1 – 3 are the first 

examples of LH4 acting more generally as a ligand support for rare-earth clusters, and we believe that these 

compounds could presage a large number of new coordination complexes with 3d, and 3d-4f elements. 
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Notes and references 

‡ Crystal data for 1: C26.44H34.38Gd0.75N1.06O5.38, M = 570.99, Colourless Block, 0.30  0.28  0.15 mm
3
, 

orthorhombic, space group Pnnn (No. 48), a = 15.9607(9), b = 17.0196(10), c = 19.2424(11) Å, V = 5227.1(5) 

Å
3
, Z = 8, Bruker Apex II CCD diffractometer, Synchrotron radiation, = 0.77490 Å, T = 100(2)K, 2max = 

67.2º, 73454 reflections collected, 7930 unique (Rint = 0.0885). Final GooF = 1.013, R1 = 0.0416, wR2 = 

0.1158, R indices based on 5162 reflections with I >2(I) (refinement on F
2
). 
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