

Edinburgh Research Explorer

Database Programming in Machiavelli - a Polymorphic Language
with Static Type Inference

Citation for published version:
Ohori, A, Buneman, P & Breazu-Tannen, V 1989, Database Programming in Machiavelli - a Polymorphic
Language with Static Type Inference. in SIGMOD '89 Proceedings of the 1989 ACM SIGMOD international
conference on Management of data. ACM, pp. 46-57. DOI: 10.1145/67544.66931

Digital Object Identifier (DOI):
10.1145/67544.66931

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
SIGMOD '89 Proceedings of the 1989 ACM SIGMOD international conference on Management of data

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28974664?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/67544.66931
https://www.research.ed.ac.uk/portal/en/publications/database-programming-in-machiavelli--a-polymorphic-language-with-static-type-inference(4d636003-98a8-4189-8524-fd541e825848).html

Database Programming in Machiavelli – a Polymorphic Language

with Static Type Inference∗

Atsushi Ohori Peter Buneman Val Breazu-Tannen

Department of Computer and Information Science
University of Pennsylvania

200 South 33rd Street
Philadelphia, PA 19104-6389

Abstract

Machiavelli is a polymorphically typed programming lan-
guage in the spirit of ML, but supports an extended
method of type inferencing that makes its polymorphism
more general and appropriate for database applications.
In particular, a function that selects a field f of a records
is polymorphic in the sense that it can be applied to any
record which contains a field f with the appropriate type.
When combined with a set data type and database oper-
ations including join and projection, this provides a natu-
ral medium for relational database programming. More-
over, by implementing database objects as reference types
and generating the appropriate views — sets of structures
with “identity” — we can achieve a degree of static type
checking for object-oriented databases.

1 Introduction

The term “impedance mismatch” has been coined [Mai89]
to describe the phenomenon that the data types avail-
able in a programming language do not usually match

∗ Appeared in Proceedings of ACM SIGMOD Conference
on Management of Data, Portland, Oregon, May, 1989. Pages
46 – 57.

This research was supported in part by grants NSF IRI86-
10617, ONR NOOO-14-88-K-0634, ARO DAA6-29-84-k-0061
This research was done during the first author was on leave
from Oki Electric Industry. Atsushi Ohori’s current address:
Oki Electric Industry, Kansai Laboratory, Crystal Tower, 1-2-
27 Shiromi, Chuo-ku, Osaka 540, JAPAN.

the structures provided in a database system. This prob-
lem will be painfully familiar to anyone who has used a
high-level programming language to communicate with
a database. This mismatch is particularly unfortunate
when database applications programming cannot make
full use of the rich, statically checked type systems avail-
able in a number of modern programming languages.
Database schemas can be large and complex structures,
and our experience is that most programming errors in
database applications would show up as type errors were
the schema a part of the type structure of the program.
Thus a type system in which such errors can be antici-
pated by a static analysis of the program is, we believe, a
prerequisite for a good database programming language.

The designers of certain database programming lan-
guages, notably Pascal-R [Sch77] and Galileo [ACO85]
have recognized this mismatch problem and have im-
plemented languages in which a database can be di-
rectly represented in the type system of the language.
Type checking in both these languages is static and the
database types are relatively simple and elegant exten-
sions to the existing type systems of the programming
languages on which they are based. However, in these
languages it is sometimes difficult to write the kinds of
“generic” or “polymorphic” programs that are desirable
for many database applications. Contrast this with per-
sistent languages such as PS-algol [ABC*83] and some of
the more recent object-oriented database languages such
as Gemstone [CM84], EXODUS [CDJS86] and Trellis-
Owl [OBS86] where, if it is at all possible to write
generic code, some dynamic type-checking is required.
See [AB87] for a survey.

In this paper we describe how a polymorphic type sys-
tem, in conjunction with suitable data types for sets
and records can be used to achieve a natural representa-
tion for databases within a programming language. The
form of polymorphism available in languages such as ML
[HMT88] is intimately connected with a type inference
system; and we regard type inference as a strategy for re-

1

alizing this polymorphism. In addition type inference has
the obvious advantage that it can “discover” the generic
properties of some piece of code, which would otherwise
be both difficult and time-consuming to write down ex-
plicitly. These ideas are embodied in Machiavelli, an ex-
perimental programming language in the tradition of ML,
developed at University of Pennsylvania. A prototype im-
plementation has been developed that demonstrates most
of the material presented here with the exception of ref-
erence types, and some form of persistence. We will show
how Machiavelli’s type system provides a natural repre-
sentation of relational databases moreover, when com-
bined with reference types we obtain representations sim-
ilar to those used in object-oriented databases. Our hope
is that Machiavelli (or some language like it) will provide
a framework for dealing uniformly with both relational
and object-oriented databases.

Let us illustrate the flavor of programming in Machiavelli
with an example. Consider a function which takes a set of
records (i.e. a relation) with Name and Salary information
and returns the set of all Name values which correspond
to Salary values over 100K. For example, applied to the
relation

{[Name = "Joe", Salary = 22340],

[Name = "Fred", Salary = 123456],

[Name = "Helen", Salary = 132000]}

this function should yield the set {"Fred", "Helen"}.
Such a function is written in Machiavelli (whose syntax
mostly follows that of ML [HMT88]) as follows

fun Wealthy(S) = select x.Name

where x <- S

with x.Salary > 100000;

The select ... where ... with ... form is sim-
ple syntactic sugar for more basic Machiavelli program
structure (see section 2).

Although no data types are mentioned in the code, Machi-
avelli infers the type information

Wealthy: {[("a) Name:"b,Salary:int]} -> {"b}

by which it means that Wealthy is a function that takes
a homogeneous set of records, each of type [("a) Name

: "b, Salary : int], and returns a homogeneous set
of values of type "b, where ("a) and "b are type vari-
ables. "b represents an arbitrary type on which equality
is defined. ("a) represents an arbitrary extension to the
record structure that does not contain Name and Salary

fields; this is superficially similar to the “row variables” in
[Wan87]. "b and ("a) can be instantiated by any type and
record extension satisfying the above conditions. Conse-
quently, Machiavelli will allow Wealthy to be applied, for
example, to relations of type

{[Name: string, Age:int, Salary: int]}

and also to relations of type

{[Name: [First: string, Last: string],

Weight: int, Salary:int]}.

The function Wealthy is polymorphic with respect to the
type "b of the values in the Name field (as in ML) but
is also polymorphic with respect to extensions ("a) to
the record type [Name:"b ,Salary: int] In this second
form of polymorphism, Wealthy can be thought of as a
“method” in the sense of object-oriented programming
languages where methods associated with a class may be
inherited by a subclass, and thus applied to objects of of
that subclass.

For the purposes of finding a typed approach to object-
oriented programming, Machiavelli’s type system has sim-
ilar goals to the systems proposed by Cardelli and Weg-
ner [Car84a, CW85]. However, there are important tech-
nical differences, the most important of which is that
database values have unique types in Machiavelli while
they can have multiple types in [Car84a]. Based on the
idea suggested in [Wan87], Machiavelli achieves the same
goals of representing objects and inheritance (see also
[Sta88, JM88] for related studies). These differences allow
Machiavelli to overcome certain anomalies (see [OB88],
which also gives details of the underlying type inference
system).

Another important extension to these type systems for
objects and inheritance is that Machiavelli uniformly in-
tegrates set types and a number of operations on com-
plex objects and objects with “identity” which are essen-
tial to database programming. This paper describes how
database structures are naturally represented in the type
system of Machiavelli and how the type system supports
powerful yet type-safe programming for databases. In
particular we show that by exploiting type inference we
are able to achieve what we believe to be the desirable
features of programming with object-oriented databases
or “semantic” data models [AH87], by the use of coercions
or “views”.

Section 2 discusses the use of sets in a programming lan-
guage and, in particular, how higher-order relations are
treated. Section 3 contains a description of the language
itself. Section 4 and 5 respectively show how Machiavelli
can be used to represent relational and object oriented
databases. Section 6 discusses the further work that is
needed to make the language useful in dealing with ex-
ternal databases. Limitations of space make it difficult to
cover the language fully; the authors intend to present a
more detailed description in another paper.

2 Sets and Relations

If relations are to be properly incorporated into a poly-
morphic programming language, it is clear that we must
break with the first-normal-form assumption that under-
lies most implemented relational database systems and
most of the traditional theory of relational databases. In-
deed, the type

{[Name: [First: string, Last: string],

2

Salary:int]}

is the type of a “non-first-normal-form” relation in which
the Name field is itself a record type. In this case it is
a relatively easy matter to flatten such a relation into a
first-normal form relation but were the Name field to be
a reference to a name or to be a set of names [Eli82],
we could not perform such a flattening operation without
modifying the intended “semantics” of the database.

A set type {τ} in Machiavelli can be defined over any
data type τ for which equality is available. We shall call
such types description types; they are similar to “equality
types” in ML, but have more operations available. There
are four basic functions and values associated with sets:

• {} — the empty set

• {x} — the singleton set constructor

• union — set union

• hom — homomorphic extension

of these operations hom requires some explanation. hom is
a primitive function in Machiavelli similar to the “pump”
operation in FAD [BBKV88] and the “fold” or “reduce”
of many functional languages whose definition is

hom(f, op, z, {}) = z

hom(f, op, z, {x1, x2, ..., xn}) =

op(f(x1), op(f(x2), ..., op(f(xn), z)...))

In general the result of this operation will depend on
the order in which the elements of the set are encoun-
tered; however if op is an associative commutative op-
eration and f has no side-effects, then the result of hom
will be independent of the order of this evaluation. When
this happens we shall call the application of hom proper.
Machiavelli cannot guarantee that every application of
hom is proper; indeed improper applications of hom are
frequently useful. However proper applications are what
we mean by functions on sets, and they also have the
property of being computable in parallel.

There is an alternative form of hom, hom* that applies to
non- empty sets and does not require the argument z.
Thus

hom*(f, +, {x1, x2, ..., xn}) =

f(x1) + f(x2) + ... + f(xn)

When z is an identity for op, hom behaves as hom* on
non-empty sets.

For example the following useful functions can be defined
using hom:

fun map(f,S) =

hom((fn(x) => {f(x)}), union, {}, S)

fun filter(p,S) =

hom((fn(x) => if p(x) then {x} else {}),

union,

{},

S)

Here, map(f,S) is the set of results of applying f to
each member of S — the direct image of S by f, and
filter(p,S) is the set of elements of S that satisfy p.
Notice that both of these applications are proper. For
readers unfamiliar with the syntax of ML, fun ... =

... is a function definition, and (fn ... => ...) is a
lambda abstraction (anonymous function definition).

In addition to these examples hom can be used to define
set intersection, membership in a set, set difference, the
cartesian product (prod) of sets and the powerset (the set
of subsets) of a set. Also, the form

select E

where x1 <- S1,

x2 <- S2,

...

xn <- Sn

with P

which is provided in the spirit of relational query lan-
guages and the “comprehensions” of Miranda [Tur85], can
be implemented as

map((fn(e,p) => e),

filter((fn(e,p) => p),

map((fn(x1,x2, ...xn) => (E,P)),

prod(S1,S2, ... Sn))))

Where map, filter and prod are the functions we have
just described, and (E,P) is a pair of values (implemented
in Machiavelli as records).

However, it should be noted that unlike Miranda, which
operates on streams and unlike most relational systems,
which operate on bags or lists, Machiavelli’s sets are sets
in the mathematical sense of the term.

We now turn to operations on records. The first primitive
operation on records is projection which “throws away”
certain information. For example

project([Name="Joe", Age=21, Salary=22340],

[Name:string, Salary:int])

is [Name ="Joe", Salary=22340]. In this case projec-
tion has preserved the Name and Salary fields. A more
complicated projection is

project([Name=[First="Joe", Last="Doe"],

Salary=12345],

[Name:[Last:string]])

In general, if r is any value of type τ and σ corresponds
to a substructure of τ then project(r, σ) is well defined.
The substructure relationship is described more fully in
the next section. project is defined for all description
types in the language, but except for types that con-
tain records it is an uninteresting operation. For exam-
ple project(3,int) is simply 3. For general description
types, projection is “lifted” according to their structures.
As an example, a projection on sets project(S, {τ}) is
is equivalent to map((fn(x)=>project(x,τ)),S). When
the set type {τ} is a set of records this is a generalization
of relational projection.

3

Two records are consistent if they are both projections
of some common record. For example [Name = [First

= "Joe"], Age=21] and [Name = [Last = "Doe"]] are
consistent, while [Name = "Joe", Age = 21] and [Name

= "Sue"] are inconsistent.

Machiavelli has a predicate con which decides whether
two records are consistent and an operation join, which
“joins” two records when they are consistent as shown in
the following example:

join([Name=[First="Joe"], Age=21],

[Name=[Last="Doe"]]) =

[Name=[First="Joe", Last="Doe"], Age = 21]

For join and con to be well-defined, they must have con-
sistent types, thus

join([Name=[First="Joe"], Age=21], [Name="Joe"])

will cause a (static) type error. The types for con and
join are explained in section 3.

Based on a general property of database sets studied in
[BJO89], where a natural join for higher-order relations
was described, join can again be “lifted” to sets. When
the join is applied to two sets of records (higher order re-
lations), it results in the natural join of the two relations.

A useful property of join is that it coincides with inter-
section when applied to two sets of the same base type,
such as {int}. It also provides an interesting and use-
ful generalization of intersection when applied to sets of
“objects”. This is discussed in section 5.

3 The Language Machiavelli

Machiavelli is an extension of the programming language
ML. While preserving ML’s features of complete static
type inference and polymorphism, it extends ML’s type
system with variants, sets and general recursive types
and supports a number of operations that are useful
for databases and object-oriented programming includ-
ing join and projection generalized to arbitrary complex
descriptions. This extension also eliminates ML’s severe
restriction on functions manipulating records and manda-
tory requirement of recursive type declarations. Here we
give an overview of the language with an emphasis on the
features that are relevant to database programming. For-
mal properties underlying the language are described in
[OB88, Oho88, Oho89].

3.1 Types

Let l range over a set of labels. The types of Machiavelli
(ranged over by τ) are represented by the following syn-
tax:

τ ::= unit | int | bool | string | real | τ → τ |

[l : τ, . . . , l : τ] | 〈l : τ, . . . , l : τ〉 | {τ} |
ref(τ) | rec v. τ(v)

[l : τ, . . . , l : τ] represent record types and 〈l : τ, . . . , l : τ〉
represent variant types. rec v. τ(v) represents recursive
types where τ(v) is a type expression possibly containing
the symbol v. Formally, the set of types of Machiavelli
is defined as the set of labeled regular trees [Cou83] con-
structed from base types and type constructors. Infinite
trees correspond to recursive types.

A type τ is a description type if it does not contain a
function type constructor → outside of the scope of any
ref constructors. On description types, equality, as well
as database operations, are available. We use δ, δ1, . . . for
description types.

For convenience, we assume special labels #1, #2, . . . and
write τ1 ∗ τ2 ∗ · · · ∗ τn for [#1 : τ1, . . . , #n : τn] and τ1 +
τ2 + · · ·+ τn for 〈#1 : τ1, . . . , #n : τn〉. The following are
examples of types representable in Machiavelli:

person = [Name : string, Age : int]

personObj = ref([Name : string, Age : int])

intlists = rec v. (unit + (int ∗ v))

3.2 Expressions

Let c, x, δ stand respectively for constants, variables and
description types. Expressions are defined by the follow-
ing syntax:

e ::= c | x | e(e) | (fn(x, . . . , x) => e) |
if e then e else e |
[l = e, . . . , l = e] | e.l | modify(e, l, e) |
(l of e) |
(case e of l of x => e, . . . , l of x => e) |
(case e of l of x => e, . . . , other => e) |
{e, . . . , e} | union(e, e) | hom(e, e, e, e) |
ref(e) | (!e) | e := e |
con(e, e) | join(e, e) | project(e, δ) |
let x = e in e | rec(x, e)

where e.l is field selection from a record, (l of e) is injec-
tion to a variant, ref(e) is reference creation, (!e) is deref-
erence, and rec(x, e) is a recursive description construc-
tion. modify(e1, l, e2) modifies the l-field of the record
expression e1 with e2. It is important to note that modify
does not have a side-effect. It is a function that returns a
modified copy of its argument. The variable that appears
in l of x => e in case construction is bound to the actual
value of l-variant (when selected) in e. hom is an opera-
tion we have already described, and con, join, project are
described in the next section.

4

3.3 Type Inference and Evaluation

One important feature of Machiavelli, inherited from ML,
is the static type inference. The type system statically de-
termines whether a given program is type correct. More-
over, by using the inference strategy described in [OB88]
which is an extension of Milner’s method [Mil78] for ML,
Machiavelli’s type system finds a principal conditional
type-scheme for any type correct program. Rather than
describe the strategy in detail we give some program ex-
amples.

Machiavelli can be used interactively, and the top level
input is either a value binding of the form

-> val x = EXPR ;

a function definition of the form,

-> fun f(x,...,x) = EXPR ;

or an expression. -> is the input prompt. The following
is a very simple session in Machiavelli:

-> 1;

>> val it = 1 : int

-> fun id(x) = x;

>> val id = fn : ’a -> ’a

-> id(1);

>> val it = 1 : int

>> is Machiavelli’s output prefix, and it is a name for
the result of evaluation of an expression. ’a is a type
variable representing an arbitrary type. The function id

is a typical polymorphic function. It can be applied to any
value of of any type τ and will return a value of the same
type τ . This mechanism attains much of the flexibility of
untyped languages without sacrificing the benefit of static
type-checking.

In the example above Machiavelli behaves exactly as ML,
however it is also possible to infer types for expressions
involving records and variants. Figure 1 shows some ex-
amples. In the notation [(’a) l1 : τ1, ..., ln : τn] (’a)

stands for any sequence of label-type pairs that does not
contain the labels l1, ..., ln. A similar convention, <(’a)
...> is used for variants. Such type expressions are in-
ferred by the type inferencing method so that, for ex-
ample, the function phone can be applied to any record
that contains a Status field of either an Employee vari-
ant of any record containing an Extension field or to a
Consultant variant of any record containing a Telephone

field. Moreover, Machiavelli always finds the exact result
types of such applications. This eliminates the problem
of loss of type information, which was observed, but not
eliminated, in the language FUN [CW85] (see [OB88] for
an analysis of this problem). Also note that the func-
tions involving field modification such as increment age

are not well treated in FUN.

Next we show how Machiavelli infers types of pro-
grams containing con, join and project. These three
operations are defined on arbitrary description types.

con(d1, d2) checks the consistency of two descriptions and
join(d1, d2) computes the combination of the two descrip-
tions if they are consistent. Projection is generalized to
a projection on arbitrary description types. If δ is a de-
scription type, then project(d, δ) is the projection of d
onto δ. In order to infer correct types for these opera-
tions and support them as polymorphic operations that
work uniformly on arbitrary complex descriptions, we in-
troduce the information ordering ≤ on description types.
Let δ, δ1, . . . denote description types. δ1 ≤ δ2 iff δ1 can be
obtained from δ2 by deleting zero or more record labels
that appear outside of scopes of ref type constructors.
On finite description types, ≤ is equivalent to the follow-
ing inductive definition:

b ≤ b (b a base type)

{δ} ≤ {δ′}
if δ ≤ δ′

[l1 : δ1, . . . , ln : δn] ≤ [l1 : δ′1, . . . , ln : δ′n, . . .]

if δi ≤ δ′i for each i

< l1 : δ1, . . . , ln : δ′n > ≤ < l1 : δ′1, . . . , ln : δn >

if δi ≤ δ′i for each i

ref(τ) ≤ ref(τ)

τ1 ≤ τ2 captures the intuitive notion that τ2 is a bigger
structure than τ1. Note that ≤ is a partial ordering. We
will denote the least upper bound of δ1, δ2, whenever it
exists, by δ1 t δ2. With this con,join,project are given
the following polymorphic types.

con : (δ1 ∗ δ2) → bool if δ1 t δ2 exists

join : (δ1 ∗ δ2) → δ1 t δ2 if δ1 t δ2 exists

projectδ : δ′ → δ if δ ≤ δ′

For their precise typing rules and semantics, readers are
referred to [OB88, Oho88] respectively. The following
example shows how expressions involving join and pro-
jection are typed by using the information ordering on
description types.

-> val fun Join3(x,y,z) = join(x,join(y,z));

>> val Join3 = fn : ("a * "b * "c) -> "d

where { "d = "a lub "e, "e = "b lub "c }

-> Join3([Name="Joe"],[Age=21],[Office=27]);

>> val it = [Name="Joe",Age=21,Office=27]

: [Name:string,Age:int,Office:int]

-> project(it,[Name:string]);

>> val it = [Name="Joe"] : [Name:string]

"a represents arbitrary description types and "d = "a

lub "e in the where clause represents the condition that
the instance of "d must be the least upper bound of
the instances of "a,"e under the information ordering.
Join3 computes the join of three (joinable) complex ob-
jects. If r1,r2,r3 are three joinable flat relations, then
Join3(r1,r2,r3) is exactly the natural join of the three.
As seen in the example, Machiavelli always maintains
if-and-only-if conditions associated with operators such
as join that do not have a conventional principal type-
scheme. This mechanism makes type inference complete.

5

-> val joe = [Name="Joe", Age=21,

Status=(Consultant of [Address="Philadelphia", Telephone=2221234])];

>> val it = [Name="Joe", Age=21,

Status=(Consultant of [Address="Philadelphia", Telephone=2221234])]

: [Name:string, Age:int,Status:<(’a) Consultant:[Address:string,Telephone:int]>]

-> fun phone(x) = (case x.Status of Employee of y => y.Extension,

Consultant of y => y.Telephone);

>> val phone = fn

: [(’a) Status:<Employee:[(’b) Extension:’d], Consultant:[(’c) Telephone:’d]>] -> ’d

-> phone(joe);

>> val it = 2221234 : int

-> fun increment_age(x) = modify(x, Age, x.Age + 1);

>> val increment_age = fn : [(’a) Age:int] -> [(’a) Age:int]

-> increment_age([Name="John",Age=21]);

>> val it = [Name="John",Age=22] : [Name:string,Age:int]

Figure 1: Some Simple Machiavelli Examples

-> parts;

>> val it =

{[Pname="bolt",P#=1,Pinfo=(BasePart of [Cost=5])], ...

[Pname="engine",P#=2189,

Pinfo=(CompositePart of [SubParts={[P#=1,Qty=189], ...}, AssemCost=1000])], ...}

: {[Pname:string,P#:int,

Pinfo:<BasePart:[Cost:int],

CompositePart:[SubParts:{[P#:int,Qty:int]},AssemCost:int]>]}

-> suppliers;

>> val it =

{[Sname="Baker",S#=1,City="Paris"], ... } : {[Sname:string,S#:int,City:string]}

-> supplied_by;

>> val it = {[P#=1,Suppliers={[S#=1],[S#=12],....}], ... }

: {[P#:int,Suppliers:{[S#:int]}]}

Figure 2: A Part-Supplier Database in Generalized Relational Model

(* Select all base parts *)

-> join(parts,{[Pinfo=(BasePart of [])]});

>> val it = {[Pname="bolt", P#=1, Pinfo=(BasePart of [Cost=5])], ...}

: {[Pname:string,P#:int,

Pinfo:<BasePart:[Cost:int],

CompositePart:[SubParts:{[P#:int,Qty:int]},AssemCost:int]>]}

(* List part names supplied by "Baker" *)

-> select x.Pname

where x <- join(parts,supplied_by)

with Join3(x.Suppliers,suppliers,{[Sname="Baker"]}) <> {};

>> {"bolt",...} : {string}

Figure 3: Some Simple Queries

6

4 Generalized Relational Mod-
els

Machiavelli supports arbitrarily complex structures that
can be constructed with records, variants and sets. This
allows us to define directly in Machiavelli databases
supporting complex structures including non-first-normal
form relations, nested relations and complex objects. Fig-
ure 2 shows an example of a database containing non-flat
records, variants, and nested sets. With the availability
of a generalized join and projection, we can immediately
write programs that manipulate such databases. Figure 3
show some simple query processing for the database ex-
ample in figure 2. From this example, one can see that
join and projection in Machiavelli faithfully extends the
natural join and projection in the relational model to
complex objects.

The most important feature of Machiavelli is that these
data structures and operations are all “first-class citi-
zens” in the language. This eliminates the problem of
“impedance mismatch” we discussed in the introduction.
Data and operations can be freely mixed with other fea-
tures of the language including recursion, higher-order
functions, polymorphism. This allows us to write power-
ful query processing programs relatively easily. The type
correctness of programs is then automatically checked at
compile time. Moreover, the resulting programs are in
general polymorphic and can be shared in many applica-
tions. Figure 4 shows a simple implementation of a poly-
morphic transitive closure function. By a using renam-
ing operation, this function can be used to compute the
transitive closure of any binary relation. Figure 5 shows
query processing on the example database using polymor-
phic functions. The function cost taking a part record
as argument computes the total cost of the part. With-
out proper integration of the data model and program-
ming language, defining such a function and checking type
consistency is a rather difficult problem. It should also
be noted that functions cost and expensive parts are
polymorphic and can be applied to many different types
sharing the same common structures. This is particularly
useful when we have several different parts databases with
the same structure of cost information. Even if the indi-
vidual databases differ in the structure of other informa-
tion, these functions can be shared by all those databases.

5 Manipulation of
Object-Oriented Databases

In this section we first show how to represent object-
oriented databases within Machiavelli’s type system and
then suggest how Machiavelli might be used to communi-
cate with external, object-oriented databases. We believe
that the notion of “objects” can be accurately captured by

reference types. References support sharing of structure
and mutability. For example, if we define a department
record

val d = ref([Dname="Sales", Building=45]);

and from this we define two employee records

val emp1 = ref([Name = "Jones",

Department = d]);

val emp2 = ref([Name = "Smith",

Department = d]);

then an update to the building of the department as seen
from emp1

let val d = (!emp1).Department

in d:=modify(!d, Building, 67)

end;

will be reflected in the department as seen from emp2. An-
other important property of reference types is that they
support “object identity”: two references are equal only
if they are the result of the same invocation of the func-
tion ref which creates references. For example, ref(3)
= ref(3) is false, the two applications of ref generate
different (unequal) references.

A second property of object oriented databases has to do
with the connection between classes and extents. When
we say an Employee ISA Person, there are at least two
things we could understand by this relationship. One of
them is that the “methods” that apply to a Person ob-
ject can also be applied to an Employee; another is that
the database contains a set of objects and that the set of
Employee objects is a subset of the set of Person objects.
Now there is no a priori reason why these two definitions
of ISA should have anything to do with each other. In-
deed, if we think of Person and Employee as types and
objects as values, the second (extensional) definition of
ISA is excluded because database values in Machiavelli
have a unique type; moreover, as we have already noted,
there is a problem with the assumption that a database
value can have multiple types.

Nevertheless it seems to be a desideratum of object-
oriented databases that these two definitions of ISA
should be coupled: if you select the Employee objects
from the database, you get a subset of the Person ob-
jects in the database and the methods available for Em-
ployee objects form a superset of the methods available
for Person objects. But note that this argument only
asks that the two definitions of ISA are coupled relative
to some database; we see no reason for having a distin-
guished extent associated with each class, as happens in
many database programming languages. Among other
things, this restriction implies that a program written in
such languages cannot deal comfortably with more than
one database at a time.

The way we capture this idea in Machiavelli is through
coercions or views. The type of an object will, in gen-
eral, be a reference to a rather complicated type, say

7

-> fun Closure R =

let val r = select [A=x.A,B=y.B]

where x <- R, y <- R

with (x.B = y.A) andalso not(member([A=x.A,B=y.B],R))

in if r = {} then R else Closure(union(R,r))

end;

>> Closure = fn : {[A:"a,B:"b]} -> {[A:"a,B:"b]}

Figure 4: A Simple Implementation of Polymorphic Transitive Closure

(* function computes the total cost of a part *)

-> fun cost(p) =

(case p.Pinfo of

BasePart of x=>x.Cost,

CompositePart of x=>

x.AssemCost + hom((fn(y)=>y.SubpartCost * y.Qty),+,0,

select [SubpartCost=cost(z),Qty=w.Qty]

where w <- x.SubParts, z <- parts

with z.P#=w.P#));

>> val cost = fn

: [(’a) Pinfo:<BasePart:[(’c) Cost:int],

CompositePart:[(’d) SubParts:{[(’e) P#:int,Qty:int]},AssemCost:int]>]

-> int

(* select names of "expensive" parts *)

-> fun expensive_parts(partdb,n) =

select x.Pname

where x <- partdb

with cost(x) >n;

>> val expensive_parts = fn :

: ({[(’a) Pinfo:<BasePart:[(’c) Cost:int],

CompositePart:[(’d) SubParts:{[(’e) P#:int,Qty:int]},AssemCost:int]>]},

int) -> {string}

-> expensive_parts(parts,1000);

>> val it = {"engine",...} : {string}

Figure 5: Query Processing Using Polymorphic Functions

PersonObj. A database (or a part of it) will consist of
a set D of such objects, i.e. a value of type {PersonObj}.
A view of D is a set of relatively simple records in
which we “reveal” a part of the structure of each mem-
ber of D in a fashion that allows us to exploit the rela-
tional operations we have already developed. For exam-
ple, {[Name: string, Id: PersonObj]} and {[Name:
string, Age: int, Id:PersonObj]} are both views of
set D. But notice that within these records we have kept a
distinguished Id field that contains the object itself, and
this field, being a reference type can also be treated as an
“identity” or key when we have a set of objects. Because
of the presence of this field, we can perform generalized
set operations on views even though they are of different
type. In fact we have already seen one such operation,
the natural join. When applied to views it is an opera-
tion that takes the intersection of sets of identities, but
produces a result that has a join type and gives us the

union of the “methods”. In fact we shall simply define a
class as any record type that contains an Id field, which
will be assumed to be some reference type.

As an example, a part of the database could be a collec-
tion of “person” objects modeling the set of persons in a
university. Among persons, some are students and others
are employees. Such subsets naturally form a taxonomic
hierarchy or class structure. Figure 6 shows a simple
example. Note that the arrows not only represent inher-
itance of properties but also actual set inclusions; they
also run opposite to the information ordering described
earlier.. We use variant types to represent structures of
objects that share common properties (e.g. being a per-
son) but differ in special properties. The example is then
represented by the types shown in figure 7. We should
emphasize that the type names PersonObj , Person, etc
are not names in Machiavelli, they are just convenient
shorthands used in some of the examples that follow. The

8

PersonObj = ref([Name: string, Salary : <None: unit, Value: int>,

Advisor : <None: unit, Value: PersonObj>,

Class : <None:unit, Value: string>]);

Person = [Name: string, Id: PersonObj];

Student = [Name: string, Advisor: PersonObj, Id: PersonObj]

Employee = [Name: string, Salary: Integer, Id: PersonObj]

TeachingFellow = [Name: string, Salary: Integer, Advisor: PersonObj,

Class: String, Id: PersonObj]

Figure 7: Some Machiavelli Types

fun PersonView(S) = select [Name=(!x).Name, Id=x]

where x <- S

with true;

fun EmployeeView(S) = select [Name=(!x).Name, (Salary=(!x).Salary as Value), Id=x]

where x <- S

with (case (!x).Salary of Value of _ => true, other => false);

fun StudentView(S) = select [Name=(!x).Name, (Advisor=(!x).Advisor as Value), Id=x]

where x <- S

with (case (!x).Advisor of Value of _ => true, other => false);

fun TFView(S) = select join(x,[Class=(!x).Class as Value]

where x <- join(StudentView(S),EmployeeView(S))

with (case (!x).Class of Value of _ => true, other => false);

Figure 8: Definition of Views

Teaching Fellows

Employees Students

People

¡
¡¡µ

¡
¡¡µ

@
@@I

@
@@I

Figure 6: A Simple Class Structure

reference type PersonObj is the type of a person object.
The type Person, Employee and TeachingFellow are types
of person objects viewed as persons, employees and tech-
ing fellows respectively. For example, a person object is
viewed as (or more precisely can be coerced to) an em-
ployee if it has name and salary attributes. A database
would presumably contain a set of person objects, i.e. a
set of type {PersonObj}, and views of any set of this type
can be constructed in Machiavelli by the definitions shown
in figure 8. where (e as l) is a shorthand for (case e of

l of x => x, other raise Error). The types inferred
for these functions will be quite general, but the following
are the instances that are important to us in the context

of this example.

PersonView : {PersonObj} -> {Person}
EmployeeView : {PersonObj} -> {Employee}
StudentView : {PersonObj} -> {Student}
TFView : {PersonObj} -> {TeachingFellow}

In the definition of TFView, the join of two views mod-
els both the intersection of the two classes and the in-
heritance of methods. If τ1, τ2 are types of classes, then
τ ≤ σ implies that Project(V iewσ(S), τ) ⊆ V iewτ (S))
where V iewτ and V iewσ denote the corresponding view-
ing functions on classes τ and σ. This property guar-
antees that the join of two views corresponds to the in-
tersection of the two. The property of the ordering on
types and Machiavelli’s polymorphism also supports the
inheritance of methods. For example, suppose we have a
database persons. Then join(StudentView(persons),

EmployeeView(persons)) always represents the set
of objects that are both student and employee.
Moreover, methods defined on StudentView(persons)

and EmployeeView(persons) are automatically inher-
ited by Machiavelli’s type inference mechanism. As
an example of inheritance of methods, the function
Wealthy, as defined in the introduction, has type
{[("a) Name:"b,Salary:int]} -> {"b}, which is appli-
cable to EmployeeView(persons), is also applicable to
TFView(persons).

9

(* New view of people who are both Student and Employees *)

-> val supported student = join(StudentView(persons),EmployeeView(persons));

>> val supported student =

: [Name:string, Salary:int, Advisor:PersonObj, Id:PersonObj]

(* Names of students who earn more than their advisors *)

-> select x.Name

where x <- supported student, y<-EmployeeView(persons)

with x.Advisor=y.Id andalso x.Salary > y.Salary;

>> val it = ... : string

Figure 9: Using join to find an intersection

Figure 9 shows how join can be used to construct a new
view and gives a query on that view.

Dual to the join which corresponds to the intersection of
classes, the union of classes can be also represented in
Machiavelli. The primitive operation unionc is a gener-
alization of the union defined in connection with hom to
the operate on type {δ1} ∗ {δ2} for all description types
δ1, δ2 such that δ1uδ2 exists. Let s1, s2 be two sets having
types {δ1}, {δ2} respectively. Then union(s1, s2) satisfies
the following equation:

union(s1, s2) =

project(s1, δ1 u δ2) ∪ project(s2, δ1 u δ2)

which is reduced to the standard set-theoretic union when
δ1 = δ2. This
operation can be used to give a union of classes of dif-
ferent type. For example, union(StudentView(person),
EmployeeView(person)) correspond to the union of stu-
dents and employees. On such a set, one can only safely
apply methods that are defined both on students and em-
ployees. As with join, this constraint is automatically
maintained by Machiavelli’s type system because the re-
sult type is {Person}.
In addition one can easily define the “membership” oper-
ation on classes of disparate type.:

fun member(x,S) = join({x},S) <> {}

member(x,S) = true iff there is some member of s of S
such that x and s have a common identity. In this fashion
it is possible to extend a large catalog of set-theoretic
operations to classes.

It is interesting to note that this approach, when con-
sidered as a data model, has some similarities with that
proposed in the IFO model [AH87]. The database consists
of a collection of sets of different types of which a set of
type PersonObj in our example, would be one. Subclasses
(“specializations” in IFO) correspond to views. However,
unions of these cannot be formed directly, because the Id

fields will have different types. The correct way to form
a union (IFO’s “generalizations”) would be to exploit a
variant type.

Of course, a good database programming language should
not only be able to manipulate databases that conform
to its own type system but others as well. In particu-
lar, most current object-oriented database languages do
not have any static type-checking, but we would still like
to deal with them in the same way that we have dealt
with uniformly typed classes. This is possible through
use of dynamic values. A dynamic value [Car84b] is one
which carries its type description with it. Functions exist
for interrogating this type description and for coercing
dynamic values back to ordinary typed values. Let us
assume that dynamic values also behave like references
in that two dynamic values are equal only if they were
created by the same invocation of the function Dynamic,
which creates dynamic types.

We can now view an external database as a single large set
of dynamic values, i.e. it has type {dynamic}. In the same
fashion that we generated views above, we can generate
views (probably by some external procedures) based on
dynamic. Thus an employee view of the database might
be a class of type

{[Name: string, Salary: int, Id: dynamic]}

and a department view could be a class of type

{[Dname: string, Building: string,

Id: dynamic]}

with the “intersection” of these classes being empty. Once
this has been done we can write programs to manipu-
late these structures in the type-safe way we have ad-
vocated throughout this paper even though the underly-
ing database does not have any imposed type constraints.
The implementation of views (in addition we would need
procedures to perform updates) must, of course, respect
the projection property we described earlier. But we be-
lieve that, for a given object-oriented database system,
building these views will be straightforward and could be
carried out by generating them automatically.

10

6 Conclusions and Directions
for Further Investigations

We have shown that a variety of database structures can
be mapped into the type system of Machiavelli. In par-
ticular relational databases (including higher order re-
lations) can be directly represented as Machiavelli val-
ues. When we come to object-oriented databases, we still
achieve a representation but we need to define views in
order to gain the advantages of Machiavelli’s polymor-
phism. In a sense, the definition of views corresponds to
a “data definition language” for Machiavelli, and it would
be preferable if this language could naturally merge with
the language of types. Fully specifying object-oriented
database models might require definitional facilities for
inheritance relationships between types. Interestingly,
similar requirements seem to arise when trying to inte-
grate encapsulation (data abstraction) in a manner that
accords with the object-oriented principle of code re-use.

Integrating type definition in a language based on com-
plete type inference, and doing it in a conceptually uni-
form and elegant way constitutes a challenge. Some ex-
periments are under way with Machiavelli in this direc-
tion. We hope that these experiments will help in making
the right language design decisions.

It would be interesting to know if Cardelli and Wegner’s
view of inheritance can be reconciled with the inheritance-
by-record-type-inference view of Wand [Wan87], which is
the view supported by Machiavelli. One of us has re-
cently been involved in some research [BCGS] that may
shed some light on this problem by providing a new se-
mantic interpretation of the Cardelli-Wegner type system.
This semantics shows that interpreting subtyping as an
already lambda definable coercion map is consistent with
polymorphism, bounded quantification, and even with re-
cursive types. This de-mysticizes the subtyping (inheri-
tance) relation, and thus makes us feel more comfortable
tampering with the type system (as long as the changes
still fit the interpretation; but the interpretation turns
out to be pleasantly flexible).

For example, one can have unique types for description
type values and still have the some degree of “method
inheritance” if one does away with the rule

e : σ σ ≤ τ

e : τ

and replaces the rule

e : σ → τ e′ : σ

e(e′) : τ

with the rule

e : σ → τ e′ : ρ ρ ≤ σ

e(e′) : τ

From a database perspective, there are a number of im-
portant ways in which Machiavelli needs to be augmented

to make it a viable database programming language. The
most important of these is the implementation of persis-
tence and efficient evaluation of set expressions. On the
other hand we feel that we do not need to deal in great
detail with the efficiency of the whole range of database
structures. Our hope is that Machiavelli can be parasitic
on already implemented database management systems
and will serve as a medium for communication between
heterogeneous systems and, in particular, that it will al-
low us to achieve a clean integration of already imple-
mented relational and object-oriented systems. Of course,
this does not mean that we can automatically map an
object-oriented database into a relational database, since
most implemented relational databases are constrained to
be in first normal form. But we hope that a programming
language such as Machiavelli will make it relatively easy
to transfer data between heterogeneous databases.

Acknowledgement

We would like to thank Malcolm Atkinson for his careful
reading of this paper and many helpful comments.

References

[AB87] M.P. Atkinson and O.P. Buneman. Types and
Persistence in Database Programming Lan-
guages. ACM Computing Surveys, June 1987.

[ABC*83] M.P. Atkinson, P.J. Bailey, K.J. Chisholm,
W.P. Cockshott, and R. Morrison. An Ap-
proach to Persistent Programming. Computer
Journal, 26(4), November 1983.

[ACO85] A. Albano, L. Cardelli, and R. Orsini. Galileo:
A Strongly Typed, Interactive Conceptual
Language. ACM Transactions on Database
Systems, 10(2):230–260, 1985.

[AH87] S. Abiteboul and R. Hull. IFO: A formal se-
mantic database model. ACM Transactions
on Database Systems, 12(4):525–565, Decem-
ber 1987.

[BBKV88] F. Bancilhon, T. Briggs, S. Koshafian, and
P. Valduriez. FAD, a powerful and simple
database language. In Proc. Intl. Conf. on
Very Large Data Bases, pages 97–105, 1988.

[BCGS] V. Breazu-Tannen, T. Coquand, C.A. Gunter,
and A. Scedrov. Inheritance and Explicit
Coercion (Preliminary Report). Unpublished
Manuscript, University of Pennsylvania.

[BJO89] P. Buneman, A. Jung, and A. Ohori. Us-
ing Powerdomains to Generalize Relational
Databases. Theoreical Computer Science, To
Appear, 1989. Available as a technical report
from Department of Computer and Informa-
tion Science, University of Pennsylvania.

11

[Car84a] L. Cardelli. A Semantics of Multiple Inheri-
tance. In Semantics of Data Types, Lecture
Notes in Computer Science 173, Springer-
Verlag, 1984.

[Car84b] L. Cardelli. Amber. Technical Memoran-
dum TM 11271-840924-10, AT&T Bell Lab-
oratories, 1984.

[CDJS86] M. Carey, D. DeWitt, Richardson J., and E
Sheikta. Object and File Management in the
EXODUS Extensible Database System. In
Proceedings of the 12th VLDB Conference,
Kyoto, Japan, August 1986.

[CM84] G. Copeland and D. Maier. Making Smalltalk
a Database System. In Proceedings of ACM
SIGMOD, pages 316–325, ACM, June 1984.

[Cou83] B. Courcelle. Fundamental Properties of In-
finite Trees. Theoretical Computer Science,
25:95–169, 1983.

[CW85] L. Cardelli and P. Wegner. On Understand-
ing Types, Data Abstraction, and Polymor-
phism. Computing Surverys, 17(4):471–522,
December 1985.

[Eli82] T.S. Eliot. Old Possum’s Book of Practical
Cats. Harcourt Brace Jovanovic, 1982.

[HMT88] R. Harper, R. Milner, and M. Tofte. The Defi-
nition of Standard ML (Version 2). LFCS Re-
port Series ECS-LFCS-88-62, Department of
Computer Science, University of Edinburgh,
August 1988.

[JM88] L. A. Jategaonkar and J.C. Mitchell. ML with
extended pattern matching and subtypes. In
Proc. ACM Conference on LISP and Func-
tional Programming, pages 198–211, Snow-
bird, Utah, July 1988.

[Mai89] D Maier. Why Database Langauges Are a
Bad Idea. In F. Bancilhon and P. Buneman,
editors, Workshop on Database Programming
Languages, Addison-Wesley, 1989. To Ap-
pear.

[Mil78] R. Milner. A Theory of Type Polymorphism
in Programming. Journal of Computer and
System Sciences, 17:348–375, 1978.

[OB88] A. Ohori and P. Buneman. Type Inference
in a Database Programming Language. In
Proc. ACM Conference on LISP and Func-
tional Programming, pages 174–183, Snow-
bird, Utah, July 1988.

[OBS86] P O’Brien, B Bullis, and C. Schaffert. Per-
sistent and Shared Objects in Trellis/Owl. In
Proc. of 1986 IEEE International Workshop
on Object-Oriented Database Systems., 1986.

[Oho88] A. Ohori. Semantics of Types for Database
Objects. In Proc. International Conference on
Database Theory, Lecture Notes in Computer

Science 326, pages 239–251, Bruges, Belgium,
August 1988. Extended version submitted to
a special issue of Theoretical Computer Sci-
ence.

[Oho89] A. Ohori. A Simple Semantics for ML Poly-
morphism. In Proceedings of Conference
on Functional Programming Languages and
Computer Architecture, September 1989. To
appear.

[Sch77] J.W. Schmidt. Some High Level Lan-
guage Constructs for Data of Type Rela-
tion. ACM Transactions on Database Sys-
tems, 5(2), 1977.

[Sta88] R. Stansifer. Type Inference with Subtypes.
In Proc. 15th ACM Symposium on Princi-
ples of Programming Languages, pages 88–97,
1988.

[Tur85] D.A. Turner. Miranda: A non-strict func-
tional language with polymorphic types.
In Functional Programming Languages and
Computer Architecture, Lecture Notes in
Computer Science 201, pages 1–16, Springer-
Verlag, 1985.

[Wan87] M. Wand. Complete Type Inference for Sim-
ple Objects. In Proceedings of the Second An-
ual Symposium on Logic in Computer Science,
pages 37–44, Ithaca, New York, June 1987.

12

