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Abstract

Buneman, P., A. Jung and A. Ohori, Using powerdomains to generalize relational databases,
Theoretical Computer Science 91 (1991) 23-55.

Much of relational algebra and the underlying principles of relational database design have a
simple representation in the theory of domains that is traditionally used in the denotational
semantics of programming languages. By investigating the possible orderings on powerdomains
that are well known in the study of nondeterminism and concurrency it is possible to show that
many of the ideas in relational databases apply to structures that are much more general than
relations. This also suggests a method of representing database objects as typed objects in
programming languages.

In this paper we show how operations such as natural join and projection—which are funda-
mental to relational database design—can be generalized, and we use this generalized framework
to give characterizations of several relational database concepts including functional dependencies
and universal relations. All of these have a simple-minded semantics in terms of the underlying
domains, which can be thought of as domains of partial descriptions of “real-world” objects. We
also discuss the applicability of relational database theory to nonrelational structures such as
records with variants, higher-order relations, recursive structures and other ordered spaces.
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1. Introduction

There are two motivations for this study. The first is to draw together a number
of approaches to data maodels and to examine the extent to which they can be viewed
as generalizations of the relational data model. The second is to try to draw out the
connection between data models and data types, something that is crucial if we are
to achieve a proper integration of databases [4, 5, 39] and programming languages.

The main focus of this paper is the first of these. There are a number of attempts
to generalize the relational data model beyond first-normal-form relations [17, 36,
32]; there are also numerous formulations of other data models [1, 18, 7, 19] that
at first sight appear to have little to do with relations. We shall see that by exploiting
the basic ideas of domain theory, well-known in the study of semantics of program-
ming languages, we can obtain generalizations of many of the basic results of
relational databases in a way that has very little to do with the details of the data
structures that are used to define them; and which allows the application of relational
database principles to a much wider range of data models. Although some observa-
tions have been made [34, 14] that suggest a connection between database and
programming languages semantics, there appears to have been no attempt directly
to characterize relational databases in the appropriate semantic domains.

To the hardened first-normal-form relational database theorist this paper offers
little more than alternative, and perhaps simpler, derivations of some existing results.
However, given the recent activity in the study of “higher-order” relations, which
attempts to apply the basic results of relational databases to other structures, it is
interesting to ask how far this work can be pushed. What are the properties of the
data model that allow us to define relational operators, functional dependencies
etc.? In doing this, we shall find it useful to produce a simple denotational semantics
for relations and other structures, which is an extension to the semantics for missing
values proposed by Lipski [23]. The idea is that these structures denote sets of
values in some space which we may think of as the “real world”. One of the
advantages of our approach is that it allows us to provide a denotational semantics
for structures such as sets of attribute names, which usually receive an operational
treatment. Such a semantics will, we hope, ultimately be useful if we are ever to
achieve our second goal of achieving a healthy marriage of databases and program-
ming languages.

The organization of this paper is as follows. In Section 2 we describe the
properties of the underlying domains that we shall need. Section 3 then shows how
powerdomain orderings (orderings on sets of values) can be used to characterize
the various joins that are discussed in relational algebra. In Section 4, in trying to
characterize projection, we introduce the notion of schemes, which generalize rela-
tional schemes (sets of column names). Schemes enjoy some nice properties with
respect to powerdomain orderings and allow us to characterize functional dependen-
cies and universal relations, which is done in the following sections. Section 7
concludes by showing how these ideas can be applied to various extensions of
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relational databases including typed relations, relations with null values and various
forms of higher-order relations; it also suggests that there may be some limitations
to what one can do with non-first-normal-form relations. The reader who is more
interested in data types and structures rather than some of the more esoteric areas
of database theory may wish to skip much of Sections 5 and 6, and turn directly to
Section 7.

2. Orderings and domains

The idea that is fundamental in denotational semantics is that expressions denote
values, and that the domain of values is partially ordered. In the same way we can
think of database structures as descriptions and that these descriptions are partially
ordered by how well they describe the real world. Without putting any particular
structure on the real world, we can define the meaning [d] of a description d as
the set of all real-world objects described by d. We can then say that a description
d, is betterthan d,, d, 2 d,, if d, describes a subset of the real-world objects described
by d,, i.e. [d\] c{d,].

An example of such an ordering is to be found in flat record structures. A flat
record is a partial function from a set £ of labels to an unordered set ¥ of values.
If r, and r, are two such functions, then r, 2, if the graph of r, contains the graph
of r,. For example,

{Name=>'J. Doe"; Dept=>'Sales'; Office=>33}
2{Name=>'J. Doe'; Dept=>'Sales’}.

Using the term “‘real world” to describe the semantics of such records is, of
course, contentious. It is better to think of these records as partial descriptions (or
approximations) to elements in some space or “universe” of total descriptions, in
this case large—possibly infinite—record structures. Suppose that this universe were
the function space ¥ — V" where ¥ = { Name, Dept, Office}, we would then have

[{ Name=>'J. Doe;, Dept=>'Sales'}]
={{Name=>'J. Doe'; Dept='Sales"; Office=>v}|ve ¥V}.

Note that this formulation of the denotation of a record with incomplete informa-
tion corresponds with that given in [23], and as it will shortly appear, this space of
flat records provides the basis for the relational model; however there are a number
of other orderings that we shall examine later in this paper. These include Bancilhon’s
complex objects [7], orderings on tree structures that give rise to higher-order
relations [17, 1, 36, 35, 32], the feature structures in unification-based grammar
formalisms (see [43] for a survey), finite state automata [37], ¢-terms [2]. In this
catalog we should also include Scott’s aptly-named “information systems”—
consistent, deductively closed sets of predicates [42]. In all of these it is possible
to describe certain generalizations of relational operations.
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We shall require somewhat more structure on our space & of partial descriptions
than being partially ordered. The most important property is that it is bounded
complete:

(1) Any nonempty subsets S of & has a greatest lower bound [18.

In addition we shall also make two further assumptions that are common in

o~

denotational semantics LJOJ
(2) Any directed subset S of & has a'l ast upper bound LJS.
(3) The set K(D) of compact elements in % forms a countable basis for 4.

Partially ordered set (&, =) with these properties are widely used in the semantics
of programming languages, and are often called Scott domains [42]. Throughout
this paper we shall refer to them as domains. We shall also use the notation s,Ls,
and s, s, for LI{s(, s,} and M{s,, s,} respectively.

It is an immediate consequence of the first condition that any subset of S of @
that is bounded above has a least upper bound LIS and also that &% has a bottom
element, L. The second condition, when taken with the axiom of choice, ensures
that every member of & is bounded above by some member of 2,,,,, the set of
maximai elements of . We shalil therefore use 9,,, as the universe of compiete
descriptions; and the definition of [d] is then simply {x € Dpux |d = x}=1d A D s
A snn ot Foenann - mmarlra ot o-l-.n AmAd AF tha wmnsmnas wwia oh }1 nGt m 1 a

Apart froi some remarks at the end oi the paper, we sha Tia

the third condition; however we should note that in any practical database context
diti .

ca ~F

any usc oi

There is one extra condition which we shall need when we introduce schemes
below.

(4) A domain @ is distributive if every principal idea |x is a distributive lattice.
Note that the space of flat record structures is a distributive domain. Even more is
true of this domain: each principal idea is a complete atomic boolean algebra, that
is, a powerset. We shall not need to assume this in general, however.

We shall see that there are a number of ways to construct domains that represent
the kinds of data structures we use in databases; particularly simple are the flat
domains. Given a set of atomic values ¥, a
adding bottom element L to ¥ and ordering them as x=y if and only if x=y or

tiong: an element nc V" is either
1UICnsS, an Ciemer L4

a 7. 2P TOUI S B T
fiat UUIIldlIl Vl Ul ¥y 15 O0udlnca oy

x=1 Thig t‘]nmaln is 2 domain of atomic descri
. o211lS QUG 15 A 5101 94

a complete description (v # L) with the meaning {v} or the noninformative descrip-
tion 1 with the meaning 7. The bottom element introduced in 7", can be interpreted
as a null value representing ‘“‘unknown values”. There is a number of other
approaches to null values, some of them distinguish “inappropriate’ and “unknown”
values. Such an approach is entirely consistent with what we develop here and can
be modeled by domains that are more complicated than 7", . Later we shall comment
more on null values.

We can now describe more precisely the domain of Iabeled records that we
discussed in the introduction. Given a countable set of labels £ and a domain 9,

a domain of labeled records £ > % over & is a set of total functions from £ to &
with the ordering defined as rner if and onlv if for all I £, r (l\l: rﬂfl\ This can

vilii U1C OrQ ng daenneg as = I3 anllc Oy
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be thought of as a domain of descriptions by attributes. This ordering represents
the fact that r, is a better description than r, if r, has better descriptions than #, in
all attributes. The minimal element 1 o, in £ - & is the constant function L and
if S is a set of functions, then S is the function r such that for all [ r{l)=
M{s(I)|se S} and LIS is the function r’ such that for all I, »'(I)=LJ{s(I)|s < S}
provided that all the least upper bounds exist.

The space of flat records is a special casee of a domain of records where & is a
flat domain 77, . Indeed, the space of partial functions from ¥ to ¥ is isomorphic
to £~ 7, . To make our notation for records precise, {,=4d,;...; ,=d,} denotes
an element r in ¥~ % such that r(l;)=d; for 1<i<n otherwise r(I)= L,. For
example, in - 7, if

r={Emp# —=>12345; Name=>'J. Doe'}

and

r, ={Emp# =>12345; Sal=20000}
then

e, ={Emp#=>12345}
and

rllr,={Emp#=>12345; Name=>'J. Doe'; Sal=>20000}.

However { Emp# =12345; Name='J. Doe'}|_|{ Name=>'K. Smith'} does not exist.
An advantage of treating the space of flat records as £ - %7, is that many results
concerning flat records can be regarded as special cases of more general records
and are readily applied to £ - @ for a more complicated domain .

As an example consider a database which lists the values of physical constants
as they have been determined in particular experiments. Set up as a relational
database, a typical entry might contain the following fields (among others): author,
publication, name of constant, lower bound, upper bound, dimension. Being forced to
express every record in first-normal-form has two obvious disadvantages. First, it
does not reflect the property that the intervals [lower bound, upper bound] are
partially ordered, smaller intervals being better approximations and second, there
is no way how the obvious dependency (name of constant=[lower bound, upper
bound]) could be expressed in ordinary relational algebra. Our formalism as
developed below will allow to state such a dependency and will provide a simple
formula for checking the consistency of the database. (An inconsistency is reached
in our example if asserted intervals for the same constant do not overlap.)

3. Powerdomains and relational algebra

Databases usually contain sets of values which, from our foregoing discussion,
we would expect to describe sets of objects in the real world. If we interpret database
values as elements in a domain, then database sets, such as relations, must be
interpreted as sets of elements in that domain. Indeed, we can interpret a first-normal-
form relation r of a relational scheme (a set of attribute names) R in the relational
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model as a set S of elements in the domain of flat records £ - %, such that for
any d € S, {l|d(l)# L}=R. Later in this section, we shall see that this interpretation
is faithful to various relational operations and that the domain of flat records,
therefore, serves as a domain of the relational model. This is how relations are
described in languages such as Pascal/R [39] and extensions of this representation
are to be found in Taxis {8] and Galiieo {3]. Figure 1 shows a very simple relation
and its representation as a set of flat records.

If we consider these sets of elements in a domain as sets of descri

would like to order the sets themselves by how well they describe sets of real-world
objects, but how? The study of the semantics of nondeterminism, which attempts
to describe the behavior of sets of processes, provides us with some answers.
However, we must first decide whether we are prepared to work with arbitrary sets,
or whether some restrictions are needed.

Given a domain (2, =), a set S @ is a co-chain if no member of S is greater
than any other member of S, i.e. Vx,ye S.x2y implies x=y. If S % has the
property that any two members of S are inconsistent, i.e. they do not have a defined
join, then we shalii cail S independent. Note that an independent set is necessarily

-t
=
o
]
-
-
D

Q
IS IV WO

a co-chain.
) oy ....\..,..nl Frsimn vnlotimme orntimdnimanm damt cnte T b nssrnvan o ndmeis s
LB L-HONIAI=-IULIL TCIALIUILLS dlTC HIUCPDUIIUCIIL 3TLY, 11, 1 wevel, wo auuut llull Valqu
in relations by relaxing the condition {/|d(l)# L} =R of first-normal-relation to
ether structures such as (i) or (ii) of Fig. 2

{]!d(l) # _L}g R, we have to decide whe
are valid relations. (i) fails to be a co-chain because {A=a}={A=a; B=>b}, and
(ii) fails to be independent because {A=a; B=b}l J{A=a; C=c} is defined.
In what follows we shall assume that database sets are finite co-chains and we
shall use the words finite co-chain and relation interchangeably. Using our simple

Name [ Dept ‘ Sal | Office
'K. Smith’ | 'Mktg’ | 30,000 | 275
‘J. Doe’ 'Sales’ | 20,000 | 147

{{Name=>'J. Doe'; Dept="Sales’; Sal=20,000; Office=>14T},
{Name='K. Smith’;Dept=>'Mktg'; Sal=30,000 Office=-275}} .

Fig. 1. A relation and its representation as a set of records.
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notion of database semantics, we might justify this assumption by saying that if d,
and d, are descriptions with d, a better description than d, then d, is redundant
and can be eliminated from the database. This is equivalent to saying that for all
pairs d,, d, in S neither [d,] = {d.] nor [d,] < [d,]. Whether or not this justification
is reasonable depends on the intended semantics of the operations on co-chains
which, in turn, depends on the circumstances in which they are used. See [28] for
a more detailed examination of the semantics of relational operations. Independence
means that no two descriptions in S can describe the same real-world object, i.e.
[d\] n[d.]=0. We shall need to discuss independent sets when we generalize the
notion of schemes. We shall use 6., to refer to the set of finite co-chains in &% and
F4 for the set of finite independent sets.

To return to the problem of finding orderings on sets the study of the semantics
of nondeterminism provides us with three orderings’.

AcC’B if Yac A3bc B. ach
AC*B if Vbe Blac A. ach
AcC®B if Ac"Band AcC* B

respectively called the Hoare, Smyth and Egli-Milner ordering. Figure 3 shows
examples of these orderings in first-normal-form relations.

For arbitrary sets, these are not orderings; they are pre-orderings and orderings
are derived by taking equivalence classes. However, in each case there are canonical
representatives for each equivalence class.

Dept I Office Name | Dept | Office
R, 'Mktg' | 275 R, 'K. Smith' | 'Mktg' | 275
‘Sales’ | 147 ‘L. Jones' | 'Mktg' | 275

Name | Dept |Ofﬁce

‘K. Smith’ | 'Mktg' | 275

Rs ‘L. Jones' | 'Mktg' | 275
J. Doe' | 'Sales’ | 147

'M. Blake' | 'Sales’ | 147

RiC'R, RyC"Ry R, C'R,

Fig. 3. Examples of the three orderings.

Lemma 1. Let P be a partial order. Then the following is true for all subsets A and B
of P:
(i) A="]A.

' This melodious notation was suggested to us by Carl Gunter.
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(i) A= B&|Ac B
(iii) A =*1A.

(ivy A" B&1B< 1A
(v) A =b‘TAm‘I,A.

So in reasoning about these orderings it is heipful to think in terms of lower sets,
upper sets, and order-convex sets, respectively. We said before that we want to
model database sets (or relations) as finite co-chains in our domains. Since databases

model database sets (G22I 4™

tend to get bigger and bigger during their existence one might think that the Hoare
ordering is the most natural for them. However, viewed as approximations of sets
of real-world objects it is the Smyth ordering which corresponds to this semantics.
We regard it as a strength of our approach that it allows to formalize different
intuitions about databases. The mathematics is nice in each case.

Lemma 2. If @ is a domain then (€6,,=") and (€., =") are distributive lattices with
bottom element. (C,, =) also has a top element, namely, the empty co-chain.

Fmrrind Fae an~le
10uUida 101 ¢acii

® S, LIS, =the maximal elements of 1S, u | S, =the maximal elements of S,uU S,.
® S, 1"S,=the maximal elements of |S,n|S,< S,[1S,={s;[s:]s,€ S, s,€ S,}.
] Sl ¥ 8, =the minimal elements of 15, 1S,< S,LS,.
® S, " S, =the minimal elements of 1S,U1S,<= S,U S,.
Distributivity follows because we can embed € in the distributive lattice of all

lower (upper) sets in 9. [

Proof. Given two finite co- chams S, and §,, it is clear how the sup and inf are
+L
1

"")
ﬂ)
cS
©
-t

O

We wish to remark that these lattices are not complete. Neither (%, =") nor
(%5, =") contains sups for directed subsets. If we want completeness then we have
to take certain computability considerations into account which translate into

[OpOlOgl(.«dl I'CS[I'I(.«[IOIIS on IHHHIIC bquClb OI a uomdm we l'ldVC no IICCU to pursue
this theme further but note that sup and inf in both ordermgs are defined for any

domain. They mav not
agmain. 1<y may not

o
ry
(4]

or maximal elements, however.

In the space of finite co-chains with the three orderings we represent various
operations on database sets, some of which will emerge as generalizations of
relational operations. We also mention that these ordered spaces are not the same
as powerdomains in the programming language literature [33, 45], where the ordered
spaces of sets are constructed in such a way that they are themselves domains. True
powerdomain constructions are not needed until we discuss higher-order relations,
where a tuple can itself contain a set as an attribute value. We shall discuss how
our presentation of database sets can also contain these higher-order values in
Section 7, but for the time being we shall exploit the representation of database

SCL5 11
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There is an immediate connection with relational algebra that indicates the
importance of these orderings.

Theorem 1. Interpreting relations as finite co-chains A, B in £~V ,, ALI* B is the
natural join of A and B. If a least upper bound for A, B exists in =" then it is a lossless
Jjoin.

Proof. This statement is actually more of a definition than a result. We can only
prove it in the case of first-normal-form relations, for it is only then that we have
accepted definitions for the various joins. Given relation schemes (sets of attribute
names) R,, R, < £ and relation instances r, r,, let r{, r3 and r} be the interpretations
of ri,rp,and ri X r, in £ - %, . Suppose i€ r}, then by the conventionai definition
of natural join, there are f, € r| such that ¢(I)=1,(I) for all /€ R, and t,€ r} such
that ((D=¢( for all lc Rv the definition of the internretation {1 =% | iff

that +(1)=16,{1) for le R,. By the definition of the interpretation, (1) # L iff
le Ry, t,(I)# L iff I€ R,. This implies t;=t and t,=¢ and clearly ¢ is minimal with
respect to this property. Therefore t € r{ LI* r}. Conversely suppose t € r; |[* r;. There
must exist t, €r, t,€r, such that t,=¢ and f,=t. Since 7", is flat this implies that
t(1;)=t,(I,) when [, € R, and ¢(l,) = t,(I,}) when L, € R,. By the minimality of ¢ with
respect to =, t(I)=_1 iff /2 R, U R,. Hence 1 rj. See [28] for a discussion of the
semantics of lossless join and the proof of the second part of this result. O

The importance of this result is that it provides a generalization of natural join
to sets of values in arbitrary domains. Figure 4 shows an example of natural join
in nested records.

ry = { {Name='J. Doe’ ;Status={ Student-status='Graduate’}}
{Name=> 'M. Blake'; Status={ Student-status='Undergraduate’}}}
) = { {Name='J. Doe’;  Status={ Employee-status=>'TA’}}

{Name='L. Jones'; Status={ Employee-status='Faculty'}}}
r1 U ro= { {Name="J. Doc¢’;
Status=>{ Student-status='Graduate’; Employee-status='TA'}} }

Fig. 4. Natural join in “nested” records.

A more intuitive way of thinking of these results is to view the natural join as
the appropriate operation when two sets of database descriptions “over-approxi-
mate” some desired set in the real world. Suppose, for example, that we want to
find the set of TEACHING FELLOWS, but we only have available database sets
describing EMPLOYEES and STUDENTS. Both of these over-approximate our
desired set (any teaching fellow is both an employee and a student) and so the
appropriate operation to achieve a better approximation to TEACHING FELLOWS

e 1 iain AF ERMADI NAVELQ

tn taka tha natiira and
8 tird: join o1 CVIrL U Y it anda

CTTTMENTCQ
take DL ULJLLIN 1D,

[%
-
<
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The partial ordering =" does not give rise to least upper bounds when applied to
co-chains. However, if two database sets have a least upper bound in c" then any
real world set that is “exactly” described by (i.e. above in =7) the two database sets
is also “exactly” described by the least upper bound. Since a least upper bound in
=" is also a least upper bound in =, if L% exists then the natural join is the lossless
join. Traditionally the lossless join condition is stated operationally, in terms of
projections; from this we see that it has a simple denotational interpretation.

We might also ask whether " corresponds to anything in the relational algebra.
S, L’ S, is simply the set of maximal elements in S, S, and is awkward to deal
with in relational algebra as it generally requires the introduction of null values.
However, we shall make some use of this operator later. If we are prepared to
introduce null values, then | is what [35] calls the “null union”, and
S,LP (S, LI S,) LI S,is what is sometimes called the outer join. Merret [26] describes
this operation and also the “left-wing” and *‘right-wing” operations, which are
S, LI (S,U*S,) and (S, LI* S,) LI" S, respectively.

In some cases these operations preserve independence.

Lemma 3. If S, and S, are independent, so are S,LI° S,, S, L (S, L*S,) LIS,
S, L (S, LFS,) and (S,LFF S;) L) S,.

However, the other operators ([ ", 1" and L") do not, in general, carry independent
sets into independent sets.

We should also note that the co-chain S, 7 S, is the set of minimal elements of
S,uS,. When S,u S, is a co-chain, S, M*S,=S,L"S,. The operator 1 is, as we
shall see in the next section, a general form of projection.

In order to conform to traditional notation, we shall generally replace the symbol
LJ* by what is conventionally used in databases, X.

4. Projection

The main point of the previous section is that we are able to define various joins
without reference to the special structure of relations. In particular, we do not
require any notion of sets of column names (or schemes as they are called in the
relational database literature [24, 46]) in order to characterize natural join. Projec-
tion, however, makes explicit mention of a scheme. For example { Name, Office}
is a scheme and the projection 7 nameopicet(R) Where R is the relation shown in
Fig. 1 is

{{ Name=>"J. Doe’; Office=>147}, { Name=>'K. Smith’, Office=>275}}.

If, therefore, we are to carry further the idea of casting relational algebra in the
theory of domains, we need to generalize the notion of relational schemes and
projection.
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We have essentially two options. The first is to look at what properties are desired
of the projection function itself; the second is to identify schemes with some set of
elements in the underlying domain &. The second approach is motivated by the
idea that a set of column names gives rise to smaller universe of descriptions. For
example, we might say that the relational scheme { Name, Office} denotes the set of
all descriptions (functions) of the form {{Name=>v, Office=>w}|v, we ¥}. The
course we shall follow is to look at both possibilities with the goal of finding some
characterization that is natural in the sense that it admits some natural algebra over
the set of schemes. This is essential if we are to generalize ideas about functional
dependencies which are usually cast in the boolean algebra of sets. However, the
authors should admit here that the generalization of schemes that we are going to
provide, while it arises from extremely natural conditions and captures a number
of relational database constructs, may require further refinement if it is to be used
for all of relational database theory. We do not know, for example, whether we can
represent multi-valued dependencies using our characterization.

We start from the observation that in relational databases we can say what
projection means for a single tuple. It is simply the function that throws away certain
fields from a tuple or record. More generally, we can think of projection as a function
p €D~ P thatis decreasing, idempotent and monotone, i.e. forall x, ye @, p(x) = x,
p(p(x))=p(x) and p(x)=p(y) whenever x=y. Computability of a projection is
reflected in the property of preserving directed sups: p(| |, , x;)=01,_, p(x;). Such
functions are also known as projections in domain theory, and it is clear that a
(relational) projection onto a set of column names satisfies these conditions.

Projections are completely determined by their image, as follows from the next
lemma.

Lemma 4. Let & be a domain and p, p’ be projections on 9.
(i) px)=I{ylp(y)=y=x}.
(i) pep'©im(p)sim(p)opep' =p'op=p.
(iii) p preserves inf’s of nonempty sets.
(iv) im(p) is closed under existing sup’s.

We feel that arbitrary projections as defined above do have a significance in
modeling databases domain theoretically. In this paper, however, we shall concen-
trate on a more restricted notion of projection which we shall develop in two steps.

In the case of a relational domain ¥ — ¥, restricting the set of labels to some
subset L of £ gives rise to a downward closed subset of £ ¥, namely the set
of all functions s for which s(I)=_1 if I ¢ L.

Definition. Let & be a domain. A strong ideal in & is a downward closed subset A
of @ which is closed under existing joins. By p, we denote the unique projection
on & with image A.
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Projections onto strong ideals enjoy several desirable properties.

Lemma 5. (i) Let A be a strong ideal in a domain & and let y be an element of A
above p,(x) for some x & 9. Then p,(x)=x[1y.
(i) If @ is distributive then p, preserves all existing sup’s.

Proof. (i) By definition we have p,(x)=Ex and pa(x)=y so pa(x)=x[1y. On the
other hand, x[1y is an element of A below x and p,(x) is the sup of all those
elements, hence x[ 1yCSpa(x).

(ii) Suppose xLly exists. Then

Pa(x)Upa(y) = (xMpalxUy)) U (yMpalxy))  (by (i)
=palxLIy)(xLy) (distributivity)
=pa(xLy).

The sup of any set is equal to the directed sup of its finite subsets. Qur projection
preserves both kinds of sups, hence arbitrary sups. O

The intersection of an arbitrary set of strong ideals is again a strong ideal. This
immediately gives us the following theorem.

Theorem 2. The set ($¥,, <) of strong ideals on a (distributive) domain 2 is a
(distributive) algebraic lattice.

The second condition on projections we want to consider here is also easily
motivated by the example of flat record structures &£ - ¥, . Suppose we project onto
records with labels from some subset L of ¥ and we find that a record s is projected
onto p;(s) below some s’ L—» ¥, . This means that p,(s) contains null values for
some labels from L and can be updated using the corresponding entries of s’. It is
clear, then, that s itself can be updated, resulting in the record s s". We incorporate
this property in our model as follows.

Definition. A strongideal A in a domain 2 satisfies the slide condition if Vxe 9. Vye
A. (pa(x)Cy=xJy exists). A co-chain S in @ is a scheme if |S is a strong ideal
which satisfies the slide condition. The corresponding projection we denote by ps
(instead of p,s).

We first note that projections defined by schemes fit in with our proposed
semantics.

Theorem 3. A strong ideal A on a domain @ is generated by a scheme if and only if
VxeD. palxlo =[pa(x)]a.

Proof. (“="") Let x be maximal in @ and suppose p4{(x) is not maximal in A, that
is, pa(x)=y € A. By the slide condition, xL] y exists and since x is maximal, x| |y = x
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and p4(x)=2y. Contradiction. Given any x€ & and any y €[ pa(x)]4, the sup of x
and y exists and is below some maximal element z of &. Clearly, ps(z) =y by the
maximality of y.

(<) Given x€ & and ye A, yZ pa(x), let y' be an element of A,,,, above y.
This element must be in the image of ps[x],, that is, there exists an element z of
Dmax N Tx which is mapped onto y'. Therefore x and y are bounded ar
exists. [

In Section 7.1 we shall further substantiate our claim that schemes properly
generalize the notion of schemes in relational database theory by showing that
schemes in the domain ¥ - 7", of flat record structures correspond exactly to the
subsets of Z.

Lemma 6. Let & be a distributive domain.
(i) If A and B are strong ideals generated by schemes then so is ALIB=
{aliblac A, be B}.
(ii) If A and B are sirong ideals generaied by schemes then so is An B.
(iii) If (A;);c; is any set of strong ideals generated by schemes then so is |_|
I la.c AL

Il_J,e[“t!ulcntJ
(iv) If A, B are schemes then so is ALIB={allb|ac A, be B}.
(v) If (A;);, is any set of schemes then so is | |,.; A,={ll;.; a;la;e A

*jied o v e
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=

Proof. (i) ALIB is downward closed: x= al |b implies x =x{1(alb)=(xa)L}
(xMb)and xMaisin A and x[1b is in B. If M is a bounded subset of ALJ B then
M,={ac A|3beB.allbe M} and My={be B|3ac A. allbe M} are bounded
and | [M,=m e A and | |[Mz=mgpe B. Hence | |M=m,Img is in ALIB. As
for the slide condition, assume that x is an element of & and that p, 5(x) is below
some allb. Because ps(allb)=a and pgz(aiib)= b we may assume that a=
pA(aIJb) and b=pg(allb). We can then calculate: ps(x)=pas(pa (x))E

. 1 N— L immn A oar Lo e PR,

S:lllilafly pB(X)bu. D I1Ce ﬂ bdllbllcb LIcC bllUC bUilUlllUIl lIlC bup
of a and x exists and by Lemma 5, pg(allx)=pg(a)dpp(x)=pg(alib)ib=>.
dition

for B we find that the sun of al | x and b must exist. This

Using the slide con

proves the slide condition for ALIB.

(ii) Al B is clearly a strong ideal. The slide condition is seen to hold by the
following argument. If p, 5(x) is below y € A['1 B then because of psp=pac° ps,
pa maps pg(x) below y. Hence ylLIpg(x) exists and is an element of B. Using the
slide condition for B we see that yLJx exists.

(iii) If I is empty then | ];; A; equals {L} which is a scheme. If I is infinite then
we may think of I as the directed union of its finite subsets. From part (i) we already
know how to construct the sup of a finite set of strong ideals, so it remains to
consider directed coliections. Assume, therefore, that f is directed and that A; < A;
whenever i=<j. Given an element x of A= |, A first note that x=|_lic; pA (x)

n is directed Tt
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element of & and let y€ A be above p,(x). Then for each i€ I, ps(y) is above
Pa,(pa(x)). So the sup z;=ps(y)LIx exists and the directed sup of all z gives us
the sup of y and x. Therefore A satisfies the slide condition.

(iv) By (i) it remains to show that AL|B is an independent set. Indeed, if x is
above a,Lb, and a,L b, it follows that a, = a, and b, = b, because both A and B
are independent sets.

(v) Same proof as for (iv). [

Distributivity is essential for Part (i) of this lemma, as the example shown in
Fig. 5 demonstrates. There the pointwise sup of the schemes {a,,a,, 1} and
{b,, b, 1} does not satisfy the slide condition.

We plan to present a deeper investigation into the mathematics of schemes in a
later paper, but mention that ideals generated by schemes form a complete lattice.

ay as

Fig. 5. A domain where the join of two schemes cannot be calculated pointwise.

Theorem 4. If 9 is a distributive domain then (¥, ") is a distributive complete lattice.

In the remainder of this section we shall work with the generating co-chain of
an ideal, that is, with schemes. It turns out that the ordering < on strong ideals is
replaced by the Egli-Milner ordering =% on schemes.

Theorem 5. If A and B are schemes on a domain % then A=" B if and only if Ac® B.

Proof. (=) Let x be an element of B and let y be maximal above x in %. Then
2A(y) =pa(ps(¥)) = pa(x) and therefore p.(x) is maximal in | A which means that
it is contained in A.

“&" If x is an element of A, let y be maximal in & above x. Since x = pa(y)=2
pa(pe(»)), the sup of x and py(y) exists. pg(y) is maximal in | B and because of
Ac? Bitis above some x'€ A. The set {x, x'} is bounded by x| ps(y) which is only
possible if x =x'. Hence x=py(y) and A’ B. [J

So far we have discussed the projection of individual elements (“‘records”) into
strong ideals. We shall now proceed to discuss the projection of relations, that is,
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finite co-chains. The obvious choice, namely, to apply the projection pointwise, has
its particular applications. However, we might not get a co-chain as the image.
Throwing away redundant information means in our case to keep only the maximal
elements of the image.

Definition. Let & be a domain and A be a scheme in &.
(i) The function 7,: €, > €, is defined by 7ma(R) ={x € p4(R)|x maximal in
pa(R)}.
(ii) If Re €, is a subset of A, we shall call R an instance of A.
(iii) If Re €., is a subset of | A, we shall call it a subinstance of A.

Theorem 6. Let A, B be schemes in a distributive domain 9.

(i) If R is an instance of A then R=* A and A= R.

(ii) If R is an (sub-)instance of A and S is an (sub-)instance of B then R X S and
R L7 S (if it exists) are (sub-)instances of AL| Band R I" S is a subinstance of ALl B.

(iii) If R is an instance of A then 75z(R) is a subinstance of B.

(iv) If R is a finite co-chain in & then p,(R)X R =R.

(v) If R is a finite co-chain in & then w,(R)X R =* R.

(vi) If R is a finite independent set in & then wa(R)X R 27 R.

Proof. Of these only (vi) is nontrivial. One half of the Egli-Milner ordering follows
from (v). As for the ‘““Hoare”-part we can copy the corresponding proof of
Theorem 5. O

Let us recapitulate the development of our theory so far. We have exhibited a
general structure which may take the place of attribute value sets in relational
databases, namely distributive Scott-domains. We proposed to model relations as
finite co-chains in these domains. In Lemma 2 we have shown that relations form
a distributive lattice under two natural orderings which correspond to the two
intuitions one might have about a relation: One being that a relation gives information
about a part of a set of real-world objects, the other being that a relation approximates
every element of a set of real-world objects. We then proceeded to model the notions
of scheme and projection and found (Theorem 4) that schemes form a distributive
complete lattice. This says that the set of schemes is nearly a powerset and allows
to intepret intuitionistic logic in it. Along the way we have indicated the possibilities
for fine tuning in this model: Using independent sets instead of co-chains or
generalizing schemes to strong ideals. We shall now go on to test our theory in two
fields, that of functional dependencies and that of universal relations.

5. Functional dependencies

We start again with the familiar example of a relational database. Given some
set of functional dependencies and given a set A of attribute names one can use
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Armstrong’s Axioms in order to produce a set A'> A which contains all attribute
names depending on A. In our domain theoretic setting we may view this process
as a function on the lattice of schemes, which is monotone, idempotent and increas-
ing. These functions are the exact counterpart of projections as discussed in the
previous section.

Definition. A closure on a domain & is a monotone function f: 9 - &, such that

fof=f2id,.

'Lemma 7. Let & be a domain and f, f' be closures on .
(i) fx)=T{y|f(y)=yax}
(11) faffeim(ficim(fyefof'=fof=f

(iii) f preserves all existing sup’s.
(iv) im(f) is closed under nonempty inf’s. O

This is, of course, the exact dual of Lemma 4. Note that because of part (iii),
closures are always continuous.

Given a function f:%->9%, we can define a relation fg GxD by fz
{(x, y)|y=f(x)} and obtain an immediate connection with Armstrong’s Axioms.

Theorem 7. If fis a closure in D > &, f satisfies
(a) Vx,ye D if xay then (x,y)€f,
(b) if S< D is such that Vy e S. (x, y)

() Yy v ze D (v viefand (v z\e F
\C) VX, y,zellx, yjejanag (y,z)cj

When @ is finite (b) may be replaced by
(b') forx, vy, we Dif (x, y) e fand x| | wexists then wllvexistsand (wlLix, wl_ly)e
J
Conversely, supposef; 9 x 9 satisfies (a), (b) or (b') as appropriate and (c) above
and define f: D > 9 by f(x) =u{y|(x,y)ef}. Then f'is a closure.

U \1

then || S exists and (x, 1S)e f. and
7
2

(x z)e
\ Ay « )

From which (a), (b") and (c) are immediately seen to be generalizations of
Armstrong’s Axioms. Before discussing the connection, we should prove this result.

Proof. (a) follows immediately from the definition of a closure since if y= x, then
y=f(x) and (x, y)e f. (b) is also immediate because f(x) must be a bound for S,
therefore | ]S exists and LIS f(x). To show (¢), if (x,y)ef then y= f(x) and by
monotonicity and idempotence f(y)=f(x). The conditions also imply z=f(y).
Combining these last two inequalities we have zC= f(x), i.e. (x, z)ef. Conversely,
we first note that condition (b) implies that [_I{y|(x,y)ef} exists and f is well
defined. If =" and (x,, y) € f then (xa, y)e f by (a) and (c) so that {y|(x,, y)e
f} {y|(x2, )ef} and hence f(x;)=f(x,) guaranteemg monotomclty By (a)
\x .L)tj, SO _/\JL}—‘)C rii‘lau‘y, U_y \U) \x \_11y|\x y)cJ j}c_/ and so \A,J\A}]Cj,

similarly (f(x), f(f(x)))ef. Using (c), (x, /(f(x)) € f and so f(f(x)) = f(x). But we

have just shown that f is increasing. Hence f(f(x))= f(x)

nay ust snown tha neredasiilg. IV AWAEYY; X /.
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Suppose (a), (b), (¢) hold and that (x,y)ef. For any we @, (wix, w)e f and
(wlix, x)e f by (a) and by (c) (wlix, y)e f. Therefore, by (b) (wlLx, ley)ef.
Conversely, assume & finite. First note that, by putting w = x in (b’) we have xLly
exists. Suppose Vye S. (x, y) e f If S has just two members, y;, y, then (x, xLly,) ef
by (b") and (x, xl_lyll_lyz)ef by (c), therefore y,L1y, exists. Using (¢) and (a) we
get (x,ylLJyz)ef, ie. (x, LlS)ef. By induction, we can repeat this argument to
derive (b) for any finite S. [

Armstrong’s Axioms are precisely (a), (b’), (c) when applied to the lattice of
subsets of the set of attribute names. Related characterizations of Armstrong’s
Axioms in a lattice-theoretic setting have been given by [20]. It is also interesting
that in Scott’s information systems [42] functions on domains are defined by a
similar device of taking approximating relations.

We now connect this abstract notion of a functional dependency with our earlier
semantics in which sets of attribute names are represented by schemes. A relation
satisfies a functional dependency A - B if any two tuples that agree on the attribute
names A agree on the attribute names B. Another way of stating this is to follow
[16] and say that a relation r satisfies A~ B if the partition on r induced by A (i.e.
the equivalence relation induced on the tuples by equality on A) is finer than the
partition induced by B. In the standard theory there are no null values allowed in
places corresponding to attributes from AU B. We keep this strong interpretation
of satisfaction.

Definition. Let A, B be schemes in a domain 2. A relation R ¢ 4, satisfies the
functional dependency A- B if R 2* A and R 2* B and if pa(x) = pa(y) implies
pe(x)=pg(y) for all x,ye R.

Theorem 8. For relations in distributive domains Armstrong’s Axioms are consistent
and complete.

Proof. Given a relation R in a distributive domain 2 and given a scheme A =F R
it is clear that R satisfies A~ A. If S is a collection of schemes and R satisfies A—> B
for all Be S and some scheme A, then S is bounded by R in the Smyth ordering.
We claim that the sup of S is also below R: If x is an element of R and B is a
scheme contained in S then x is above some element x; of B. Therefore x bounds
the set X ={xz|Be S}. The sup of X is an element of | | S by Lemma 6 (v) and is
below x. This proves | | S =* R. Assume, then, that p,(x) = pa(y). By assumption
we know that pg(x) = pg(y) for all Be S. Hence we also have p_s(x) = |z ps(x) =
Lises ps(y) =pLs(»), which proves A>| | S.

It is clear that transitivity holds. This proves that Armstrong’s Axioms are correct
with respect to our definition of satisfaction.
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Completeness is trivial because we have more models available than in the
relational case. [

It is an immediate consequence of the preceding theorem and Theorem 7 that a
relation R e 4, induces a closure f on the lattice of schemes with the property

J{A)= B if and only if R satisfies A—> B.

Our definition of satisfaction of a dependency requires that the relation under
consideration contains no partial information. If a relation does contain partial

elements, a different concept is called for.

Definition. Let A, B be schemes in a domain %. A relation R € 4, is consistent with
the functional dependency A - B if there is a relation R' 2% R which satisfies A > B.

This is natural enough. However, in a practical instance consistency may be hard
to check. We therefore introduce a weaker notion of consistency with a more
operational flavor. Given a scheme (or any independent set) A and a relation R
then A induces a partial equivalence relation ~ 4 on R: x ~ , y if there is a € A such
that a = x, y. We may say that ~ 4 identifies those elements in R which contain the

same total information in their A-part. By R/A we denote the set of equivalence
classes of ~ 4
Now assume that A > Bisa dependency where A ;u B and that R is some relation.

two elements of mg(R) contain the same total information in their A-part, con-
sistency with A- B implies that their B-part can be updated to a common (total)
value. This amounts to saying that each equivalence class in m3(R)/ A has an upper
bound in Z. Let us denote the resulting set of suprema by (wz(R)/A)". Formally
we define

Definition. For A =" B schemes and R a relation in a domain D, we say that R is
weakly consistent with the dependency A - B if (mg(R)/ A)" exists

Pemember the example of physical constants, given in Section 2. Certainly we
expect that the name of a constant will imply its value although the exact numbers
will never be known. To say that our database is weakly consistent with the
implication name of constant > [ lower bound, upper bound| amounts to the require-
ment that the entries for the same constant report intervals with at least one common
point.

The reader will have noticed that weak consistency makes no requirement about
those elements of the relation R which contain partial information in their A-part.
The philosophy here is that any ﬁnite set of elements with partial information over

in their A-part. We may call a domain in which this is always the case rich and

obtain the Fnlln\mno immediate characterization
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Lemma 8. A domain 9 is rich if and only if for each x € @ the denotation [x] of x
cannot be covered by a finite set of denotations [y;] with all y, x.

Theorem 9. Let AC® B be schemes in a domain 9. Let R be a relation in &. If R is
consistent with A—> B then R is weakly consistent with A-> B. If |A is rich and D
distributive then the converse also holds. Moreover, if R’ 2° R and R’ satisfies A> B
then R’ =* (wg(R)/ A)-.

Proof. Suppose R'2°R and R’ satisfies (A, B), then 773(1():' 7s(R) and the

members of (5(R’)/ A) are singleton sets. Thus any class in (wg(R)/ A) is bounded
P P PO Ll S [ SR A (Y AN iote Taic ~lon -4,‘LIZ-L,‘,. 1. o
dDOVC Uy OUIIC Ol LIICHT blllgl LOILS, ana \7Tg\n\)/ 1“1} CXiSsts. llllb AldU THLAUVIISIICS LT

e
second part of the theorem. Conversely, if (73(R)/A)~ exists, we have, for each
ac A, the element b, =1 I!r|rﬁ ms(R) and r=a}ec | B. Now for each re RNTA
form the point r'= b, Ir with a € A being the unique element of A below r. (This
is where the slide condition comes in.) The set R’ of these points certainly satisfies
A - B. But we also have to update the other elements of R which contain partial
information in their A-part. We use the assumption that | A is rich for this. The set
pAa(R\1A) is a finite poset contained in { A. Because | A is rich, we can find elements
Fe [ pa(r)]a such that ry # r, implies 7, # F, and also 7 # p,(r') for all '€ R’. (Given
re pa(R\1A), choose Fe[r] \(U1{ls|szr, sepa(R\TA}OU{1r[r e RY).)

Fmally let 7 be an element of B above FLlpg(r) for each pA(r) epA(R\TA) The

—

set R of all these elements satisfies A—- B and so does R'U R I_J L]

Dependencies are often divided [46, 24] into two classes, those like functional
dependencies that generate equality constraints and those that generate new tuples.
The “‘chase’ is a procedure that performs all possible inferences on a set R to
produce a new set R’ where R’ 27 R. In fact, we can also use functional dependencies
in the same way. The co-chain (73(R)/A)" describes the inferences that can be
made, given that R is consistent with A B. In fact the co-chain

T=({(ms(R)/A"MR)LIR (1)

is the least (in =°) set that contains all these inferences. Note that T is the outer
oin of (m5(R)/A)” and R and that R T.

I 1 ~noa LIldl v =

i
J

6. Universal relations

Without involving ourselves in a discussion of the usefulness or practicality of
the universal relation assumption [47, 48, 21, 6], we now investigate a general
characterization of universal relations that shows how the general form of their
implementation can be derived from the1r abstract properties. Behav10rally, a uni-

versal relation can be thoue a a
versalr 10n can hougt f mple query la
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the possible queries, or inputs, are sets of column names and the output from the
input of a given set of column names is a relation defined on those names. More
precisely, we can think of a universal relation as a function p: %5 —> €5 with the
property that p(S) is an instance of S, i.e. p(S)< S.

In a survey [25] of the various definitions of universal relations Maier et al. give
a condition, “containment”, that all reasonable definitions satisfy. The condition,
which is also noted in [41], is that if A, B are schemes with A =" B, then ma(p(B)) <
p(A). This is equivalent to requiring that p be monotone as a function from schemes
under the natural ordering to the finite co-chains €5 under the Smyth ordering, i.e.
if A" B then p(A)=* p(B). There are various ways of obtaining such a function.
A particularly simple method is given by the total projection of an arbitrary subset
T of & onto the schemes of &,

p(A) = mA(T N 1A). (2)

(The expression 74(T n1A) is called the total projection of T onto the scheme A.)
A more general method is obtained by projecting onto A those subsets T of some
collection T of finite subsets of & that are contained in the upward close of A,

p(A)=u{ma(T)|TeT and T< 1A} (3)

Most of the various definitions of universal relations given in [25] appear to be
expressible in this form. Lemma 9 is readily proved from Theorem 6.

Lemma 9. If A is a scheme, and S,, S, are co-chains in @ with S, 2% A and S, = A
then (S, 117 S,) = ma(S)) U wa(Sy).

By using Lemma 9 we can write (3) as p(A) = ms(M*{T e T|T =* A}). We shall
call a universal relation that can be described in this fashion a closure universal
relation (because this last equation is closely related to the definition of a closure
in (¥,,="). By taking T as a collection of singleton sets, equation (2) can be seen
as a special case of (3). An example of a universal relation satisfying (2) is the
universal instance assumption, which says that p(A)= w.(I) where I is a subset of
the maximal elements of &.

Theorem 10. A universal relation defined by the universal instance assumption is a
closure relation.

Proof. The proof follows immediately from the observation that I, being a finite set
of maximal elements, is contained in TA for any scheme A. O

Another reason for believing that closure universal relations are an appropriate
class to consider is given by the following result.
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Theorem 11. In the relational domain @ = ¥ - V', any universal relation satisfying
the containment condition is a closure universal relation.

Proof. If p is the given universal relation define p'(A) = ma(T¥ {p(B)|Be ¥ and
p(B)< 1A}). p' is then a closure universal relation, and we need to show that, for
any scheme A, p(A) = p’(A). Because we are dealing with the relational domain, if
B is a scheme such that ¢ # p(B)< 1A then B 3" A. Using this fact and the
containment condition, whenever p(B) < T A, we must have w4(p(B)) < p(A). Hence
p(A)=p'(A) for any scheme A. [

It is not true that any universal relation satisfying the containment condition can
be cast in the form of a closure relation. Consider, for example, the domain in
Fig. 6, in which the schemes are A,={l}, A,={a,, a,, d}, A;={b;, by, d}, As=
{a,, a,, e,, e}, As={by, by, e,, &} and A,={c,, s, 3, ¢4, €, €,}. Now consider a
universal relation p such that p(A,)={Ll}, p(A,)=p(A;)=1{d}, p(A)={e, e},
p(As)={e,} and p(A¢) ={e,}, which satisfies the containment condition. If p is a
closure universal relation, then T (as used in (3)) must contain a set T which
contains e, such that T<1A,, but T cannot be contained in 1As because e, is not
a member of p(As). Therefore T must contain a, or a,. But if this happens then
p(A,) must also contain a, or a,, which contradicts the definition of p.

C1 C2 C3 Cq €1 €2
3

Fig. 6. A universal relation not extending to a closure.

A more sophisticated example of a universal relation definition arises from the
F-weak instance universal relation [25]. Suppose we are given a set of schemes
{R,,R>,...,R,}in @ and instances ;S R;, i€ 1,..., n. Suppose we are also given
a set F of functional dependencies and that L)’ {r,|i€1,..., n} is consistent with
F. Consider the universal relation defined by

p(C)=M{mc(S)|8 21, iel,...,n S c b, and S’ satisfies F} (4)
which, for each scheme C defines an instance of C. Let us assume, for simplicity,

that F+ is generated by the single nontrivial dependency (A, B) where BZ" A,
From (1) of the previous section, we can write p(C) as

p(C) =r1c(((m5(S)/ A) W S)LI S) (5)
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where S=11{r;|iel,...,n} and 7(T) is the total projection of a set T onto C,
1c(T)=m(TN1C).

By manipulation of (5) we can now write it in a form consistent with the general
form for closure universal relations given in (3). First observe that if S,, S, are
co-chains in &, then 7 (S, LI" S,) = 7(S,) U 7¢(S,). Therefore we can rewrite (5) as

p(C)=7c((mp(8)/ A X S)yu U 7 ({r;| R, 27 C}). (6)

Now consider the set Q = (w5(S)/A)"~ which, by the definition of S is (75 (L' {r;|i e

, n})/ A)", by the distributivity of (%, ="), Q = () ,n}/ A"
A point in Q is the ieast upper bound of some set of points, each chosen from some
mg(r;) where R, 2° A. Let I be the set of indices of all such schemes, I = {i liel,...,n

and R. =% A We can then
aliu l\ = J' YYL wvaill u

_
=
(4]

¢
=
o
P
o
-1
(43
(72}
wr
e
jos]
w

i
—

The term 7 ((75(S)/ A)~ X S), which is the left-hand component of (6) can therefore
be written as the union projections of terms of the form

i, ™ 7713(” )MﬁB(riz)N. "MWB(riA) (8)
where R; 2% Aforjel,..., k The right hand component can, triviaily, be written
in this form too.

L 3 V7700 O TR o PRI [P IR LS . P TR DV I o on given

Yy I1dVv tNCICIOIC suciccdcd 111 reaucing e universdl relatjol UCllI U 1 g ven
in (5) to the projection of the union of a set of joins. More importantly, (5) is an
example of an “FD-join” expression. A theorem of Maier et al. and Chan [25, 15]

shows that the F-weak instance universal relation (5) can be computed as the union
of FD-joins. Their proofs work by considering the properties of specific algorithms,
whereas by considering the general properties of the spaces involved we have been
able to produce a reasonably concise algebraic derivation. It should be noted that
the proof outlined here is incomplete. We need to close this off under all functional
dependencies; but this presents no difficulties.

7. Higher order relations and other models

One of the contentions of this paper is that much of our theory of relational
databases is independent of the detailed structure of the relational model and
depends only on some rather general properties of the spaces out of which we can
construct such a model. It should be stressed that we have based the preceding
analysis only on the assumption that the underlying space was a domain. Nowhere
did we assume that we were dealing with relations, although we frequently appealed

to the first-normal-form relations for exampleg

orinial-10t e1attonls 101 Lalllples,
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In trying to generalize various operations, we had no problem with the natural
join, but in order to make projection generalize smoothly when dealing with func-
tional dependencies and universal relations, we had to characterize first independent
sets and then schemes. We shall therefore be particularly interested in identifying
schemes in these other models. If we can do that, we can be sure that the basic

ideas of functional dependencies, universal relations etc., generalize properly.

7.1. Typed first-normal-form relations

PR A

We have seen that the domain £ - ¥, of flat records is a domain of the relational
i th

model in the ient here. As we
have noted earlier, this domain is a special case of a product domain.

Given a function F from a set of labels & to a set of sets §. a labeled product

a 1wl i H il SCL 1aDCs 2 10 a sCU SCLS 2, SLROCIEE PrOGLRLL

[1,. » F(I) is the set of functions f: ¥ - S such that for all le &, f(I)e F(I). If S
is a set of domains, then [],_, F(I) is also a domain, a domain of labeled products,
under the componentwise ordering, i.e. fi= £, iff fi(I)= f,(I) for all ] € £. Furthermore,
a scheme in a domain of labeled products is a product of schemes, i.e. it is easy to

proof the following lemma.

e e AT o M
preccding bCUtlU mns, anda it UCbCl YCd lll.llC extra com
S

Lemma 0. The set of schemes in [[,_., F(i) is the set of labeied products of the form
[1,.4 ¢(1), where ¢ is any function from ¥ to \ J{F|S € S} such that ¢(l)e Fr.

Since the domain of flat records £ - 77, is the domain of labeled product [[,_ ., ¥
where we take 77, as the constant function on %, the above result shows that_ a
scheme in this domain is a product [],_, ¢ (I) where ¢ is any function from ¥ to
&y . Since 3, ={{ L}, ¥}, each such function ¢ : £ > ¥, _is identified by the subset
L={I|¢(I)#{L}} of £ and the corresponding scheme is isomorphic to the set of
total functions from L to ¥. Therefore the set of all schemes in this domain is
isomorphic to the set of spaces of total functions L—- 7, L < £ and is identified by
the set of all subsets of £. However, restrictions on these function spaces do not
produce schemes, for example

{{Name=>s;, Age=1i,

is not a scheme if ¥ has more than one element.

If we require that the columns of a relation are “typed”, we are given a set of
flat domains ¥~ and an assignment of domains in ¥~ to labels in %, i.e. a function
D: L > (D(I) are called “domains” in database parlance). Then the domain of
typed flat records @4 is the domain of labeled products @4 =1],., @(I). A scheme
in this domain is a product [[,_, ¢(I) where ¢ is any function ¢: -, , Fen
such that for all /e £, ¢(l) € Py (). Since each P(!) is a flat domain, Ly 4y is either
{L} or the set of all maximal elements in @(I). Thus the set of all schemes in this
domain is isomorphic to the set of all product domains of the form [, , ®(I),
Lc % If each @(I) is represented by a type 7, then for a finite L={/,,..., L.}, a
scheme [],., ®@(I) is represented by the type {I,: 7, I o)

ST S iljer RS ICpPIcs IC LY P 1Ty evsbn Ty .
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7.2. Null values

Our first “nonflat” example arises from the introduction of null values, which
give rise to an ordering on tuples. The framework that we have developed here
should allow us to ascribe semantics to the various kinds of null values and to
investigate how the mathematical properties generalize.

Combining work in [9, 22, 40] Zaniolo [49] introduced an ordered space V; with
null values shown in Fig. 7.

L

Fig. 7. A domain V; with null values.

1, is interpreted as no information; ne; means nonexistent, or wrong; uk; means
unknown—a value exists (other than ne;), but it is not yet known.

Tree-like domains such as this are domains with a particularly simple structure.
In fact we can call a domain @ a tree if, whenever x, ye 9@ and xUly exists then
xCy or yEx. A section of a tree 9P is a set S such that any path in & from the root
(1) to a leaf contains exactly one member of S. The following results characterize
independent sets and schemes in a tree.

Lemma 11. & is a tree iff €5 = $5 (i.e. the co-chains are the independent sets).
Lemma 12. S is a section of 9D iff it is a scheme for &.

For example, the schemes for V, in Figure 7 are {L,}, {ne,uk;} and
{ne;, vi, v}, ..., v}

We can use this to define domains of typed records with null values by simply
replacing flat domains with tree-like domains in the previous development. Given
a set  of tree-like domains and a type assignment @ : ¥ -7, a domain of typed
records @4 is the domain P =[], , P(I) of labeled products. A scheme in this
domain is a product [, , ¢(I) where ¢ is a function ¢ : £ J,. o Lo such that
for all le %, ¢(l) € Fpqy. Unlike the case of typed flat records, ¥4 (;) may contain
schemes which are neither { L} nor the set of maximal elements in ¢(J) and the set
of schemes in this domain is no longer isomorphic to the set of products of the
form[], ., (), Le %. In order to represent schemes in this domain in a type system,
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we need to define “‘scheme-types” to represent schemes &5, 7 €. We will show
an example of such a definition in the next section.

This allows us to establish that the whole apparatus of functional dependencies,
universal relations, etc. works smoothly in the domain of relations with null values,
i.e. relations defined over tree-like domains.

To take an example, in a payroli databas s {v},v],..., v7} could be
the state tax rate with ne; being used when ch a tax was inappropriate, e.g., for
de

overseas embplovees Thprp is then a unctional nendency ADDRESS »

ovoisvas v.uy;u] LS. 2 0CIC 15 UL a  full 1 uwyvuuvuv_, In S Wl D \N D4

{ne;, v}, v?,...,v"} and an inferred dependency ADDRESS- {ne; uk;}. The
investigation of such dependencies may be useful when attempting to do database
design on databases with exceptional values such as those investigated in [10].

m ('D
o
=

7.3. Record structures

In programming languages such as Pascal, record types are constructed both by
giving a labeled set of fields and by giving a case statement or discriminated union.
Moreover, record types can be components of other record types, and we can carry
this construction to any depth. The domains of such records allow us a further
generalization of the domains we have just considered. These domains can also be
regarded as the domain of feature structures which are used to represent linguistic
information [43].

In the previous sections, we have constructed domains and their schemes of

first-normal-form relatlons with null values by using labeled product constructors.
Ry

we can construct do nd schemesg

nlvi cg m nc an
B9, WU Laill VUL 1SIrUcl Gomains ang senemes

y simply iterating
of general record structures without discriminated union. Domains corresponding
to discriminated union can be constructed by labeled sum constructors.

Given a function F from a set of labels ¥ to a set of sets S, a labeled sum },_., F(I)
is the set of pairs {(I, v)|ve F(I)}. If S is a set of domains, we define the domain of
labeled sums Z,ley F(I) to be the set {{I, v)|ve F(I)} u{L}. This is indeed a domain
under the ordering defined as x=y if and only if either x= L or x=(/, v) and

={l, v"y and v=7v". Corresponding to the result for labeled products (Lemma 10),
a scheme in a domain of labeled sums is a labeled sum of schemes, i.e. it is easy
to prove the foliowing.

Lemma 13. A scheme in ¥,., F(l) is either the singleton set {1} or a labeled sum

Lile

Yice S(1), where S is any function from ¥ to \ J {Fs|S € S} such that S(I) € Fr,).

Starting with given primitive domains such as the flat domain of integers, we can
now construct domains of record structures by applying product and sum construc-
tions. We can then identify the set of schemes in those domains. Suppose we are
given primitive domains %B,,...,9%, with corresponding sets of schemes
Fa,s---» P, Then we can define the family Dom of domains with associated sets
of schemes generated by %,’s as

(1) B, € Dom. The associated set of schem

(1) B,c Dom. The a heme is &, ..
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(2) If 2 < Dom with associated sets of schemes &, & € 92, then for any function
D:F>D, Dp=[],., P(I)e Dom with the set of schemes

{ | )
y%:ilrL ¢(1)|3¢:$» U % Vleﬁf.d)(l)eyq)(,)}.

Pe@

(3) If 2 < Dom with corresponding sets of schemes ¥,, @2, then for any
function @: ¥ ->%, Do =Zf€$ © (1) € Dom with the set of schemes

oo = {Z 0(1)|30 F> U FuYIe L 0(1)690(,}
J

Zc@

Dom corresponds to domains of record structures generated from primitive values
in B,...,RB,.

We give an example of concrete representation of domains of record structures.
By the analogy of a type system of a programming language, we call expressions
representing domains fypes and define the membership relation between records
and domains as typing rules. We will comment more on the relationship between
domains and types in a programming language later. We start with types. A type
expression is one that can be consiructed by the following rules:

(1) B,,..., B,, the (names of) base types such as int, bool, string etc. are type
expressions.

(2) If 7, 7,..., 7, are type expressions then {},:7; L:7;...;1,:7,} is a type
expression.

3) If 7, 7,,..., 7, are type expressions then [l,:7; L:7;...; 1, :7,] is a type
expression.
The notation [/,:7,; L:7; ...; I,:7,] indicates a discriminated union. An example

of such a type expression is
7, ={Name: string;, Age: int; Status :[ Employee : { Office : string;
Extension : int}; Consultant : { Address : string; Telephone : int}]}.

The syntax for records is similarly defined.
(1) For each base type B, we assume that we are given the corresponding primitive

domain 9 such as the flat domain N, of integers. Then elements in % are records
14 represents a null value in 3.
() Ifr 1, r. are records then Jlﬂr-l-jrﬂ- -] =r Vis a record
(2) Ifr,,r,,...,r, are records then iy L=>r; ... 1, =r,} 1s a record.

(3) If r is a record, [I=r] is a record.
(4) If 7 is a discriminated union type then 1. is a record.
The following is an example of record.

r,={Name=>'J. Doe’; Age=>21; Status=>[ Employee

={Office=>G7; Extension=>5556}1}.

U 25RO Sy S ARSI T AT J4)
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Moreover, we regard the record r, having the type 7,. Formally, a record r has type
7 if one of the following conditions holds:

(1) re B and 7 is the base type B corresponding to %.

2) r={li=r; L=>r;...; L=}, r={l:17; L:7;...; l,:7,}, and r; has type
,forlsisn

3) r=[l=r], r=[L:7; L:7; ... 1L, :7,], i<m, and r; has type 7.

(4) r=1,, v=[l:7m,..., L, :7,].
Records are ordered by the following rules:

(1) vev' if v,0v'e B and v, v’ are ordered in .

2) {Li=r; L= ... L=rie{li=r;, L=>r; .. L=} if rner for all
1=si=sn

(3) [I=>r]c[l=r]if rer.

(4) L.c= 1, for any discriminated union type 7.
(5) Liyiryn, waElL=rlif 1=i=<n and r has type 7.
Informally, one record is better than another if it has better values in the same
fields. For example, if

r,={Name='J. Doe'; Age=>1,,,;
Status=>[ Employee ={Office= G7; Extension=>1,,,|}

then r,= r,. From these definitions we can immediately see that the set of all records
of a type 7 is a domain &, belonging to the family of domains Dom constructed
from the set of primitive domains %, ..., %, and the ordering relation on records

corresponds exactly to the orderings on domains in Dom.
We next define the syntax of scheme-types for a type 7. 7' is a scheme-type for 7

if
(1) 7is a base type and 7' = 7 or 7' = unit,. unit. denotes the trivial scheme {1}
in 9.
2) '={l:ri; hrhy o T, r={l:1; Ly .05 1, o7} and 7] is a scheme-
type for 7, for 1=si=<n.
3) T'=[l:7y bLeryy o L), =Ly Lty ..o L o7, ] and 7} is a scheme-

type for 7, for 1=i=<n.
(4) 7'=unit, and 7 is any discriminated union type. unit, denotes the trivial
scheme {1.,} in 9,.
The following is a scheme-type of the type 7, defined in our example of a record
type above:
7, = { Name : string; Status :[ Employee : { Office : string;
Extension : unit,, };
Consultant : { Address : string;
Telephone : unit,, }1}.

Moreover, we regard the record r, having the above scheme-type 7,. Formally, a
record r has a scheme type 7 if
(1) re B, and r=B,.
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(2) r=1g, 7= unitg_.
3) r={li=r;....,L,=>r}, r={l:7,...,L,:7,} and r, has the scheme-type 7,
forl=si=sn.

4) r=[=r]), r=[L:7,...,1l,:7,], i< n and r; has scheme-type 7.

(5) L. and 7 is any scheme-type of any discriminated union type 7.
Then by the definition of the scheme-types, we can also see that the set of all records
of the scheme-type 7' for the type 7 is a scheme in 9,.

Sets of records belonging to a given type therefore form an interesting generaliz-
ation of first-normal-form relations for which we can define relational operations,
functional dependencies etc.

7.4. Structures that contain sets

An extension to the relational model that has recently enjoyed some popularity
is the study of higher-order relations {17, 1, 35, 32]. In these models a value in a
tuple can itself by a set of values, i.e. another relation. In order to obtain a class
of higher-order relations that behave well under relational operations, [35] describes
partition-normal-form relations. In such relations the attributes with simple (atomic)
values functionally determine the attributes with higher-order values, which must
also be in partition-normal form. However, because of this severe restriction, sets
are not treated as first-class values in this model. Indeed, it is not hard to show that
partition-normal-form relations are isomorphic to relations over record structures
(without labeled sums) defined in the previous section. For example, the relation
(a) in Fig. 8 is equivalent to the relation (b).

A B A B
C|D C|D

a1 | e | dy a; | ¢ | dy
¢ | do a1 | ¢ | da

az | ¢4 | d az | cs | dy
c3 | ds az | c3 | ds
cz2 | dy a; |2 | dy

(a) ()

Fig. 8. Restricted higher-order relation and equivalent relation.

In order to obtain a data model in which sets are treated as first-class values, we
need to construct a space of sets as a domain. Since, in defining various database
operations, we have only assumed that the underlying space is a domain, once we
have done this then sets can be also treated as regular values. In order to construct
a domain of sets, we need to define an ordering on sets as database values. One
obvious possibility is to treat the space of sets as a flat domain so that two sets are



Using powerdomains to generalize relational databases 51

comparable iff they are equal. However, as we have seen, a flat domain has only
two schemes, the set of all maximal elements and the trivial scheme containing only
bottom element, and does not yield interesting structures.

A second possibility is to regard sets as ordered by =*, which is what Bancilhon
used in his complex object model [7]. Given a domain &, it can be shown [42] that
we can construct a domain (@) corresponding to the space of sets of elements

€0
in @ ordered by =" (the Hoare powerdomain of @). Since #°(%) is a domain, the
it 1s nrnhahlv rather

results of nrevigus sections are readily annhpahlp However, is nrobably rather

(w1018 15 a CaCly palaise. 0

difficult to find semantics of a natural join since a natural join is determined by the
ordering =F and therefore database sets and sets which appear as values in database
objects are treated differently. Since P*(@) is a lattice, we have the following.

Lemma 14. For a domain @, the schemes in P"(D) are the singleton sets {{d}} where
de 9.

This means that functional dependencies in such a domain are rather trivial
constraints.

Another possibility is to consider sets as values ordered by =¥, which is done in
[12, 13, 29]. Smyth showed that [45] for any domain &, a domain ?*(%) correspond-
ing to the space of sets of elements in & ordered by =¥, called Smyth powerdomain
of &, can be constructed. Under this approach, a natural join can be given coherent
semantics. Again there are no nontrivial schemes in 2*(9). However, if we relax
our definition of a scheme, we can make some progress. Recall that a scheme A is
an independent set in a domain & satisfying

pa(2)=A and VxeD. palx]y =[pa(x)]a.

One way to generalize this is to specify directly a subset of & that is not necessarily
downward closed. We say tha t subset S of 9 is a generalized scheme in @ if (1)
S is closed under hm_m_ded join, (2) S has a minimal element and (3) the set of

maximal element maxset(S) of S satisfies the second condition of schemes, i.e.
Vxe 9. pslx]e =[ ps(x)]s where ps(x)=LJ{s|s€ S, scx}. The original definition
of schemes is a special case of generalized schemes. We can then find interesting
schemes in P*(%).

Lemma 15. If S is a generalized scheme in a domain 9 then the set P*(S) is a
generalized scheme in P*(P).

This suggests that if we regard sets as values ordered by =¥, then the previously
described type systems can be extended to include a set type constructor by adding
the following ruies:

(1) If 7 is a type then {7} is a type.

(2) If 7' is a scheme type of r then Ir’l is a scheme-ty
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(3) If vy,...,v, are database objects of type 7 then minset({v,,...,v,}) is a
database object of type {7}.
In the third rule, a given set of database objects is coerced to a canonical representa-
tive of an element in ?*(%) by taking its minimal elements. Natural join and
projection work properly on the extended structures. Figure 9 shows an example
of a natural join in the domain of records extended by these rules.

One restriction of the above approach is that we presuppose the meaning of sets
of database objects by choosing the ordering =¥, i.e. sets are overdescribing some
desired set of objects. This choice may not be appropriate for some applications.
An idea that merits further investigation is to look at partial descriptions that consist
of pairs of sets: a complete and a consistent description of some target set. This
may be particularly valuable in constructing a semantics for database merging [27]
where the individual databases may not form a complete description of the real world.

7.5. Recursive structures

It is reasonable to suppose that we can also generalize database theory to work
for recursive types, which can be used to give a type to unbounded structures such
as lists. For example, given a domain & represented by a type 7, we can define a
type for 7-lists as the type satisfying the following equation:

list(7) = [null :{ }; nonnull : { first : 7; rest: list(7)}].

This is the type of all lists of elements in %. Then for any scheme-type 7’ for 7,
list(7') is a scheme-type for list(7). There are also other scheme-types for list(7)
than in the above form. For example, the following is also a scheme-type for list(7)
that corresponds to the set of all lists of length less than or equal to one.

onelist = [ null : { }; nonnull : { first : 7; rest : unity}]

where unit;;,(,, is the scheme-type list(unit,) for list(7).

r, = {{ Pname=>' Nut'; Supplier=>{{Sname=>'Smith’; City=>'London'},
{Sname=>'Blake’; City=>'Paris'}}},
{Pname=>'Bolt'; Supplier={{Sname=>'Blake'; City=>'Paris'};
{Sname=>'Adams’; City=>'Athens'}}}}
o ={{ Pname=>'Nut'; Supplier=>{{City ='Paris'}}, Qty=>100};
{Pname=>'Bolt'; Supplier=>{{City =>'Paris'}}; Qty=>200}}
r X r> ={{Pname=>"Nut'; Supplier={{Sname=>'Blake', City =>'Paris'}},
Qty=100},
{Pname=>'Bolt'; Supplier=>{{Sname=>'Blake’; City=>'Paris'}},
Qty=>200}}

Fig. 9. Natural join of higher-order relations.
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The domain @y, corresponding to list(7) can be defined as the domain equation
Drise(ry = Null +(D X Dijgui )

where Null is the trivial one element domain. Let S be the scheme in & corresponding
to the scheme-type 7’. Then the scheme corresponding to the scheme-type list(7")
is the set of maximal elements in the domain defined by the equation

@1,-5,(.,.r) = Null + (lS X @“x,(f')).

The scheme corresponding to the scheme-type onelist can also be defined.
The general form of schemes in recursive types such as these requires further
investigation.

8. Conclusion and further investigation

We have tried to show that the application of domain theory allows us to provide
a clean semantics for relational databases and provides a generalization of many
of the ideas in relational database theory—especially those concerned with database
design—into a large class of higher-order and recursive structures.

One major limitation of our work is that our characterization of the relational
databases is restricted to a single domain. Operations and notions such as join and
functional dependency are defined only within a given domain. It is however
desirable to allow databases to contain values of different domains. This becomes
essential if we want to treat values in a database as typed data structures and to
integrate them into a type system of a programming language. In previous sections
we have constructed a collection of domains of records. As we suggested, each
domain corresponds to a type in a type system of a programming language. In such
a type system, it is natural to represent a database as a collection of relations of
different types. Our formalism cannot be directly applied to such a database. One
way to overcome this limitation would be to develop a theory of the relationship
between various domains and to extend our characterization of the relational
databases to a family of domains. [29] proposed one such theory for join and
projection and showed that a family of database domains can be integrated in an
ML style type system. In [31] we have also shown that ML type inference methods
can be generalized to such an integrated type system. We further hope that the
theory of functional dependencies and universal relations we have developed in
this paper can also be generalized to families of domains.

Finally we should note that in database programming languages [8, 3, 44], in
knowledge bases [11] and in Ait-Kaci’s [2] calculus for type subsumption the
ordering is not completely derived from the structure of the objects themselves.
There is also an imposed lattice or partial order of ‘‘entities”, ‘“concepts”, or
“head-terms”. The possibility of generalizing relational database notions into these
systems may require these imposed orderings to have certain properties.
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