

Edinburgh Research Explorer

A Semantics for Complex Objects and Approximate Answers

Citation for published version:
Buneman, P, Davidson, S & Watters, A 1991, 'A Semantics for Complex Objects and Approximate Answers'
Journal of Computer and System Sciences, vol. 43, no. 1, pp. 170-218. DOI: 10.1016/0022-0000(91)90035-
4

Digital Object Identifier (DOI):
10.1016/0022-0000(91)90035-4

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Journal of Computer and System Sciences

Publisher Rights Statement:
Elsevier Open Archive paper

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

https://doi.org/10.1016/0022-0000(91)90035-4
https://www.research.ed.ac.uk/portal/en/publications/a-semantics-for-complex-objects-and-approximate-answers(d2e17eef-d7f3-4fc7-96e2-339c66e18e66).html

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 43, 170-218 (199 1)

A Semantics for Complex Objects
and Approximate Answers*

0. P. BUNEMAN, S. B. DAVIDSON, AND A. WATTERS

Department of Computer and Information Science,
University of Pennsylvania, Philadelphia, Pennsylvania 19104

Received November 29, 1988; revised February 16, 1990

A new definition of complex objects is introduced which provides a denotation for incom-
plete tuples as well as partially described sets. Set values are “sandwiched” between “complete”
and “consistent” descriptions (respectively represented in the Smyth and Hoare power-
domains), allowing the maximal values to be arbitrary subsets of maximal elements in the
domain of the space of descriptions. We then restrict our attention to complex objects which
are in some sense “natural,” i.e., those which represent “views” of entity-relationship
databases, and define rules over these objects. The rules can be used not only as an integrity
check on the information in the database, but can be used constructively to infer consistent
instances of conclusions and to refine complete instances of the hypothesis. The system is
shown to extend the power of datalog (without negation) and the relational algebra (with set
difference), and to have an efficient implementation. $ 1991 Academic Press, Inc.

1. INTRODUCTION

The distinguishing property of complex-object [1, 21 databases and higher-order
relations [3-51 is that the components of tuples are not restricted to taking only
atomic values, but may be other tuples or even sets of tuples. A second property
of complex objects and related information structures is that there is a natural
ordering on the domain of values with an associated algebra [6-81. For example,
in Bancilhon and Khoshafian’s ordering on tuples [Z]

[Name =S ‘J. Doe’] c [Name + ‘J. Doe’; Age * 211

since the first tuple is not defined on Age. More generally, if V’ is a partially
ordered domain of values and 9’ is a set of labels, then a tuple is a function in
9 -+ V, and the ordering on tuples is the ordering on the function space:

* This research was supported in part by NSF IRI86-10617, NSF MCS 8219196-CER, AR0 DAA6-
29-84-k-0061, and a grant from AT& T’s Telecommunications Program at the University of
Pennsylvania.

170
0022~0000/91 $3.00
Copyright 0 1991 by Academic Press, Inc.
All rights of reproduction in any form reserved.

COMPLEX OBJECTS AND APPROXIMATE ANSWERS 171

Since the domain of values can also contain sets, we need to extend this ordering
to sets of values. In [2], two subsets A and B of the same domain are ordered by

and this ordering is inductively extended to order complex objects, which are
hierarchical structures containing both tuples and sets. For example, if

and
A = { [Name * ‘J. Doe’] }

B = {[Name 3 ‘J. Doe’; Age * 211, [Name =s ‘A. Putnam’] 1

then A E b B. Not only is every tuple in A no worse than some tuple in B, but B
contains an additional tuple not appearing in A.

In contrast, in an attempt to find a data type for natural join, [9] uses the
ordering

For example, if

A= {[Name=‘J.Doe’], [Name=s’A.Putnam’J}

and
B = { [Name * ‘J. Doe’; Age + 211)

then A c g B. Not only is every tuple in B no worse than some tuple in A (or
remains the same), but a tuple in A has been eliminated in B.

Both of these orderings are well known in the study of the semantics of
concurrency and non-determinism; E g and c b are respectively called the Smyth
and Hoare orderings [lo]. Observe that the maximal elements of E p and c b are
respectively the empty set ({ }) and the set of all maximal elements of $3.

However, if we want to approximate sets, neither the Hoare nor the Smyth
ordering is, in isolation, satisfactory since their maximal elements are uninteresting.
Reference [111, in formalizing incomplete information, describes the semantics of a
tuple such as [Name * ‘J. Doe’; Age => -1 as { [Name + ‘J.Doe’; Age => i] 1 i E I},
where Z is the set of all possible (total) values of Age. More generally, if ~3 is
a partially ordered space, we can define the denotation of a tuple x, 1x1, as
{ y 1 y is maximal in L3 and y 3 x>. If we extend this simple-minded notion of
semantics to tuples involving sets of values, the denotation of the tuple
[Name * ‘J. Doe’; Children * { ‘John’, ‘Mike’}] would, using the Hoare ordering,
be a tuple with all possible children since adding entries improves the set, and,
using the Smyth ordering, be a tuple with no children since deleting entries
improves the set. Ideally, we would like to be able to say that this is exactly the set
of children for J.Doe, and that it cannot be improved by either adding or deleting
entries.

172 BUNEMAN, DAVIDSON, AND WATTERS

We therefore use the Hoare and Smyth orderings together to represent complete
and consistent information about-or to “sandwich”-subsets of the maximal
elements of 9. Sandwiches are then pairs of co-chains in 9, and are ordered by
how well they describe subsets of the maximal elements of 9; i.e., a better sandwich
describes fewer subsets. It is shown that this forms a domain, in which the maximal
elements are exactly what we need: subsets of the maximal elements of 9. A similar
use of complete information appears in [12, 133.

Although this space of records and sandwiches is rich enough to describe
arbitrary sets and recursive record structures, we limit our attention to a “natural”
subset in which a notion of rules can be precisely defined. That is, we believe that
complex objects are frequently used as “views” of much simpler implementation
structures, such as entity-relationship databases. For example, while an organiza-
tion might view “departments” as having a name (Dname) and an associated set of
employees (Emps):

Department: { [DName: string; Emps: { [FName: string; LName: string] $I},

this is just a convenient representation of a project-join view of the traditional
database,

Employee: ([Id: e-obj-id; FName: string; LName: string] };

Department: {[Code: d-obj-id; DName: string]};

Emp-Dept: { [Emp: e-obj-id; Dept: d-obj-id] }

in which all members of the same department are collected into a set. Using this
convention, we define rules of the form

p implies q1 or q2 or . . . or qk,

where p and the 4;s are restricted to be complex objects which are views of the
same entity-relationship database. The rules can be used in several ways: as an
integrity check on the information in the database; as a means of improving the
existing descriptions stored in the database; and as a means of appending new
“views” on the database, i.e., for defining queries. That is, the interpretation given
to our rules over sandwiches will constructively infer consistent instances of conclu-
sions, qi, as well as refine complete instances of the hypothesis, p. The system is
shown to extend the power of Datalog (without negation) and the relational
algebra (with set difference), and to have an efficient implementation.

The rest of this paper is organized as follows. Section 2 formally defines the
domain of sandwiches. In Section 3, we give a semantics of complex objects as
partial descriptions, and show how they can be used to approximate entity-
relationship databases. Section 4 presents the general form of a rule and defines
the interpretations applied: integrity check, consistent inference, and complete
inference. We conclude in Section 5 with a discussion of the expressive power of our
language and the complexity of its implementation.

COMPLEX OBJECTS AND APPROXIMATE ANSWERS 173

2. THE SANDWICH ORDERING

We would like the spaces we are using to be rich enough to describe recursive
record structures. One choice, adopted in programming language theory, is to take
our domains to be Scott domains [8]. For our purposes, the important property
is that they are bounded complete partial orders. Any non-empty subset S of 9 has
a greatest lower bound, n S. A more conservative approach [141 is to model recur-
sive structures built from records and sets as regular trees [151. In this paper, our
examples are drawn from finite, non-recursive record structures.

Given a domain 9, let V(9) denote the finite co-chains on 9. The Smyth (c j)
and Hoare (E b, orderings, when applied to arbitrary subsets of 9, are only pre-
orders. However, if we restrict our attention to the finite co-chains on 9 they are
both partial orders with computable meets and joins. A co-chain is a subset of D
with the property that any two elements are incomparable; i.e., S is a cochain if
x, y E S and x 2 y imply x = y. The meets and joins in the two orderings are defined
by

As an example, suppose A, and A, are the following relations:

Name Course Course Instructor

A = Jones CSlOO Dewey
I Jones Phil5

A = Phil5
2 Phil5 Cheatham

Smith Phil5 Math2 Howe

If we take these to be sets of records, and use the ordering on records described
in the introduction, we have

Name

Jones
A, uz A,= Smith

Jones
Smith

Course Inslructor Name Course Inslructor

Phil5 Dewey Jones (3100 ~
Phil5 Dewey A, u7 A,= Jones Phil5 -
Phil5 Cheatham Smith Phil5
Phil5 Cheatham Phil5 Dewey

Phil5 Cheatham
- Math2 Howe

Note that uIT when applied to these relations gives the natural join. For a fuller
discussion of this, see [16], where the following simple result is given.

174 BUNEMAN, DAVIDSON, AND WATTERS

PROPOSITION 1. (U(9), c $) and (‘4?(g), g 5, are distributive Iuttices (with top
and bottom elements).

To use these two orderings together, we define a sandwich in 9 to be a pair
(A, B) with A, BE g(9) such that 3Sz9.A~~Sand Bc”S.

Let Y(9) denote the sandwiches on 9. We can define an ordering on Y(3) by

(A,, B,) cs (A,> 4) iff A,&“Azand B,c~B~.

PROPOSITION 2. (Y(9), g”) is a distributive semilattice with a bottom element
and pairwise bounded joins.

ProoJ: The meet of (A,, B,) and (AZ, B2) is (A, np A,, B, nb B2). The bottom
element is ({I}, @}. T o s h ow that (Y(9), cs) has pairwise bounded joins, sup-
pose that the sandwiches (A,, B,) and (A*, B,) are bounded above by a sandwich
(A’, B’). By definition there must be SE %‘(9) such that A’ c g S and B’ c b S’. By
transitivity, (S’, S’) must be a bound for (A, uff AZ, B, ub B2). 1

Thus the sandwich join of (A,, B,) and (A,, B2) is, when it exists,
(A, u# A*, B1 ub BJ, However, note that if (C,, C,) and (C,, C,) are both “exact”
sandwiches (i.e., each of C, and C2 provides complete and consistent information
about some set), their sandwich join (if it exists) will not, in general, be exact.

The most important property of Y(9) for our purposes is that the maximal
elements correspond to subsets of maximal elements of $3’; more formally, using
Tot(a) for the set of maximal or total elements in 9.

PROPOSITION 3. The maximal elements of 9’(g) are pairs (T, T), where
TE Tot@).

ProojY If there is a sandwich (A, B) that dominates (T, T), where TE Tot(g)
then there must be a sandwich (T’, T’) that dominates (A, B) and hence (T, 7’).
Since T contains only maximal elements we must have T’ E T and T’ 2 T. Hence
(T, T) is maximal in Y(9). Conversely, any maximal sandwich of Y(Q) must be
a pair of the form (T, T) and if T contains some non-maximal element of 9 we can
replace it by a larger element to construct a pair (T’, T’) that is strictly greater than
(T, T). Hence if (T, T) is maximal in P’(9), T can only contain maximal elements
of 9. 1

From our previous definition of meaning, the denotation of a sandwich is given
by [(A, B)] z ((T, T) 1 TE Tot(g), A c * T and B c b T}. We can think of A and B
as being complete and consistent information about some T~Tot(9). When
(T, T) E [(A, B)], we say that (A, B) approximates T.

To illustrate the use of these ideas, suppose we are seeking to approximate the
set of students T who are interested in the study of databases. If we know they all

COMPLEX OBJECTS AND APPROXIMATE ANSWERS 175

took Database 1, then the list of all last names of students who registered for
Database 1 would be a complete approximation A for T;

Last Name

Johnson
Pierce
Taylor
Cooper
Emerson
Billings

where the absence of a column (in this case, the First name column) indicates that
the values are null. This convention is used throughout the rest of the paper. Note
that this is an over-approximation of T, because we cannot assume that people who
register for Database 1 are necessarily interested in databases. However, any
student who is interested in databases must be described by this set (albeit
incompletely).

We may additionally happen to know the names of a few interested students.
Thus, from memory we can construct a consistent description B for T:

First Name Last Name

Ella
Burt

Taylor

Pierce

Note that this is an under-approximation since it does not necessarily describe
everything in T.

These two approximations together form a sandwich approximation (A, B) to the
set of total descriptions T. Two examples of totally defined sets of names that are
approximated by (A, B) are:

First Name Last Name First Name Last Name

Ella
Burt
Liza
Burt
Elvira

Taylor
Cooper
Pierce
Pierce
Johnson

and

Ella
Burt
Fred
Wayne

Taylor
Johnson
Pierce
Cooper

However, the following would not be described by (A, B) since it is not completely
described by A, even though it is consistent with B:

First Name

Ella
Burt
Larry

Last Name

Taylor
Elliot
Pierce

176 BUNEMAN, DAVIDSON, AND WATTERS

Turning back to our technical study of sandwiches, the domain of sandwiches
lacks a property that is enjoyed by the domain of partial tuples: two elements of
Y(9) may denote the same subset of Tot(Y(9)). We would like to be able to
“promote” a sandwich to the largest element in the domain that describes the same
set of maximal elements. Unfortunately, it is both difficult to define and to compute
a promoted sandwich with this property. Consider the following sandwich
(complete information is on the left)

First Name Last Name

Ella Taylor
- Pierce

Lust Name

Taylor
Pierce

A promoted sandwich should contain, on the complete side, the tuple (n, Pierce) for
every n in the domain of first names. If this domain is infinite, the complete side will
contain an infinite cochain-violating our definition of a sandwich. If the domain
is finite, we still need knowledge of the entire domain, which is not in general
available. We therefore consider a weaker promotion operator P, which we show
to be the best that one can obtain on the available evidence. For a sandwich (A, B),
this is defined [17] by

aub 1 aEA and aub exists} 1 bEB .

Note that since (A, B) is a sandwich, we know that for each b E B there is at least
one a E A such that a and b are consistent. Thus P(A, B) is always well-defined.

For example, if the following two relations form a sandwich that approximates T,

First Name

Ella
Burt

Last Name First Name

Taylor
Cooper Burt
Pierce Fred
Johnson -

Last Name

Taylor
Johnson

Cooper

then the following sandwich, promoted by P, will also approximate T:

First Name

Ella
Burt

Last Name

Taylor
Cooper
Pierce
Johnson

First Name

Ella
Burt
Fred
Burt

Last Name

Taylor
Johnson

Cooper

COMPLEXOBJECTS AND APPROXIMATE ANSWERS 177

Note that P only required us to take meets and joins of tuples in the given
sandwich; it did not require further knowledge of the domain. To show that P is
the best one can do, given a sandwich (A, B) in Y’(9) consider the subset of 9 that
one can compute by joining together partial information in A u B. This is a
downward closed subset of 9 that is closed under joins that exist in 9. Such a
subset is called a strong ideal of 9; and we define $(A, B) to be the smallest
strong ideal containing A u B. Given some other domain 9’ we say Y(A, B) can be
embedded in 9’ if it can be embedded as a strong ideal. What we now show is that
(A, B) and P(A, B) denote the same sets of maximal elements for any domain in
which $(A, B) is embedded, but that no sandwich greater than P(A, B) can have
the same denotation in all such domains.

PROPOSITION 4. For any domain $3 in which 9(A, B) is embedded,
[r(P(A, @HI, = EM WI 9. Moreover if s is a sandwich in .$(A, B) such that
s 3’ P(A, B) then there is a domain 9’ in which $(A, B) can be embedded such that
lI(K4 B))llg, Z IIs 2.

Proof The first part of this result is immediate from the definition of P. For
the second part, suppose s = (A’, B’) is above the promoted sandwich
(A, BP) = P(A, B). For each point in 4(A, B) of the form au b, where a E A, b E BP
and the join is defined, augment 9(A, B) with a point t,, h. Extend the ordering
such that touh dominates only au b and the elements below it.

Suppose B’ ZI b BP. Choose any 6’ E B’ where for each b E BP, b 3 b’. In this case
for every b E BP there must be some aE A where au b 3 b’. Letting T’=
it OubIaEA,bEBP,aubgb’} we have (T’,T’)zS(A,BP) but that T’;P~B’ as
required.

On the other hand, suppose that A’ 7 f A. In this case there must be some a E A
not dominating any a’ E A’. As before, we introduce t, dominating only a and the
elements below it, and take T as before. It follows that Tu t, is a set of maximal
elements approximated by (A, B) but not by (A’, B’). b

We complete this section with two results that are used later to show that the
computations we perform by applying “rules” to a database have well-defined out-
comes. A closure c is a monotone (X 2 y 5 c(x) 2 c(y)), inflationary (c(x) 2 x) and
idempotent (c(c(x)) =c(x)) function on a lattice. An important property of a
closure defined on a semilattice with pairwise bounded joins is

PROPOSITION 5. Zf c is a closure then x u y exists iff c(x)u y exists, and
c(c(x) u y) = c(x u y) if x u y exists.

Proof: The first part is proved by noting that c(xu y) is a bound for c(x) and
y, provided x u y exists. For the second part, since c is inflationary we have

178 BUNEMAN, DAVIDSON, AND WATTERS

c(x) 2 x, and by monotonicity of c we have c(c(x) u y) 2 c(x u JJ). To establish the
reverse inequality we have

44x1 u Y) 5 44x u v) LJ Y) by monotonicity of c

= c(c(x u Y)) because c is inflationary

=c(xuy) by idempotence. 1

Now it is readily established that P is a closure on the lattice of sandwiches. This
property of closures tells us that, in performing a sequence of joins, we need only
apply the promotion to the final result (though intermediate promotions may
improve the efficiency).

A second result concerning closures is crucial to understanding the action of rules
on sandwiches. We need to be sure that, regardless of the order in which the rules
are applied, we get a well-defined result (provided they are applied often enough).
The same idea is used [18] to provide a semantics for dataflow computation.

PROPOSITION 6. If cl, c2, c,, are closures on a finite lattice, and if there is a
common fixed point of these closures, i.e., a point x such that ci(x) = x for iE 1 . . . n,
then there is a unique minimal point with this property.

Prooj To obtain this result, we only need to assume that the cj are monotone
and inflationary. Let Si be any set of fixed points of ci. By monotonicity,
ci(fl Si)E {ll c;(x) I XE Sj} = n Si and, since ci is inflationary, ci(n Si) 2 n Si.
Thus the fixed points of each ci form a meet-closed subset of 9. The intersection
of the fixed points of ci is therefore meet-closed and has a minimal element. 1

We are, in practice, able to guarantee that our rules operate within finite lattices.
This follows from the fact that for record structures, the ideals 9(A, B) generated
by a sandwich are always finite.

3. DATA MODELS AND COMPLEX OBJECTS

In order to give a formal account of the semantics of complex objects as partial
descriptions, we need to produce a “real world” which is the space of things
described by complex objects. Our strategy is to use a version of the entity-
relationship (E-R) model [19] as the real world and complex objects as the space
of descriptions. Other approaches are possible, such as those presented in [20, 211.
In addition to making our notion of semantics precise, this approach allows US
to formulate rules over complex objects. Moreover, certain types of complex
objects, which we believe to be “unnatural” even though they are allowed by the
syntax (e.g., sets of sets of integers), are excluded because there is no E-R database
that they represent.

After giving a syntax for complex objects and restricting them to be “views” of
E-R databases, we show how they represent E-R instances. To lay the groundwork

COMPLEX OBJECTS AND APPROXIMATE ANSWERS 179

for defining rules over complex objects, we close this section by discussing in what
sense a term of a rule can be said to be satisfied by a complex object.

3.1. Complex-Object Types and Instances

We first describe a syntax for “exact” complex objects; these do not contain
missing values (within a given type), and they contain only “exact sandwiches.”
They thus conform to the normal definition of complex objects and the syntax for
their types and instances follows roughly that given in [1,4].

A complex object type is defined as follows.

(a) Base types such as int (integer), string (character string), and boo1
(boolean) are types.

(b) If zl,~z, r,, are types and 1,, 12, Z,EY then [/,:z,; 12:2*; ln:~,] is
a type. Such types are tuple types.

(c) If z is a type, {z} is a type. These are set types.

The syntax for typed values follows that of types:

(a) Atomic values such as 1, 2, 3, . . . are values of type int; ‘cat’, ‘dog’, . . . are
values of type string; etc.

(b) If v1:r1,vz:z2 ,..., v,:z, and l,,l, ,..., 1,,~9 then [1,*v,,1,=v2 ,...,
ln*v,] is a value of type [ll:r,;l,:t,;...;l,:r,].

(c) If 01, v2, v, are all of type z then {v,, v2, v,} is of type (7).

For example,

[Persons: { [Fn: string; Ln: string; Children: {string}] >I;

is a type and

[Persons * { [Fn * ‘John’; Ln 3 ‘Doe’; Children * {‘Sally’, ‘Sue’}];
[Fn * ‘Mary’; Ln =+- ‘Brown’; Children => { ‘Peter’, ‘James’}] }]

is an object of that type.

3.2. The Entity-Relationship Model

The authors are unaware of any especially clean formulation of the E-R model,
though the process of mapping this model to the relational model [22] is
reasonably well understood. We treat an E-R schema as a collection of named
relations partitioned into two sets: entities, B and relationships, 6%‘. We use Y(Q)
for the attribute names of an entity or relationship Q E d u g’, and we assume that
for each Q E I u SI? there is a function 0, which maps L(Q) into the set of base
types. The base types are the domains of relational database terminology and are
usually left out of E-R diagrams. For example, in Fig. 1, typical values would be
0 E,,,P,oYee(FName) = string, and QE,,,p_Dep,(Contract) = int.

180 BUNEMAN, DAVIDSON, AND WATTERS

DEPARTMENT
Ev

FIG. 1. E-R diagram for employee-department database.

So far this is just a formulation of the relational model. We now add some infor-
mation that defines the graphical structure of an E-R diagram.

l For each entity EE d there is a distinguished attribute ZEo 2(E) called its
identity. It is assumed that I, is a key for E.

l For each relationship R E B there is a partial function pR : Y(R) + 8 such
that OR(lpRCIJ) = Q,(Z) whenever ~~(1) is defined.

The function p specifies the connection between relationships and entities. To
illustrate the identity and function p using Fig. 1, ZEmplovee = Id, pEmpmDepr(Emp) =
Employee, and 0 EmP oeP,(Emp)= int, which is the same as O,,,,&Zd). This
definition excludes the possibility of entities being attributes of other entities, or
relationships being attributes of other relationships. We have made this restriction
for simplicity, although in general we see no problem in allowing these possibilities.
Also for simplicity, we have limited the identity of an entity to being a single
attribute and, whether or not it is generated by the system or by the user, we insist
that exactly one such attribute is present for each entity. We have no explicit
mention of “isa” relationships; these are represented when we deal with rules.

An instance of an E-R schema is simply a relational instance of I u 9 that
satisfies inclusion dependencies specified by the function p; namely if Y is a tuple in
R E 92 and p,(l) = E then there is a tuple e in d such that r.l= e. I,.

For example, the schema S for the E-R diagram shown in Fig. 1 is given by

{Employee: { [Id e-id-type; FName: string; LName: string; Telephone: integer] };
Department: { [Code: d-id-type; DName: string; Location: string] };
Emp-Dept: { [Emp: e-obj-id; Dept: d-obj-id; Contract: ed-id-type]} 1.

Here the entities are (Employee, Department > where

I Emp/o.wr = Id and IDrparrmr,,r = Code.

The relationship is Emp-Dept where

COMPLEX OBJECTS AND APPROXIMATE ANSWERS 181

and

pE,,,pmoPp,(Dept) = Department.

Note that Emp-Dept also has an identity Contract, since it is not ruled out by the
definition.

A relational instance of this example could be

Employee Department

Id FName LName Telephone Code DName Location

1 Ella Taylor 8986570 52 Systems To3
2 Burt Cooper 3876593 53 Physics Whl

EmpDept

Emp Dept Contract

1 52 998
1 53 75
2 53 77

3.3. Complex Objects as Views of E-R Databases
We can think of a complex object as view of an E-R instance in which we may

describe more about a tuple by describing its relationships to other tuples in the
database; in particular, we may lose the identities of entities. In this sense, we can
regard complex objects as views of an E-R schema. The way we build up such views
is to treat each entity as a record type, some of whose attributes are set types; we
may also treat relationships as record types whose entity attributes are record types.
For example, given an Employee we can construct an attribute Emp-Dept @ Emp as
a set type that contains records derived from the Emp-Dept relationship.

Given an E-R schema, we generate a complex-object view of the database by
first specifying a type that is consistent with that schema. We therefore define a
relationship con as follows:

l Any base type (e.g., int, string, bool) in a complex object type is consistent
with the same type in an E-R schema; i.e., r con r if r is base.

l For an entity E, [I,:z,;l,:z,;...; ln:r,,] con E iff for each li, one of the
following holds

- lj~ Y(E) and 7i con O,(li). The associated types (which must be base)
agree.

- Ii is of the form R@ 1 where E is an entity such that pR(f) = E and zi is
of the form {o} where (T con R.

182 BUNEMAN, DAVIDSON, AND WATTERS

l For a relationship R, [II : T 1 ; I, : z2 ; I, : T,] con R iff for each I, one of the
following holds

- I, E (Z(R) - dom(p,)) and zi con O,(li). Le. Ii is an ordinary attribute
of R so that zj is base.

- p,(l,) = E and ri colz E.

Finally, given an E-R schema S= du 5% and a complex object type
z= [ll:z,; 1,x . 2, In:r,], z con S iff, for each lj, Ii= Q, where QES and ri= {a>,
where c con Q. Note that we are again deliberately confusing the names of entities
with the entities themselves and similarly for relationships.

To illustrate these ideas, we give three examples of complex object types that are
consistent with the previous database. V, defines a view in which the Emp-Dept
relation contains attributes from the Employee and Department relations:

V, : [Emp-Dept: { [Emp: [FName: string; LName: string; Telephone: int];
Dept: [DName: string; Location: string]] } 1.

Vz defines a view in which the Employee records contain information about the set
of departments the employee is in:

V, : [Employee: { [FName: string; LName: string;
EmpDept@ Emp: ([Dept: [Dname: string]])]}].

V, defines a view in which the Employee record contains not only information
about the set of departments the employee is in, but also information about the set
of co-workers in each department:

V3 : [Employee: ([FName: string; LName: string; EmpDept @ Emp:
{ [Dept: [Dname: string; Emp-Dept@ Dept:
([Emp: [FName: string; LName: string]]}]]}]}].

Note that a complex object type is always, at the top level, a record of sets and
that the only way sets can appear at lower levels is through relationships in the E-R
schema. For example, the complex object type [Persons: { [Fn: string; Ln: string;
Children: {string}] }] is not consistent with any E-R diagram, because {string}
could not be an attribute of any entity or relationship.

PROPOSITION 7. If S is an E-R schema (or a component of an E-R schema) and
t,, z2 are complex-object types such that z1 con S and z2 con S, then z, u t2 con S.

The definition of u for types is essentially the same as the definition of the join
for nested records, and is therefore omitted.

Given an E-R schema S, an instance I of S, and a complex-object type 5 consis-
tent with S, we can now define the complex object view associated with that type.
The construction of the view follows the definition of consistency.

COMPLEX OBJECTS AND APPROXIMATE ANSWERS 183

If Q EQ u R is an entity or relationship, t is a tuple in Q and
T = [1,x,; l,:t,; 1, :r,] is a complex object type such that z con Q, the complex
object view V(Q, t, z) is a complex object [I, =S vi; 1, *u2; 1, *v,] defined as
follows:

l QEC~: If li is of the form R@l, then ui= {V(R, t’,a) I t’.l= t.Z,};
otherwise vi = t. Ii.

l Q E W: If li~dom(pR) and pR(Ii) = E, then ui= V(E, t’, TV) where t’ is the
(unique) tuple in E such that t.li = t’.Z,; otherwise ui = t. li.

Finally, given an instance of an E-R schema S= F u 9 and a complex-object
type [l,:{a,};l,:{02};...; 1,: { CS~}], the view generated by that type is the complex
object [II =S u,; l2 =S v,; 1, *v,], where vi= { V(li, t, zi) 1 t EZnst(l,)}. Here
Znst(1,) is the relational instance of the entity or relationship named li.

For example, using the relational instance of Employee, Department and
Emp-Dept given earlier, the view generated by I’, would be:

EmpDept

Emp Dept

FName LName Telephone DName Location

Ella Taylor 8986570
Ella Taylor 8986570
Burt Cooper 3876593

which could also be represented as

Systems
Physics
Physics

To3
Whl
Whl

VI * [EmpDept * ([Emp =j [FName =S ‘Ella’; LName * ‘Taylor’;
Telephone * ‘8986570’1; Dept => [DName =S ‘Systems’; Location =s- ‘TOM’]],
[Emp =S [FName * ‘Ella’; LName z- ‘Taylor’; Telephone =S ‘8986.570’1;
Dept * [DName * ‘Physics’; Location => ’ Whl’]],
[Emp * [FName * ‘Burt’; LName =S ‘Cooper’; Telephone * ‘3876593’1;
Dept - [DName = ‘Physics’; Location =S ’ Whl’]]}].

The relational instance of the view generated by V, would be:

Employee

FName LName

EmpDept @ Emp
Dept
DName

Ella Taylor Systems
Physics

Burt Cooper Physics

184 BUNEMAN, DAVIDSON, AND WATTERS

Finally, the relational instance of the view generated by V, would be:

Employee

EmpDept (a: Emp
Depr

Emp-Dept (2 Depi
Emp

FName LName DName FName LName

Ella Taylor Systems Ella Taylor

Physics Ella
Burt

Taylor
Cooper

Burt cooper Physics Ella
Burt

Taylor
Cooper

Returning to our technical discussion, given two such views with joinable types,
it is unclear whether there exists a well-defined join of the views which represent the
same E-R instance. It is the need to find a domain in which we can define joinable
objects (and hence an algebra) that motivates our definition of partial objects.

Partial objects are complex objects in which sets are replaced by sandwiches.
Given a complex object type z, partial objects of type r are constructed as follows:

(a) Atomic values are defined as before.
(b) Let z= [Zr:s,; 1,:~~; I,:z,], and ui be a partial object of type ti for

1 < i < m, m d n. Then [I, =z. u, , I, =+ v2, 1, *u,] is a partial object of type ‘1.
(c) If z= {o} and v,, u2, u,, w,, w2, W, are all partial objects of type CJ,

then ({or, v2, u,,}, {w,, w2, wm}) and (-, {w,, w2, wm}) are partial objects
of type z.

Rule (b) says that we can drop fields from complex objects to obtain
partial objects; in rule (c) we replace sets by sandwiches. The notation - is the
least element in the Smyth ordering, indicating the absence of any consistent
information.

An ordering &Ob on partial objects is readily obtained by using the partial
record ordering to order record values, and the sandwich ordering to order
sandwich values (extended to include -). Both of these orderings were defined in the
previous section, and from these definitions it is clear that

PROPOSITION 8. (6, gob) is a semilattice with bottom and pairwise bounded
joins.

This gives us a space in which joins are well-defined; in particular, using the
notation v <: z to indicate that u is a partial object of type r.

COMPLEXOBJECTSAND APPROXIMATE ANSWERS 185

PROPOSITION 9. Zf o1 <: tl and v2<: z2 and u1 uob u2 exists, then o1 uob Q-C:
TlLJT2.

The purpose of imposing types on complex objects is simply to construct a space
in which our partial objects are bounded by maximal elements. Without such a
restriction it is quite easy to describe unbounded complex objects that represent
an E-R instance. The fact that the maximal objects (under E Ob) of a given type
are isomorphic to the complete complex objects of that type is useful to us in
preventing rules from “joining” objects on missing or partial information.

Our final task in this section is to describe partial E-R instances and their
relationship to partial objects.

Given an E-R schema, an E-R sandwich is obtained by replacing the entity and
relationship instances by sandwiches, i.e., pairs of instances, and by allowing null
values. More formally, with each entity of type [r, :t, ; 12:~*; I, :r,] associate a
partial object (a sandwich) of type {[I, :z, ; 1, :r,; I, : z,] }, and similarly associate
a sandwich with each relationship. Note that in this case, the types zl, t2, z, are
all base. Each sandwich is a pair of relational instances of the entity or relationship
with null values. E-R sandwiches therefore give rise to complex objects, but the
reverse is not, in general, true.

3.4. Terms and Satisfiability
The topic of Section 4 is rules for complex objects: their general form and

inferences. However, before we can delve into this topic, we need to know what
a term is and in what sense a term can be said to be satisfied by a complex object.

We start this discussion with a syntax for terms which is obtained by adding
variables to our syntax for (untyped) complex objects. By convention, variables are
letters X, Y, Z from the end of the alphabet. To define a typed term, we assume the
existence of a set of typed variables X’, Y”, where 0, r, . . . are record or base
types. The rules for the formation of typed terms are then

l For any typed variable x’ for some record or base type T, x’ is a term of
type 7.

l Atomic values are terms (of the appropriate base type).
’ If t,, tz, . ..) t, are terms of type t,, z2, ‘t,, respectively, then

[II *T,; 12*T2, 1, a~,] is of type [~,:T,;I,:T,;...;Z,:T,], where m$n.
l If t,, t,, t, are terms of type T then {tl; t,; tn} is of type {T}.

Given an E-R schema S, a term [I, =j t 1, I, at,] is consistent with S if there
is a view [II :T~, ln:~,,] such that ti is of type T;, 1 d i6 n. Note that because this
is an E-R schema the T, are all set types and therefore none of the t, are themselves
variables; variables can only appear as components of these terms. As an example,
consider the following term whose type is consistent with the E-R diagram of Fig. 1.

[Employee * ([FName 3 X, LName + Y; Emp-Dept @ Emp
= ([Dept * [Dname * ‘Sales’Emp-Dept @ Dept
* {[IEmp* CF~ame~X11111)1)1. (1)

186 BUNEMAN, DAVIDSON, AND WATTERS

We now ask what it means for a term of type z to be satisfied by a complex
object of type t’ when r is consistent with t’. Let us digress to examine the notion
of satisfaction in [2] where a similar syntax is used for untyped terms, and satis-
faction is defined with respect to the Hoare ordering. That is, a term t is satisfied
by a complex object C if there is a substitution G for the variables in t that places
it below C in the Hoare ordering, i.e., ot c b C. Rules are then defined as pairs of
terms of the form t, :- t, where all the variables in t, occur in t,. An example of
a rule is

{[A~X;C~Z]}:-[R,~([A~X;B,~Y]};R,~{[B,~Y;C=>Z]}]. (2)

If C is a complex object (which we can think of here as being untyped, i.e., a term
without variables) the result of applying a rule 1, :-t, to C is defined to be the
complex object

u” Uw) I (gtz) c b c>.
While this is a monotone function (in c b, on complex objects, it does not have the
desired result. In rule (2) above, the apparent intention is to compute the join of
the relations R, and R2 on B, = B,, i.e., nac(o,,=,,(R, w R,)). However, since I
is a possible substitution for Y, what is actually given by this expression is
n,,-(R, w R,), which is the cross product of R, and R2 since they have no fields
named in common. Thus without some restrictions, this formulation of rules on
complex objects does not give us the power of Datalog.

A fix to this problem is to work within some type and to restrict the substitutions
so that they are, in some sense, maximal for that type. However, as we remarked
at the beginning, the maximal complex objects in the Hoare ordering are un-
interesting. We prefer to work in the sandwich ordering in which we can actually
approximate sets of values. We should therefore extend our syntax for partial
objects to include variables. We would then have a precise notion of satistiability.
This is what the authors attempted to do in [17] but the syntactic structures are,
to be frank, horrendous. As an alternative, we can use an E-R type to “flatten” our
complex object terms (defined as above) into conjunctions of flat literals and then
work within a sandwich interpretation for rules that provides a natural extension
of Datalog.

The flattening process is straightforward and is best illustrated through an
example. Each record sub-term of the given term is either an entity or relationship
type in the E-R diagram to which it conforms, so we create a conjunction of literal%
one for each record, in the given term. Using the example (1) above, we get

EmpZoyee(-, -, -, -) A Emp-Dept(-, -, -) A Dept(-, -, -)

A Emp-Dept(-, -, -) A Employee(-, -, -, -),

where the literals are listed in the same order that the corresponding record terms
are introduced in the given term (depth-first order).

COMPLEXOBJECTSAND APPROXIMATE ANSWERS 187

For each constant in the given term, place that constant in the appropriate
position in the corresponding literal.

Employee(-, -, -, -) A Emp-Dept(-, -, -) A Dept(-, ‘Sales’, -)

A Emp-Dept(-, -, -) A Employee(-, -, -, -).

For each variable, if that variable has a base type (i.e., it is an attribute), place
it in the appropriate attribute position of the corresponding literal. If it is a record
term, place it in the identity position for that record.

Employee(-, X, Y, -) A Emp-Dept(-, -, -) A Dept(-, ‘Sales’, -)

A Emp-Dept(-, -, -) A Employee(-, X, -, -).

Whenever a term t, is of the form [I..., R@l* t,, . ..I. which happens when t, is
an entity variable and t2 is a relationship, create a fresh variable (if necessary) and
place it in the identity position of t, and the attribute of t2 that corresponds to that
entity. Also, if t, is of the form [. . . . I* t,, . . .] where t, is a relationship and t2 is an
entity, create a fresh variable (if necessary) and place it in the identity position in
the literal corresponding to t,, and the attribute of t, that corresponds to that
entity. Note that in this process we may identify two existing variables.

Employee(U, X, Y, -) A Emp-Dept(-, U, V) A Dept(V, ‘Sales’, -)

A Emp-Dept(-, W, V) A Employee(W, X, -, -).

Although it might appear that we have simply reduced complex-object rules to
Datalog, recall that we are no longer working in a normal relational domain. We
therefore think of a rule as something that, in the presence of complete information,
generates a constraint on the database rather than a new “facts.” This is the subject
of the next section.

4. RULES AND INTERPRETATION

The rules our system accepts have the form

P implies q1 or q2 or...or qk,
(hypothesis) (conclusions)

where p and the 41s are terms. As shown at the end of Section 3, these terms can
be translated to conjunctions of literals from some E-R database schema. We call
such a conjunction of literals a pattern, and assume that all terms have been
translated into patterns for the remainder of this section. We refer to p as

188 BUNEMAN, DAVIDSON, AND WATTERS

the “hypothesis,” and “9, or q2 or . . . or qk” as the conclusion. When the structure
of p is important we write

L, and L2 and . . . L,,, implies q, or q2 or . or q,.
(hypothesis) (conclusions)

Note that this form is more general than that of [2] (discussed in Section 3) since
it allows a disjunction of terms in the conclusion.

Although the rules may contain disjunctions, the inferences derived using these
rules are constructive. That is, the rules are interpreted as a group of possible
actions that the user instructs the database to perform; the database will not use
non-constructive reasoning in order to make clever inferences. For example, sup-
pose our database has information indicating that there is a direct flight leaving
Philadelphia which is either going to Columbus or Chicago. Furthermore, suppose
that the database knows there are direct flights from both Columbus and Chicago
to San Francisco. Given this information, we can correctly conclude that there must
be an indirect flight from Philadelphia to San Francisco-but our system will not
do so because the intermediate stop cannot be explicitly presented; the inference
that there is an indirect flight is not constructive.

There are many situations where non-constructive reasoning can be misleading
(game playing, for example). However, our chief motivation for preferring construc-
tive reasoning is to allow a tractable implementation that behaves in a predictable
way. If a classical interpretation is applied to our rules, it becomes quite easy to
specify problems that are thought to be intractable (NP-complete problems) with
a short sequence of simple rules. Consequently, a complete implementation of such
a system would be capable of transforming a small and innocent looking sequence
of rules into an exponential program-quite likely to the surprise and dismay of the
user.

With constructive reasoning, in contrast, it is clear how the system will behave
and what inferences it will make. Furthermore, we later show that the constructive
interpretation admits an implementation that is always polynomial in the size of the
database.

In this section, we first give an intuitive overview of the constructive reasoning
performed by our system. We then present some extended relational operators that
are necessary to give precise meanings to rules. Finally, we give precise meanings
to the various interpretations of explicit rules (integrity check, consistent inference,
and complete inference) and define implicit inferences and constraints that are
derived from the semantics of an E-R schema. To conclude the section we explain
the meaning of a set of rules.

4.1. Intuitive Meanings

In this section we motivate the interpretations we apply to each rule the user
asserts.

When there is no missing information in the database the meaning of a rule
reduces to an integrity assertion which insists that whenever you see some instance

COMPLEX OBJECTS AND APPROXIMATE ANSWERS 189

of the pattern on the left side in the database you must also see a compatible
instance for one of the patterns occurring on the right side-where “instance”
means a substitution for the variables in the patterns. Diagrammatically

P implies q, or q2 or . ..or qk

if you see an
instance of this

then you must see a compatible
instance of one of these.

If the database does not satisfy this test the system must flag an integrity error. This
is the “maximal interpretation” we use to justify three more general interpretations.

When the database has approximate information the system performs three types
of actions derived from each rule.

Integrity check. Check that the (partial) information in the database does not
constructively contradict the entailment relationship specified by the rule.

Consistent inference. Constructively infer instances of the conclusions which
must be true by combining the entailment specified by the rule with the information
in the database.

Complete inference. Constructively reline the realm of possibility (i.e., complete
sets) for the hypothesis by combining the entailment specified by the rule with
information in the database.

The combination of the three interpretations given above is the meaning our
system ascribes to rules.

We illustrate the actions of the rule with an example. Recall that we motivated
the notion of the sandwich with the sandwich approximation to the set of students
interested in database research (A, B) given by entity set approximation DBS-
Enthusiast:

Last Name First Name Last Name

Johnson Ella Taylor
Pierce Burt
Taylor Pierce
Cooper
Emerson
Billings

Suppose in addition we were able to obtain a sandwich approximation (A’, B’) for
the students interested in programming languages given by PL-Enthusiast entity
set :

First Name Last Name First Name Last Name

Ella Taylor
Josiah Taylor

Pierce
Wayne

190 BUNEMAN, DAVIDSON, AND WATTERS

(note that B’ is empty-we are not yet certain there is any such person). Note
that since both of the above sandwich approximations are not maximal, we can
concievably improve the information they contain through some inference
mechanism.

Furthermore, suppose we can determine a “total” approximation (T, T) for the
set of students who are interested in operating systems-the OS-Enthusiast entity
set.

First Name Last Name

Burt Charles
Sal Emerson
Burt Emerson
Ray Vito

First Name

Burt
Sal
Burt
Ray

Last Name

Charles
Emerson
Emerson
Vito

Since this is a maximal sandwich, where all information is known exactly, we
cannot infer any additional information about this set without contradiction.

Finally, suppose we assert the following rule with the intended meaning that “all
students interested in databases are either interested in operating systems or
programming languages.”

DBS-Enthusiast * ([Firstname j X; Lastname z= Y] } implies

OS-Enthusiast + { [Firstname = X; Lastname * Y] } or

PL-Enthusiast * { [Firstname =- X; Lastname j Y] }.

In the rest of this section we explain how we derive a consistency constraint and
inference interpretations from this rule, and we describe the changes to the above
sandwich approximations that the system infers.

The more general form of the integrity check verifies that if an instance of the
hypothesis is known then at least one of the conclusions must be conceivable (i.e.,
within the realm of possibility). Diagrammatically we require

P implies q, or q2 or or qk

If an instance p’ of
p is known to be true

then one or more compatible qn is
in the realm of possibility.

Again, if this check fails the system must flag an integrity error. Note that if the
database contains exact information this interpretation reduces to the maximal
interpretation.

In our example, we must check that each consistent entry in the approximation
to DBS-Enthusiasts corresponds to a compatible entry in one of the complete

COMPLEX OBJECTS AND APPROXIMATE ANSWERS 191

approximations for OS-Enthusiasts or PL-Enthusiasts. In fact they do: “Ella
Taylor” in B corresponds to “Ella Taylor” in A’; “Burt -” in B corresponds to
either “- Wayne” in A’ or “Burt Emerson” in r; “- Pierce” in B corresponds to
“- Pierce” in A’. Thus the system detects no explicit contradiction and does not
raise an integrity error.

However, we are not satisfied with simply checking that the database does not
contradict the rules-we also use each rule to make inferences that either increase
the number of facts known to be true (the consistent information) or decrease the
realm of possibility of facts which the database considers to be possible (the
complete information).

To use a rule to infer facts which must be true, we apply a consistent interpreta-
tion to the rule-one such interpretation for each conclusion. The consistent inter-
pretation for conclusion q1 insists that whenever an instance of p is known to be
true and no other conclusion qj is possible, we can correctly infer that the simplest
instance of q1 that is consistent with the hypothesis must be true. Diagrammatically

P implies q, or q2 or . ..or qk

If an instance
p’ of p is
known to be
true

and
no compatible instance
of any q2 q,,
is within the realm
of possibility

then conclude that the
weakest compatible
instance of q1
must be true!

A similar interpretation is provided for each qi.
In the example rule, since “- Pierce” is in B and no entry in T can possibly have

the last name “Pierce,” we are forced to conclude that there must be a PL-
Enthusiast named “- Pierce” and hence we introduce this entry into B’. Similarly
since we cannot resolve the entry “Ella Taylor” in B with any entry in T, we intro-
duce the entry into B’. However, since the entry “Burt -” may or may not
correspond to the entry “Burt Charles” in T we cannot immediately conclude that
someone named Burt is a PL-Enthusiast, and thus we do not introduce this entry
into B’. The improved approximation (A’, B’) for PL-Enthusiasts is given by

First Name

Ella
Josiah

-

Last Name

Taylor
Taylor
Pierce
Wayne

First Name Last Name

Ella Taylor
- Pierce

Here, the complete estimate A’ remains unchanged while the consistent estimate B’
is improved. Although we define a similar inference for the OS-Enthusiast entity set

571/43/l-13

192 BUNEMAN, DAVIDSON, AND WATTERS

there can be no meaningful improvement to the approximation representing
the OS-Enthusiasts since that approximation is maximal-any introduction of
additional elements would constitute a contradiction.

It is important to observe that the introduction of these entries into B’ are all
monotone operations in the Hoare powerdomain. Also, note that we make use of
negative information about the realm of possible OS-Enthusiasts to infer positive
information about the known PL-Enthusiasts.

More interestingly since the implication relationship asserted by a rule also
constrains the realm of possibility, we introduce a complete interpretation for the
rule. The primary intuition here is that a substitution for variables that is not
possible for at least one of the conclusions cannot be possible for the hypothesis.
We restate this in a more useful (but more opaque) form: the set of possible instan-
ces for a literal in the hypothesis, say L,, that must match p can be restricted by
the set of possible instances for the conclusions. Diagrammatically

L, and L, and and I,,, implies y, or yz or ‘..or qk

Letting X be
possibilities for
L, which must match
hypothesis p

and
Letting Y be the
complete set of
possibilities that
may match any q,

“Xn Y” is an
improved estimate
of all possibilities
for L, which must match
hypothesis p !

conclude

Here the intersection is in quotes because set intersection is not appropriate in the
context of partial information-what we need is the algebra of the Smyth power-
domain.

In our example database we must check each hypothetical PL-Enthusiast listed
in A against both the conceivable OS-Enthusiasts listed in T and the conceivable
PL-Enthusiasts listed in A’. We immediately note that entries “Johnson,” “Cooper,”
and “Billings” in A cannot be resolved with any entries in T or A’, and thus these
possibilities can be eliminated. Note that this elimination is a monotone action in
the Smyth powerdomain and hence constitutes a form of monotone inference of
negative information.

Moreover we note that since the entry “Taylor” in A can only be resolved against
“Ella Taylor” or “Josiah Taylor” in A’, we can replace “Taylor” with these two
improved possibilities. Similarly the entry “Emerson” in A can be refined to the
more restrictive descriptions “Sal Emerson” and “Burt Emerson” from T. Again,
these replacements constitute monotone operations in the Smyth powerdomain,
and since they restrict the number of possible first names they constitute a

COMPLEX OBJECTS AND APPROXIMATE ANSWERS 193

monotone inference of negative information. Finally the improved approximation
for the set of PL-Enthusiasts is given by

First Name Last Name First Name Last Name

Sal
Burt
Ella
Josiah

Emerson
Emerson
Taylor
Taylor
Pierce

Ella
Burt

Taylor
-
Pierce

where the realm of possible entries in A has been refined but the known entries in
B remain the same.

These interpretations are made rigorous in the following sections.

4.2. Some Extended Relational Operators
Before the translation of the rules into their respective interpretations can be

given, we must introduce some algebraic operators. For notational convenience,
these operators are expressions involving extensions of the relational algebra (see
[23]). These extensions deal with null values in a manner which reflects their
various meanings within differing contexts.

In the presence of null values, the operations of cross-product and projection do
not require any revision. However, since the operations of difference and selection
both make explicit reference to the values of attributes, it is not immediately clear
how they should behave in the presence of nulls. We therefore introduce an
extension of the difference operator, the incompatibility operator, as well as two
extensions of the selection operator, pessimistic selection and unifying selection.

The incompatibility operator. There are several meaningful extensions of the
relational subtraction operator in the presence of null values, but the only one
needed by our system is the incompatibility operator inc defined by

XincY={xIxEXandxuyisnotdefmedforeachyEY}

whenever X and Y are finite sets of values within some domain 9. Note that if X
and Y are both conventional relations (sets of tuples containing no null values)
over the same schema. we have

Xinc Y=X- Y,

where the right-hand side is the conventional relational subtraction operation. In
the presence of null values, the intuition is that Xinc Y gives the set of tuples of X
which could not possibly match any tuple of Y under any substitution for the
missing information.

More generally, if X is a set of (partial) substitutions that extend to make a
predicate q true, and Y is a complete set of (partial) substitutions outside of which

194 BUNEMAN, DAVIDSON, AND WATTERS

predicate p must be false, then Zinc Y gives the set of substitutions where q must
be true and p must be false. This last interpretation is the one our system requires.

For example, suppose X is the relation representing all managers

First Name Last Name

Lena
William
Pam
Ann

Sal

Gomez
Daley

Barnacle
Phillips
Priestly

and Y is the relation representing full time employees (under the same schema as
Xl

First Name

-

Jay

Last Name

Daley
Priestly
Percy

In this case Xinc Y, the set of managers who cannot be full time employees, would
be

First Name Last Name

Ann
-
Lena

Barnacle
Phillips
Gomez

The following easily proven monotonicity property is important in later sections.

PROPOSITION 10. Zf X c b A” and Y c tr Y’ then X inc Y E b X’ inc Y’.

The pessimistic selection operator. In defining the rules, it is useful to have a
selection operator which assumes that if anything can go wrong it will-such an
operator is the pessimistic selection operator. This operator has two “simple” forms.

If c is any non-null constant, then we define

oAzCX= {x 1 xEXand x.A=c}.

Thus if X is a set of employee records containing a FirstName field, then

oFirslNome = ‘John’ x

will return the descriptions of employees whose FirstName is known to be “John.”
Any tuple with a null FirstName will not be returned.

COMPLEX OBJECTS AND APPROXIMATE ANSWERS 195

More interestingly, define

oAcA,X= {xIx~Xand x.A#l and x.A’#l and x.A=x.A’}.

Thus with X as given above,

oFirsrName = LuslName x

will give the descriptions of all employees whose F&Names are known to be the
same as their last names.

The general form of the pessimistic selection operator is given as follows: If
E= {e,, e,} is a set of equality constraints of form A = A’ or A = c then

0,X= oe,. . . o,$

It is an easy exercise to show that this selection operator is uniquely defined
regardless of the ordering on the e:s.

Clearly, o,X will return the set of elements of X which must match the selection
criteria in E no matter what substitutions are made for null values. Furthermore,
it is a monotone operator in the Hoare ordering with the following easily verified
property:

PROPOSITION 11. Zf X= o,X and X c * X’ then X’ = o&V.

The unifving selection operator. An alternative extension to the selection
operator is one that assumes that everything will go right-this operator is the
unifying selection operator u defined below.

If c is any non-null constant then we define

u,,g=cx= {xu [A 3 c] 1 x E X and the join is defined}.

Thus if X is a set of employee records containing a FirstName field then

vFirstName = ‘John’ x

will return the descriptions of employees whose FirstName might be “John”-and
the operator will optimistically fill in “John” in any first name which is unknown.

In a similar fashion, we define

u,=,,x= {xu [A *x.A’;A’=x.A] 1 xEXand the join is defined}.

Thus, in parallel to the previous example

vFirsrName = LasrName X

gives the employees whose FirstNames might be the same as their last names-and
the operator optimistically forces them to be equal whenever one name is defined

196 BUNEMAN, DAVIDSON, AND WATTERS

and the other is not. If neither the first name nor the last name is defined, the
employee is retrieved, but the names remain undefined.

The intuition behind these atomic forms is that a,,X returns a complete list of
descriptions from X which might satisfy e, and the values they would necessarily
have if they did.

The general form of the unifying selection operator can now be defined as
follows. Suppose E = {e,, r,} is a set of equality constraints of form A = A’ or
A = c then

is the least fixed point Y of a non-deterministic selection program with initial value

Y:=X

and iterated selection operations

Y := v,, Y

for each eie E. It is not difficult to see that this least fixed point is defined and
unique, independent of the order in which the selection operations are performed.
Furthermore, vE operator is obviously monotone in the Smyth ordering with the
following easily proven property:

PROPOSITION 12. lfX~ b v,X and X’c b v,X’ and XL b X’ then u,Xc b v,X’.

Finally we introduce a mild abuse of notation. Suppose two sets of records Y and
s have non-null values in disjoint attribute sets X and Y, respectively. We use the
notation

r x s

to denote all possible combinations of tuples from r with tuples from s, in place of

or any more complicated notation.
Using these extensions of the relational algebra, we can now give the precise

meaning of rules.

4.3. Syntactic Simplification

As it stands, a flat rule is not amenable to immediate interpretation. In order to
simplify the notational difficulties, we transform such rules into a compiled form.
We then assign meanings to the compilation, and define the meaning of an
arbitrary rule to be the meaning of its compiled form.

To illustrate the transformation of a rule into its compiled form we use a running
example interspersed with the description of the translation process. Consider the

COMPLEX OBJECTS AND APPROXIMATE ANSWERS 197

following rule, RO, defined over the Employee-Department schema introduced in the
previous section, which insists that “Everyone in the sales department has phone
extension 2265 or 8798”:

Employee(X, - , -) and
EmpDept(-, X, Y) and
Dept(Y, ‘Sales’, -)

implies
Employee(X, -, -, 2265) or
Employee(X, -, - ,8792).

For the purposes of discussion we refer to the individual literals of R, as

L, = Employee(X, -, -, -)

L, = EmpDept(-, X, Y)

L, = Dept(Y, ‘Sales’, -)

L, = Employee(X, -, - ,2265)

L, = Employee(X, -, -, 8792).

Furthermore we distinguish the patterns of R, by

p = L, and L, and L,

41=L
42=L,

and thus

R, =p implies q, or q2

provides a more compact representation for our example rule.
Following the above model we parse any flat rule as follows. Identify the set of

literals that occur in the rule by {L,, L,), the hypothesis of the rule by p, and
the conclusions for the rule by (ql, qk}. Thus

R =p implies q1 or . . . or qk

is an abbreviated representation for any such rule R.
The first step in the translation process is to create a surrogate literal for each

literal occurring in the rule, introducing fresh variables (Vi} in the place of every
argument. In the case of R, we have the following surrogate literals.

198 BUNEMAN, DAVIDSON, AND WATTERS

L’, = Employee(I’,, I’, , I/,, V,)

L; = EmpDept(V,, V,, V6)

L;=Dept(V,, v8, v9)

G = Emplwe(~,,, v,,, VIZ, v,d

~5 = Employee(V,4, v15, VI,, v,,).

The variables introduced in this step serve as “column names” in extended
relational algebra expressions to be presented later. We call the Vls the new
variables and the variables occurring in the initial form of the rule the old variables.

We immediately notice that the surrogate literals do not express the structural
information given by old variables and constants occurring in the initial rule. This
information is introduced via constraints as defined below.

As a second step in the compilation process, we associate to each pattern + in
R a set of local constraints through the following two rules:

l Wherever a constant c occurs in the pattern which corresponds to a new
variable Vi introduce the constraint (Vi = c).

l Wherever an old variable X occurs twice in the pattern corresponding to
new variables Vi and Vj introduce the constraint (Vi = Vi).

To represent the set of local constraints for $ we write E,.
Using these rules in the case of R, we obtain the following local constraints.

E,= {(I’,= V,), (V6= V,), (V,=‘Sales’)}

Eq,= {(&=2265)}

Eq2= {(J&=8792)}.

Later, these local constraints are used in selection expressions to define what it
means for a piece of the database to “match” or “not match” a pattern-under
varying interpretations for the word “match.”

As a final step in the translation process we add global constraints E, which
relate the structure of the hypothesis p to the structures of the conclusions qi. In a
manner similar to the previous procedure we have the obvious rule

l Wherever an old variable X occurs in the hypothesis p corresponding to
new variable Vi and in a conclusion qr corresponding to new variable Vi introduce
the constraint (Vi = Vi).

Using this rule for R,, we get the constraints

{(Vo= VI,), (Vo= VI,), (V,= ~,cJ, (V,= V14))

representing the variable matching between the hypothesis and the conclusions.

COMPLEX OBJECTS AND APPROXIMATE ANSWERS 199

But there is also a more subtle consideration which must be represented by the
global constraints-object identity. Since the first column of an employee literal
represents an object identity, the occurrence of the X in the hypothesis literal L,
and in the conclusion literals L, and L5 not only requires that the identity columns
must match, but that all other columns within the literal must match also. Hence
we need the additional step:

Whenever the following are simultaneously satisfied

l Old variable X occurs in hypothesis literal L,;
. old variable X occurs in conclusion literal Lj;

l Li and L, are of the same class (have the same head); and
l in both occurrences X is in the role of an object identity

introduce constraints equating the corresponding columns of surrogate literals L:
and L;.

Constraints generated by the above procedure require that objects with the same
identities that are in the same contexts must share the same descriptions.

Id

TABLE I

Relational Approximations of Employee, Department, and Emp-Dept

Employee # Employee b

FName LName Telephone Id FName LName Telephone

12 Joe Smith 2265
12 Joe Smith 5910
13 Sally Jones 1
14 John Smith 1
I Peter Walters 1

12 Joe Smith 1
13 Sally Jones 1
14 John Smith I

Code

Department #

DName Location Code

Department b

DName Location

2 Sales RB3 2 Sales RB3
3 Marketing HD2 3 Marketing HD2
4 Sales RD7 4 Sales RD7

Emp-Dept # Emp-Dept b

Contract Emp Dept Contract Emp Dept

98 12 2 98 12 2
75 13 2 77 14 3
77 14 3
78 1 4

200 BUNEMAN, DAVIDSON, AND WATTERS

Using this last rule on R, we derive the additional constraints

Hence the global constraints for R, are

These completely characterize the relationship between the structure of the
hypothesis and the structures of the conclusions.

Finally we call the collection of all derived patterns, surrogate literals, and
equality constraints (both local and global) the compiled form of a rule R. In
particular R, has a compiled form consisting of p, (q,, q2}, {L’,, L;), E,,,
& E,,h and &,.

In relational algebra expressions involving the compiled information, the sub-
scripts would get out of hand unless we use abbreviations. Hence when we project
over the new variables associated with a literal L we write rrL in place of any more
complex notation. Similarly when we wish to project over the new variables
associated with a pattern $ we write rc+. Furthermore for selection expressions we
write rrti or vti for selections using the local constraints E,,, for a pattern $. In the
same manner we write (TV or vR for selections using the global constraints E, of a
rule R.

Thus armed, we are prepared to define the interpretation of a rule. We use RO as
a running example, and clarify the interpretations by showing their effect on an
instance of the Employee-Department database given in Table I.

4.4. The Integrity Check Interpretation of a Rule

In this section, we mechanize the interpretation of a rule as an integrity check on
the information in the database. We derive a rigorous expression of the assertion
“wherever the hypothesis is true one of the conclusions must be possible,” with
diagrammatic representation:

P implies q, or q2 or ” or qk

If an instance p’ of
p is known to be true

then one or more compatible qI is
in the realm of possibility.

Thus we must rigorously identify the “versions of p” which are known to be true
and the “realm of possible versions of q.” Furthermore, we need to define under
what circumstances a version of p is “compatible” with a version of q.

The incarnations of a literal. Recall that each literal L of a rule R is associated
with some “component” F of a database, where the component is either a class of

COMPLEX OBJECTS AND APPROXIMATE ANSWERS 201

objects or a relationship among objects in the database. For instance, in the
example rule RO the literal

L, = Employee(X, -, -, 8792)

is associated with the class of Employees in the database. A given database instance
will have a complete approximation and a consistent approximation for F, and
these approximations will be used in the interpretation of R. In order to translate
the approximations into forms which are amenable to algebraic calculations, we
create a relational incarnation for each approximation.

If the sandwich approximation for the class or relationship F is given by (A, B),
the complete incarnation for L is generated by naming each column of A with the
new variable that corresponds to each argument of L. In the example of L, above,
we have new variables I/,, through V,,

and hence the complete incarnation for L, (using the instance given in Table I) is:

VI4 VI5 VI6 VI,

12 Joe Smith 2265
12 Joe Smith 5910
13 Sally Jones I
14 John Smith I
i Peter Walters I

We use the notation Lb to identify the complete incarnation for L.
Applying the same renaming procedure to the consistent approximation B, we

obtain the consistent incarnation of any literal L, written Lb.

The true instances of a pattern. To identify the portion of the database which
constructively satisfies a pattern II/, form a cross product of the appropriate consis-
tent information in the database, and exclude every combination which might not
satisfy the pattern. What remains are combinations of descriptions which
necessarily satisfy the pattern I(/. More precisely, if $ is constructed from literals L,
through L, define:

7$ = Q(Lk x L; x . . . x LF).

Note that we use the pessimistic selection operator to ensure that comparisons
involving null values are considered to fail-with the rationale that if at some later
stage the nulls are tilled in with appropriate values the comparisons may fail.

In our running example, zp would be

vo v, v2 V3 v4 v5 v, v, v, V9 v,, VI,
Tp:

12 Joe Smith I 98 12 2 2 Sales RB3 I...1

202 BUNEMAN, DAVIDSON, AND WATTERS

This calculation defines a monotone function that takes a database instance and
returns an element rti of the Hoare powerdomain over tuples.

All conceivable instances of a pattern. In a similar manner, the complete portion
of the database which might satisfy the pattern + is identified by forming a cross
product from the appropriate complete approximations of the database and
attempting to unify the combinations of descriptions to force them to satisfy the
pattern. More precisely, define

Ki = v,(L,J x Ly x ‘. . x LZ).

In our example, rcq, and rcy, are:

v, ” v-9 v,, VI, VI2 VI3 VI-4 . VI,

I...1 12 Joe Smith 2265 l...l

Kl/l : 13 Sally Jones 2265
14 John Smith 2265

I...1 1 Peter Walters 2265 I...1

VO.~~V,, VI, VI5 VI6 VI,

Kq2: I...1 13 Sally Jones 8792
14 John Smith 8792

I...1 1 Peter Walters 8792

This calculation is also a monotone operation taking a database instance to an
element of the Smyth powerdomain on tuples, K$.

The integrity check. Once rP and each rcy, are calculated, it is a simple matter
to rigorously express the integrity constraint represented by the rule R. Intuitively,
every true instance for p must be compatible with some conceivable instance for
some qi. Formally, we require

tpincUR(K,,nfiK-,,n*... ngqJ=Izj.

If this equality is not satisfied then there is an instance of the hypothesis which the
database maintains to be true but which suggests conclusions that the database
insists are not possible. When such a contradiction occurs, the database explicitly
violates the rule R, and the system will flag an integrity violation.

In our example, rtPuR(rcy, na rcJ would be given by

vo V,
12 Joe
13 Sally
14 John
I Peter
13 Sally
14 John
1 Peter

v2 V3

Smith 2265
Jones 2265
Smith 2265
Walters 2265
Jones 8792
Smith 8792
Walters 8792

v, v, V6 v, vs vg

COMPLEX OBJECTS AND APPROXIMATE ANSWERS 203

(where we projected out irrelevant columns). Since the equality is satisfied, the
database instance given in Table I does not violate R,.

4.5. The Consistent Interpretations for a Rule

Using methods similar to the above, we now define the consistent inferences that
a rule provides. Informally, when an instance of p is true and no compatible
instance of q2 through qk are possible, the system will infer the weakest compatible
instance of q, to be true. Diagrammatically

P

If an instance
p’ of p is
known to be true

implies

and

q, or q2 or.. or qk

no compatible instance
of any q2.. . qk is within
the realm of possibility

lhen conclude that the weakest
compatible instance of q1
must be true!

A similar rule is defined for each conclusion qi.
A relatively straightforward translation of the above intuition is given by

Here, 0~7~ extends the instances of p which are known to be true to include the
consequential restrictions for each of the possible conclusions. From this, the
incompatibility operator removes those elements where a conclusion other than q1
is possible. What remains are instances of the hypothesis where q1 is the only
conceivable conclusion. Since q1 must also satisfy its local constraints, we then
apply ug, to the result, strengthening the inference.

In our running example:

P-0 vg VIOV,, VI2 VI3 vl4 v,S v,6 VI,
VRTp:

(as in to) 12 Joe Smith I 12 Joe Smith I

v,ov,, VI2 VI3
Tbl :

12 Joe Smith 2265

This computation is not obviously monotone on an instance of the database
since u is not always monotone over the Hoare powerdomain. However, we note
that for any database instance u~z,, only tills in null values in 7,, and never
eliminates elements. Thus we have

204 BUNEMAN, DAVIDSON, AND WATTERS

and conclude that this calculation defines a monotone function mapping a database
instance to the Hoare powerdomain over records. However, vy, may eliminate some
tuple, and therefore fail to be monotone over the Hoare powerdomain. In this case,
there must be an instance of the hypothesis which cannot match any instance of any
of the conclusions, which is an anomaly. Therefore, in the absence of anomalies,
this computation defines a monotone function from database instances to the
Hoare powerdomain over records. If an anomaly is present, it will be detected by
the integrity constraint interpretation of the rule.

After this computation, T;, represents instances of q1 which must be true given
the evidence of the database and the rule R. In order to translate this information
into facts to insert in the database, we must project out the information pertaining
to each individual literal. Thus if Lj is a literal occurring in q,, we compute the
inferences for Li by

If Lj is associated with entity (or relationship) set F with current approximation
(A, B) in the database instance then we insert z;, into the database representation
by

B := Bub unname(z,,)

(where “unname” forgets the artificial column names V,).
The collection of all such effects for all literals L, occurring in q, defines the

monotone consistent inferences for ql. We define similar consistent inferences for
each qi, and the collection of all such inferences defines the consistent interpretation
for the rule R.

PROPOSITION 13. Each consistent interpretation of a rule is an inflationary
operator on database instances.

In our example, no inferences can be made for q2, and the effect on the database
instance of Table I is the following improvement to Employee:

Employee b

Id FName LName Telephone

12 Joe Smith 2265
13 Sally Jones I
14 John Smith I

4.6. The Complete Interpretation for a Rule

The dual interpretation to the consistent interpretation restricts the possibilities
for the hypothesis by the possibilities for the conclusions. Diagrammatically

COMPLEX OBJECTS AND APPROXIMATE ANSWERS 205

L, and L, and.. ‘and L, implies q, or q2 or...or qk

Letting X be
possibilities for
L, which must match
hypothesis p

and

Letting Y be
the complete set
of possibilities
that may match any q,

“Xn Y” is an improved
estimate of all possibilities
for L, which must match
hypothesis p!

conclude

Here we need to take care not to alter any possibilities for L1 that may not match p.
In order to differentiate possible combinations of information that are known to

match p and possible combinations which may not match p, we partition the realm
of possible values associated with L, as follows. First identify those situations which
necessarily match p (those where all other components of p are known to be true)

0

lcLl = op(Lf x Li x . . . x Li).

Then identify those situations which might not match p

lcLl - =L+cL&

(here set subtraction is meaningful since rcL,rcL, ’ is a subset of Lf). The action of the
rule will improve the estimate of rc”,, but leave the other possibilities in EL,
unchanged.

In our running example,

vo v2 v, V4 v4 v5 V6 v, v, V9 VI0 VI,

K” LI : 12 Joe Smith 2265 98 12 2 2 Sales RB3 I . ..i
12 Joe Smith 5910 98 12 2 2 Sales RB3 I...1

vo v, v2 V3

EL, : 13 Sally Jones 1
14 John Smith 1
I Peter Walters I

To compute the complete set of possibilities that match any qi we take a “union”
(Smyth meet) of the complete sets of possibilities for each individual qi

We then combine these possibilities with the set of possibilities known to match p
for L, and attempt to resolve the global constraints via unifying selection

%(JC, x (x4,nr K,,n”... nti ICKY)).

206 BUNEMAN, DAVIDSON, AND WATTERS

What remains is a correct improved estimate for the possibilities known to match
the pattern p, once we have removed extraneous information. Hence we set

For our example,

vo... v9 VlllV,, V,* VI3 VMV15 V 16 Vl7

1 ...I 12 Joe Smith 2265 1 1 1 1
13 Sally Jones 2265 1 1 1 1
14 John Smith 2265 1 1 1 1

%L n il Kql: I Peter Walters 2265 1 1 1 1
11 1 1 13 Sally Jones 8792
11 1 1 14 John Smith 8792

I...1 11 1 1 I Peter Walters 8792

vo Vl v2 V3
lc;, :

12 Joe Smith 2265

We now add back all possibilities that are not affected by the rule

LS’ .= CL, n 4f K’
1 . LI

to obtain a refined approximation Lf’ for the realm of possible combinations for the
entities that are associated with the subhypothesis L,.

To show that this inference is monotone observe that

and thus we have

which demonstrates that the new set of possibilities Lf’ is a monotone improvement
to the initial set of possibilities LT in the Smyth ordering.

In parallel to the consistent interpretation, we put the derived information back
into the database by “unnaming” LT’ and combining it into the database. Thus if
L, is associated with the entity or relationship set F which is described by the
sandwich (A, B) in the current database instance we assign

A := A up unname(LT’)

which is obviously the same as

A := unname(L7’)

It is important to note that this inference defines an inflation on database instances.

COMPLEX OBJECTS AND APPROXIMATE ANSWERS 207

As before, we define a similar inference for each Li in p. The collection of all such
inferences is the complete interpretation for the rule R.

Since in our example L, and L3 do not produce any useful inferences, the
complete interpretation of R, on the database of Table I is:

Employee #

Id FName LName Telephone

12 Joe Smith 2265
13 Sally Jones I
14 John Smith I
I Peter Walters I

4.7. Structural Inferences and Constraints

In addition to the inferences derived from the user-specified rules we can also
make use of the E-R database schema to derive inferences and constraints.

The structure and semantics of an E-R database by itself entails the correctness
of several integrity constraints and constructive inferences, even if no explicit rules
are declared. We therefore define monotone meta-rules and meta-constraints which
make use of the following semantic knowledge:

1. Any sandwich datastructure (A, B) approximates a set, where A is a
complete approximation that is possibly “too large” but never “too small,” and B
is a consistent approximation that is possibly “too small” but never “too large.”
This gives rise to the promotion inference.

2. An object identity always corresponds to a unique individual in a given set.
This gives rise to the identity enforcement inferences.

3. Relationship sets always relate individuals in the participating entity sets.
This gives rise to domain restrictions and existence inferences.

The meta-constraints defined in this section automatically apply to each set
approximation and relationship.

The promotion inferences assert that there is a connection between the consistent
information and the complete information in a sandwich. As described in Section
2, every sandwich S is equivalent in meaning to the more explicitly informative
sandwich P(S), if the latter is defined. Furthermore if P(S) is not defined then S
cannot approximate any set. Hence, for every sandwich S in the database we
introduce the following implicit monotone inference:

SetLabel * S
SetLabel * P(S)

An integrity error is detected whenever P(S) is not defined.
We can further improve the consistent side of a sandwich by considering the

intended meaning of the object identities. Suppose that we have an approximation

571/43/l-14

208 BUNEMAN, DAVIDSON, AND WATTERS

S= (A, B) to the set Employees in which the consistent approximation B contains
the following two descriptions:

and

x = [Id * 12; Firstname 3 ‘Jon’]

y = [Zd * 12; Lastname 3 ‘Simon’].

Since an object identity always corresponds to a unique individual and x and y are
in the consistent approximation of Employee, it follows that x and y can be
replaced by the combined description

x u y = [Zd * 12; Firstname + ‘Jon’; Lastname =+ ‘Simon’].

Note that in other situations there may be two descriptions in B that share the
same object identity but do not have a join. For instance, if we had

and

x = [Zd =z- 12; Firstname * ‘Jon’]

y = [Zd =- 12; Firstname * ‘Simon’]

there is no way to combine them into a single record. If such a situation occurs, the
database must be incorrect since every element of B is considered to represent
known individuals, and no individual can have two contradictory descriptions.
Since the semantics for the database does not tell us how to resolve the conflict, the
only sensible response is to raise an error.

We abstract the above reasoning into the following identity enforcement con-
straint

SetLabel*(A, B) x, yeB x.id= y.id
SetLabel* (A, Bub {xu y})

which results in an error if the join does not exist.
In a similar manner, suppose that there is a z E B which asserts the existence of

an employee 3:

z = [Zd - 3; Firstname * ‘Ann’]

and that there is a w E A hypothesizing that it is within the realm of possibility that
employee 3 has phone extension 6483

w = [Zd==- 3; Phone => 64831.

Since employee 3 is known to be represented by z, we can correctly replace w E A
with the improved approximation

w u z = [Zd+ 3; Firstname * ‘Ann’; Phone * 64831.

COMPLEX OBJECTS AND APPROXIMATE ANSWERS 209

In cases where no such join exists, the possibility w contradicts known information
z, and hence should be eliminated. Note that we cannot eliminate w since that
would be contrary to the semantics of the consistent approximation B.

More generally, we have the following identity enforcement inference

SetLabel+(A, B) ZEB WEA wuz is defined w.id=z.id
SetLabel*((A- {w})u {wuz}, B)

or alternatively

SetLabel=(A, B) ZEB WEA wuz is not defined w.id=z.id
SetLabel*((A- {w}), B)

thus improving or eliminating possible representations for individuals for whom
some information is known.

In addition to these local constraints, we can derive other constraints by con-
sidering the connection between an entity set and a relationship involving that set.
The first inference hinges on the observation that any known relationship requires
the existence of the objects declared to be related (within the appropriate entity
sets).

For example, using the E-R database of Section 3.3, let the sandwich that
approximates the Employee set be S= (A, B) as before, and the sandwich
that approximates the Emp-Dept set be s’= (A’, B’). To illustrate the existence
inferences, suppose that B’ (the set of known Emp-Dept relationships) contains
an entry asserting that employee 26 works for department 34:

[Emp*26; Dept*34].

Further, suppose that there is no employee 26 described in B (the set of known
employees). Since any meaningful known relationship must always relate known
entities, we can infer that employee 26 must be a known employee, even though no
other information about employee 26 can be immediately inferred. Mirroring this
reasoning, we can correctly replace B with

Bub { [Zd=-261).

More generally, we have the following monotone inference:

EntityName * (A, B) ReZName G= (A’, B’) @(EntityName, RelName, L)
EntityName = (A, (Bu b renameLHldnnL B’))

Where @(EntityName, RelName, L) indicates that the entity EntityName
participates in relationship RelName in the “role” labeled by L, and rename, ~ ,d
changes the name of L to id.

Dual to the existence inferences are the domain restrictions, which improve the
complete approximations of a relationship based on the complete approximations

210 BUNEMAN, DAVIDSON, AND WATTERS

for the entity sets it relates. For example, suppose that the complete approximation
for the EmpJept relationship, A’, postulates that employee 10 might work for
department 6:

[Emp 3 10; Depr * 61.

If the complete approximation for Employee contains no employee with identity
10 and no null identities, we can eliminate the above possibility. Mirroring this
reasoning, we can correctly infer

A’:=A’-{y}.

Generalizing the above reasoning, we get

EntityName s- (A, B) RelName =S (A’, B’) @(EntityName, RelName, L)
ReZName * ((A’ u 5 rename,, ~ L 71id A), B)

This inference will, among other things, eliminate hypothetical relationships relating
identities which cannot exist. If E has more than one role in R, the roles must be
considered separately, each role generating a domain restriction. Note that if the
null identity occurs in A the above action will cause no change.

The collection of all promotion inferences, identity enforcement inferences,
existence inferences, and domain restrictions form a monotone inference system that
reflects the constraints inherent in an entity-relationship schema. Observant readers
may note that other non-constructive inferences could be justified, if we apply the
appropriate interpretation to the database. However, as mentioned in the beginning
of this section, we do not consider these inferences.

4.8. The Meaning of a Program

All of these inferences and constraints contribute to the meaning of a deductive
program under our system.

A deductive program for our system is an E-R schema augmented with a set of
rules

P= {R,, R,}.

To each of these rules we attribute an integrity interpretation, and both consistent
and complete interpretations. From the E-R schema we derive implicit constraints
and inferences. Given a database approximation d we say that A is consistent with
the program if it satisfies all the integrity constraints and the implicit constraints.

To actively infer better information from A, we non-deterministically apply the
implicit inferences, as well as the complete and consistent inferences generated by
the rules until we either reach a fixed point A’ or detect an anomaly. If no anomaly
is detected, we say A’ is the model of P derived from A.

COMPLEXOBJECTSAND APPROXIMATE ANSWERS 211

PROPOSITION 14. For any fixed initial database A, either the program will identifv
an anomaly under any possible sequence of inferences, or the program will derive a
unique minimal fixed point A’.

Proof This is a consequence of the fact that all of the inferences define
inflationary operators on the underlying database if no anomalies occur. To make
these partial operators totally defined, we introduce an artificial database instance
T which denotes database inconsistency such that TIX for all database instances
X, and whenever a database instance is inconsistent we set it to T. In this case all
inferences become totally defined inflations and it follows from Proposition 6 in
Section 2 that the least fixed point is unique. 1

Given a program P, we generate a set of inferences and integrity interpretations
from P. To perform a query, the user provides the system with a pattern. On a
given database A, we define the meaning of such a pattern to be the matches for
the pattern within the database A’-but only in the case where the saturated
database A’ is consistent with the integrity constraints.

This completes the semantic characterization of our system.

5. SUMMARY AND ANALYSIS

The interpretation of rules in our system yields an intuitively appealing, construc-
tive inference mechanism. While the system is not complete for a classical inter-
pretation of the rules, in this section we show that our system can emulate Datalog
(without negation) and the relational algebra, in a natural way. Furthermore, while
there is no explicit negation (literals cannot be negated), a form of monotone
negation is captured in the semantics of the rules.

After discussing our treatment of negation, we show how our system can emulate
Datalog and the relational algebra, and derive a bound on the time complexity for
an implementation of the system.

5.1. Monotone Negation

A form of monotone negation is hidden in both the consistent and complete
interpretations of a rule, such as

L, and L, and -..L, implies q1 or q2 or...or qk.
(hypothesis) (conclusions)

Recall that in the consistent interpretation of a rule no instance of any conclusion
such as q1 will be inferred to be true unless the remaining q;s are necessarily false.
This is an example of the use of negative information to infer positive information.

In a more subtle fashion, negative information is inferred from the complete
interpretations; complete instances for a literal in the hypothesis which necessarily
match the hypothesis but do not match any possible instance for the conclusions

212 BUNEMAN, DAVIDSON, AND WATTERS

are eliminated-i.e., inferred to be false. More intuitively, the realm of possibility for
the conclusions is used to refine the realm of possibility for the hypothesis.

To make this discussion clear, consider the example rule from Section 4.1

DBS-Enthusiast * { [Firstname + X; Lastname * Y] } implies

OS-Enthusiast * { [Firstname =X; Lastname * Y] } or

PL-Enthusiast = { [Firstname + X, Lastname * Y]}.

In our consistent inferences, when we concluded that “Ella Taylor” was a PL-
Enthusiast, we used the fact that she could not possibly be an OS-Enthusiast since
there was no compatible entry in the complete approximation for OS-Enthusiast.
We did not conclude that “Burt -” was a PL-Enthusiast since there was a com-
patible entry “Burt Charles” in the complete approximation for OS-Enthusiast,
Thus we used implicit negative information from the complete descriptions to infer
consistent information.

Furthermore, in the complete inferences we inferred that the entry “Johnson”
could be removed from the complete description for DBS-Enthusiasts because there
was no possible compatible entry in the complete descriptions for either OS-
Enthusiasts or PL-Enthusiasts. We also replaced the entry “Taylor” with the only
possible compatible conclusion entries-“Josiah Taylor” and “Ella Taylor.” Both
these inferences relined the realm of possible DBS-Enthusiasts-for instance “Jon
Taylor” and “Josiah Johnson” were both implicitly excluded from the realm of
possible DBS-Enthusiasts. Thus these inferences implicitly concluded false informa-
tion.

In spite of this use and derivation of negative information, our system is
monotone both in a technical and intuitive sense. Technically, the relined
approximation to a set is always a monotone improvement in the sandwich power-
domain. Intuitively, if program P, has more rules than program P, then in the
absence of anomalies P, will infer a strictly stronger set of facts than P, from any
given database-P, will infer more facts to be true and more facts to be false (not
possible). It will never be the case that an inference made by P, will contradict
inferences made by P,. In a similar sense, better information in the initial database
will always result in better conclusions by the inference system-and never
contradictory conclusions (again in the absence of anomalies).

This form of monotone negation stands in contrast to various other non-
monotonic inference strategies. Non-monotonic strategies postulate that “If the
rules fail to show that a fact is true, then the intention of the program is that the
fact is false.” Although this approach is simple and has advantages, it is interesting
to consider a situation where this is not the intention of the program. What if the
user does not intend to assign any significance to the failure of a proof, but still
wants to make meaningful reference to the false facts? By separating the consistent
information from the complete information our system allows a notion of falseness

COMPLEX OBJECTS AND APPROXIMATE ANSWERS 213

that is separate from the notion of truth-but these notions are connected by the
consistency constraints.

5.2. Datalog

It is easily seen that our system contains the power of datalog, since our rules are
proper generalizations of datalog rules. A datalog rule corresponds to the consistent
interpretation for the special subclass of rules of the form

p implies L, ,

where p is a pattern not involving the need for object identities, and L, is a single
conclusion literal.

Note that datalog without negation involves no negative information whatso-
ever-positive facts are used to infer more positive facts, and no fact is ever inferred
to be false. Hence the complete sides of the sandwiches in this emulation (which
implicitly represent negative information) must be initialized to {I} (representing
no information). The data for a datalog program (positive ground literals)
are represented by initial consistent side information in the sandwiches of the
emulation.

For example, consider the datalog program that has three initial ground literals
each representing an hourly flight by a given airline

flight(‘Chicago’, ‘Denver’).

flight(‘Denver’, ‘Oakland’).

flight(‘Denver’, ‘Atlanta’).

with the interpretation that there is a flight from Chicago to Denver, one from
Denver to Oakland, and one from Denver to Atlanta. Furthermore suppose the
program includes a single rule, insisting that flights that stop over in an inter-
mediate city are also legitimate flights:

flight(X, Y) :- flight(X, Z), flight(Z, Y).

This program translates directly into our approach as

flight =S { [Source * X, Destination =P- Z], [Source ==- Z; Destination * Y] }

implies flight = { [Source G- X; Destination = Y] }

and improves the initial sandwich estimate for flight

Source Destination Source

Chicago
Denver
Denver

Destination

Denver
Oakland
Atlanta

214 BUNEMAN, DAVIDSON, AND WATTERS

to
Source Destination Source Destination

-

5.3. Relational Algebra

Chicago
Denver
Denver
Chicago
Chicago

Denver
Oakland
Atlanta
Oakland
Atlanta

To demonstrate that the relational algebra can be expressed in our system, it
suffices to show that each of the relational operators-projection, selection, union,
subtraction, and join--can be translated into our rules. However, the demonstra-
tion is more complex than the demonstration for datalog since relational sub-
traction forces us to use the complete sides of the sandwiches and the complete
interpretations for the rules.

Suppose we have two relations, Y and s, and each defined over attributes FName
and LName. To express the relational assignment

q:=rus

in terms of our rules, we start with an entity Q to which we assign the “totally
undefined” sandwich value ({I }, { }), and we create the completely defined
sandwich approximations R * (Y, r) and S =P (s, s) to represent r and s, respectively.
Any tuple in either r or s must also an element of q, and thus we assert

[R = ([FName =z- X; LName =P Y] }]

implies [Q =s { [FName =s X; LName =B Y] >I,

and
[S =S ([FName =s X; LName * Y] }]

implies [Q s- { [FName S- X, LName =S Y] } 1.

Furthermore, since each element of q must be in either r or s, we assert

[Q* {[FName*X; LName= Y]}]

implies [R => { [FName 3 X; LName = Y] }] or

[S* ([FName*X; LNamea Y]}].

It is easy to see that whenever entities R and S are approximated by maximal
sandwiches (r, r) and (s, s), Q will be inferred to be a maximal sandwich that
corresponds to the union of R and S. It is not difficult to generalize this construc-
tion for arbitrary unions.

In a similar way we can emulate the other positive relational operators: selection,
projection, and join. The only difficulty is relational subtraction, which we illustrate
by an example.

COMPLEXOBJECTS AND APPROXIMATE ANSWERS 215

To emulate the assignment

q’:=r-s

we again start by establishing a new entity-set Q’ to have a null approximation and
R and S to have maximal approximations as before. We then note that after the
assignment anything in Q’ must be in R. Thus

[Q’ * { [FNume * X; LNume * Y] }]

implies [R * { [FNume Z- X; LNume * Y] > 1.

Furthermore anything in r must be in q’ or S:

[R = { [FNume * X, LNume =S Y] }]

implies [Q’ = { [FNume =S X; LNume =S Y] }] or

[S =+ { [FName * X, LNume * Y] }].

The trick is that we must now insist that s and q’ are disjoint:

[S * { [FNume 3 X; LNume =S Y] }] and [Q’ 3 { [FNume =S A’; LNume =S Y] }]

implies False.

False is a constant entity set which always denotes the empty set (an unmatchable
pattern). Whenever R and S are approximated by maximal sandwiches, the inferred
approximation for Q’ will be a maximal sandwich corresponding to the relational
expression r - s (again, ignoring irrelevant object identities).

In this way, any relational algebra expression can be compiled into a sequence
of rules that compute a maximal sandwich denoting the resulting relation from
maximal sandwiches denoting the input relations.

5.4. Time Complexity

PROPOSITION 15. For a fixed database schema and a fixed set of rules our system
admits a polynomial implementation strategy in the size of the database.

Proof To justify this claim, we observe that our system has no form of invented
values or function symbols. Thus our inference system navigates a search space 2
constructed from a fixed number of record types and constants occurring in the
underlying database. It is clear that the total number of records occurring in Z is
a polynomial in the number of constants available in the initial database, and hence
it is a polynomial in the size of the database.’

1 We emphasize that this polynomial outer bound exists because we identify the database with a flat
E-R representation-which, for example, prevents us from computing the powerset of a set. A less
restrictive notion of complex objects might allow such computations-with a corresponding increase in
complexity.

216 BUNEMAN, DAVIDSON, AND WATTERS

NOW recall that each rule is interpreted as an integrity constraint and a fixed
number of inferences. From our discussion, it is clear that each of these interpreta-
tions has an obvious (but inefficient) implementation as an operator of polynomial
complexity. To complete the proof, we need to show that these operators need be
applied only a polynomial number of times before we detect an anomaly or reach
the fixed point where the rules have saturated. To see this, note that each inference
need only be executed when one of its inputs has changed; hence if we can show
that the database can only go through a polynomial number of changes, we are
done.

Consider an arbitrary consistent set B within the initial database. Changes are
made to B only by the insertion of a new record which is not dominated by any
record already within B. Since no record is ever deleted from B until it is dominated
by some other record, the total number of such introductions is bounded by the
total number of records occurring in C.

Similarly, consider an arbitrary complete set A within the initial database.
Changes are made to A only by replacing a non-empty set of existing elements of
~15 A by a co-chain of records a’ 2 f 2 which may be empty. Since no record need
ever be introduced twice in such a process, the total number of introductions is also
bounded by the number of possible records.

Since the database is composed of a fixed number of complete and consistent sets
that can only go through a polynomial number of changes, the number of applica-
tions of the inferences and integrity checks need only be applied a polynomial
number of times; hence the system admits an implementation of polynomial
complexity. 1

It should be noted that the implementation suggested by the proof given above
is much less efficient that what can be achieved, and that the search for optimiza-
tion techniques for our system is an interesting research direction.

5.5. Conclusions

We have defined a database system that includes the notions of object identities,
partial information, complex objects, integrity constraints, and inference rules. This
system is built upon the sandwich powerdomain construction, and uses an
entity-relationship conceptual modeling strategy as a unifying paradigm. The
system has been shown to

l contain the power of datalog;
. contain the power of relational algebra;
. include a form of monotone negation; and
. admit an implementation strategy of polynomial time complexity.

Combined with the intuitively appealing interpretations that users can apply to
both the rules and the data in the system, these properties argue in favor of our
approach.

COMPLEX OBJECTS AND APPROXIMATE ANSWERS 217

In future work, we plan to devise optimization strategies to improve the perfor-
mance of the system, and develop a prototype. We also hope to study the
relationship of our work to other extensions of Datalog that deal with sets such as
those suggested in [24, 253.

ACKNOWLEDGMENTS

We acknowledge the many comments, corrections, and criticisms that have improved this paper. In
particular we thank Serge Abiteboul, Tomasz Imielinski, Atsushi Ohori, Samson Abramsky, Elsa
Gunter, Carl Gunter, and the referees.

REFERENCES

1. S. ABITEBOUL AND R. HULL, IFO: A formal semantic database model, in “Proceedings third ACM
SIGACT-SIGMOD symposium on Principles of Database systems, Waterloo, Canada, 1984,”
pp. 119-132.

2. F. BANCILHON AND S. KHOSHAFIAN, Calculus for complex objects, in “Proceedings ACM SIGACT-
SIGMOD Symposium on Principles of Database Systems, 1986.”

3. A. ROTH, H. KORTH, AND A. SILBERSCHATZ, “Extended Algebra and Calculus for 1 1NF Relational
Databases,” Technical Report TR-84-36, Department of Computer Sciences, The University of
Texas at Austin, 1985.

4. Z. Ozso~oc~u AND L. YUAN, A new normal form for nested relations, ACM Trans. Database
Sysfems 12 (1987), 111-136.

5. H. JAESCHKE AND J. SCHEK, Remarks on the Algebra on non first normal form relations, in “Proc.
ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,” pp. 124-138, 1982.

6. H. A’iT-KACI, “A Lattice Theoretic Approach to Computation based on Calculus of Partially
Ordered Type Structures,” Ph.D. thesis, University of Pennsylvania, 1985.

7. W. ROUNDS AND R. KASPER, “A Complete Logical Calculus for Record Structures Representing
Linguistic Information,” Tech. Rep., University of Michigan, Electrical Engineering and Computer
Science Department, 1985.

8. D. SCOTT, Domains for Denotational Semantics, in “International Conference on Autonoma,
Languages and Programming, July 1982.”

9. P. BUNEMAN AND A. OHORI, Using powerdomains to generalize relational databases, Theoret.
Compur. Sci., in press.

10. M. SMYTH, Power domains, J. Cornput. System Sci. 16 (1978), 23-36.
11. T. IW~ELINSKI AND W. LIPSKI, Incomplete information in relational databases, J. Assoc. Compuf.

Mach. 31 (1984), 761-791.
12. A. MOTRO, Integrity = validity + completeness, ACM Trans. Database Systems 14 (1989), 480-502.
13. Z. PAWLAK, Rough sets, Inlernat. J. Comput. Inform. Sci. 11 (1982), 341-366.
14. A. OHORI, Semantics of types for database objects, Theoret. Comput. Sci., in press. [Special issue

dedicated to 2nd International Conference on Database Theory]
15. B. COURCELLE, Fundamental properties of infinite trees, Theoret. Comput. Sci. 25 (1983), 95-169.
16. P. BUNEMAN, A. JUNG, AND A. OHORI, Using powerdomains to generalize relational databases,

Theoret. Comput. Sci., to appear.
17. P. BUNEMAN, S. DAVIDSON, AND A. WATTERS, A semantics for complex objects and approximate

queries, in “Proceedings ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,”
pp. 305-314.

218 BUNEMAN, DAVIDSON, AND WATTERS

18. R. JAGADEESAN, P. PANANGADEN, AND K. PINGALI, A fully abstract semantics for a functional
language with logic variables, in “Proceedings IEEE Symposium on Logic in Computer Science
1989,” pp. 294-303.

19. P. CHEN, The entity-relationship Model: Towards a unified view of data, ACM Trans. Database
Systems 1 (1976), 9-36.

20. G. KUPER AND M. VARDI, A new approach to database logic, in “Proc. ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems,” pp. 8696, 1984.

21. D. MAIER, A logic for objects, in “Proceedings of Workshop on Deductive Databases and Logic
Programming,” 1986.

22. V. MARKOWITZ AND A. SHOSHANI, On the correctness of representing extended entity-relationship
structures in the relational model, in “Proceedings ACM Sigmod Conference, Portland Oregon,
1989.”

23. D. MAIER, “The Theory of Relational Databases,” Computer Science Press, 1983.
24. S. ABITEBOUL AND S. GRUMBACH, “Advances in Database Programming Languages,” Addison-

Wesley, Reading, MA, 1990.
25. S. NAQVI AND S. TSUR, “A Logical Query Language for Data and Knowledge Bases,” Freeman,

San Francisco. 1989.

