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Abstract

We investigate languages for querying and transforming unstructured data by which we mean languages than
can be used without knowledge of the structure (schema) of the database. There are two reasons for wanting
to do this. First, some data models have emerged in which the schema is either completely absent or only
provides weak constraints on the data. Second, it is sometimes convenient, for the purposes of browsing, to
query the database without reference to the schema. For example one may want to “grep” all character strings
in the database, or one might want to find the information associated with a certain field name no matter
where it occurs in the database.

This paper introduces a labelled tree model of data and investigates various programming structures for
querying and transforming such data. In particular, it considers various restrictions of structural recursion
that give rise to well-defined queries even when the input data contains cycles. It also discusses issues of
observable equivalence of such structures.

1 Introduction

We investigate languages for querying and transforming unstructured data by which we mean languages than can
be used without knowledge of the structure (schema) of the database. There are two reasons for wanting to do
this. First, some data models have emerged in which the schema is either completely absent or only provides weak
constraints on the data. Second, it is sometimes convenient, for the purposes of browsing, to query the database
without reference to the schema. For example one may want to “grep” all character strings in the database, or
one might want to find the information associated with a certain field name no matter where it occurs in the
database.

The idea of using labeled trees for this purpose has been suggested by two data models. ACeDB (A C. elegans
Database) [11] is a database system popular with biologists. It has a schema, but this only places very weak
constraints on the database since any field in the deeply nested records that are common in ACeDB can be null.
Recently Tsimmis [9] has been proposed as a data model for heterogeneous data integration. In Tsimmis there
is no schema. The “type” is interpreted by the user from labels in the structure, which is quite flexible. In
particular, a Tsimmis structure may be interpreted as a record or as a set. There is an analogy here with the
dynamic type system of Lisp, whose one basic data structure, the s-expression, may be used to represent lists,
trees, association lists, lambda terms, etc. We go a step further and blur the distinction between set nodes and
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topic

; " Cartopn Guide
" Cartoon Guide to Statistics"

Figure 1: Labeled tree representation of a bibliographic database, bib.

record nodes in the labeled trees. We believe that this untyped data model is advantageous for querying databases
with unknown or only partially known structure: Christophides et al. [6] consider a query language with similar
goals for an object-oriented data model.

The approach we shall take is to extend structural recursion to labeled trees. This poses some interesting problems:
first, it is no longer “flat” structural recursion, so that the usual syntactic forms and optimizations for collection
types such as lists bags and sets may not be relevant. Second, we shall want to examine the possibility that the
values we are manipulating may be cyclic. It is common in ACeDB, and generally in object-oriented databases,
for objects to refer to each other, allowing the possibility of arbitrarily “deep” queries. Of course, such cyclic
structures are usually constructed through the use of a reference/pointer type; however query languages are
insensitive to these object identities and perform automatic dereferencing. We therefore want to understand what
programs are well defined when we are allowed to make unbounded searches in the database.

This work is preliminary and serves only to describe languages that may be useful for unstructured data. While we
believe that there are sound principles for justifying this choice of languages, they are at present mostly “articles
of faith”. The paper is organized as follows. After specifying the data structure of interest, we first develop a
variant of nested relational algebra which gives us the ability to construct queries to a fixed depth. Next we
extend the idea of structural recursion to perform queries that can reach data at arbitrary depths in the tree.
Finally we examine restrictions of this language that work on cyclic data. By a database “query” we usually
understand a program that produces a relatively simple output from a complex input — the database. In what
follows we are interested in producing data structures that may be as complex as the input. This is the problem
of transforming databases, which is of paramount importance in heterogeneous database systems.

2 A labeled tree data type

As is common in this area we shall take a bibliographic database as a running example. The diagram in Figure 1
shows an edge-labeled tree. At the top level we see three edges labeled doc indicating a set of documents. The
first such document displayed is a tree with two distinct labels topic and book indicating a record.

The labels on the edges are drawn from some collection of basic types. For the sake of consistency with the
systems mentioned above, we shall consider the type label to be the discriminated union of a number of basic
types: character strings such as “Math”, “Wheels”; numbers such as 4, 3.1415; and symbols such as ’doc, ’article
using the lisp notation for quoting (the quote mark is not shown on the symbol edges in Figure 1). In general,
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symbols are used to mark internal edges, and other constants such as strings and numbers are used at the leaves,
but this is not demanded by our model.

Having fixed a data type label, we can now define the type of a labeled tree to be a set of pairs, each consisting
of a label and another tree. Using Py;,(S) for the finite subsets of S, we can describe a labeled tree type by the
recursive type equation

tree = Pyin(label x tree)

Before proceeding further we should remark that there are some differences between this type and the models
used in Tsimmis and ACeDB. First of all Tsimmis [9] labels nodes instead of edges: in the framework of our query
language constructs the two styles of labelings are equivalent. Secondly Tsimmis attaches values of base types
such as num and string to the terminal nodes of the tree, and the edges are labeled only with symbols. Tsimmis
also has object identities associated with the internal nodes. The transformation from Tsimmis is straightforward:
we represent terminal nodes by terminal edges; and we may introduce object identities by simply adding a new
object-identity base type. ACeDB, is much closer to our presentation in that numbers, strings etc. may be
attached to non-terminal edges. It also allows one to build cyclic structures, which we shall discuss later. The
transformation from ACeDB is obtained essentially by transferring label information from the schema to the data;
and a similar technique may be used to represent other databases as trees.

We now describe constructors for the type tree. Trees are sets, so we have ¢ for the empty set and e; U e2 to
construct the union of sets e; and es. In addition we have the expression {a=-e} to describe a singleton set
consisting of a tree formed by attaching the edge labeled with a to the root of the tree e. The types of these
constructors are as follows:

¢ : tree
{=_} : label x tree — tree
_U_ : tree X tree — tree

We shall also make use of the following abbreviations for constructing trees: {a;=e;,as=es,...a,=e,} for
{a1=>e1}U{az=e2} U...U{ap=e,}. Also a=¢, appearing within {...} may be abbreviated to a. Thus {1,2, 3}
is an abbreviation for the “flat” tree {1=¢,2=¢,3=¢}

As a more elaborate example, the tree depicted in Figure 1 can be built with the following syntax:

bib = {’doc ={’topic = { “Genetics”},
‘book ={ title = { “Cartoon Guide to Genetics”},
‘authors = { “Gonick”, “Wheels”} }},
‘doc ={ topic = { “Math”},
‘book ={title = { “Cartoon Guide to Statistics”},
‘authors = { “Gonick”}}},
‘doc ={’topic = { “Genetics”, “Database”},
‘article ={ ’title = { “FlyBase-the Drosophila database”},
‘authors = { “The FlyBase Consortium”}}}}}
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3 Nested relational algebra on trees

The previous section gave a syntax for constructing trees. We now extend this to the syntax of a programming
language for trees. To our types label and tree we add a boolean type bool with the usual boolean connectives'.

We also add

¢ An equality test a = b on labels. Equality is of type label x label — bool.
e An emptiness test null(t) on trees. null : tree — bool
o A conditional if b then ey else ez in which b is a boolean expression and e;, ez denote trees.

Since trees are necessarily sets, we first consider structural recursion on sets as the basic programming paradigm,
and following [3] use the restricted form of structural recursion given by functions h of the form

h(¢) = ¢
h({a=t}) = f(a,t)
h(tl U t2) = h(tl) U h(tg)

In this, the meaning of the function h of type tree — tree is determined by the function f : label x tree — tree.
Note that this is a mathematical definition, which suggests an implementation. The syntax we will use for h(S)
when the function f is defined by f(a,t) = e is ext(A(a,t).€)(S5).

An example of this form of definition is a selection function:

sel(b)(4) = ¢
sel(b)({a=t}) = if a=>b then {a=t} else ¢
sel(b)(t1 Uta) = sel(d)(t1) U sel(b)(t2)

In our syntax, sel(b)(S) can be written as ext(A(a,t).if a = b then {a=t} else ¢)(5). Its effect is to discard from
S all edges that are not labeled with b, together with their subtrees. For example, sel(1)({1={10},2={20}}) =

{1={10}}.
def

Another useful function is projection, defined as proj(b)(S) = ext(\a,t).if a=">b then t else $)(S). This
function takes the union of the trees at the ends of b edges and discards the others. Note how it differs from
sel(b): proj(1)({1={10},2={20}}) = {10}.

A flattening function defined as flat(S) def ext(A(a,t).t)(S) will also be useful. This function removes one level
of edges out of the root and takes the union of the subtrees at their ends: flat({1=-{10},2={20}}) = {10, 20}.

To summarize the language at this point, we assume we have an infinite collection of typed variables for labels
(ranged over by a) and for trees (ranged over by t). In addition we have a set of constants of type label as
described above. An expression in the language is built up from the variables and constants with the following
rules:

[ : label e : tree e1 : tree ey : tree e : tree e : tree
¢ : tree {l=e} : tree e1 Uey : tree ext(A(a,t).e')e : tree
e: tree {1 : label 15 : label b:bool e;:tree es: tree
null e : bool l1 =15 : bool if b then ey else ey : tree

IThe introduction of a boolean type is inessential. We can simulate false with the empty set and true with some non-empty set.
See [3] for details.
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We also assume the boolean constants and operations with the obvious typing rules together with other appropriate
operations on labels. We shall call this language EXT.

Nested Relational Algebra. We now have a language equivalent in expressive power to the nested relational
algebra, since it includes all the operations described in [3]. Note that although we have not introduced an
explicit pairing operation into EXT, it can be simulated with the operators already available. If we fix two labels,
1,2, the pair ej,es can be expressed as {1=-e;,2=e2} and the projection operations are proj(1),proj(2). In
particular, we may simulate a flat relation by constructing for each tuple (vi,...,v,) in relation R(4;,...4,) a
tree {'R={"A1={v1}... ’A,={v,}}} and taking the union of all such trees.

To illustrate the types of queries and transformations that we can perform with EXT we give some examples in
the spirit of [9]. To simplify their presentation, we will use the following abbreviations: e.a for proj(a)(e), eta
for sel(a)(e), and a in e for ~null(sel(a)(e)).

Example 1: Find the titles of all books on Genetics.
ext(A(a,t).if (a = 'doc) and (“Genetics” in t.’topic) then t.’book? ’title else ¢)(bib)

Example 2: Find the authors of all documents, regardless of the type of document.
ext(A(a,t).if a = doc then (flat t)1 authors else ¢)(bib)

Example 3: Find the title and topic of all books by Gonick and Wheels.
ext(A(a,t).if (a = ’doc) and (“Gonick” in t.’book.’author) and ( “Wheels” in t.’book. ’author)
then {’book=-{t1topic} U {t.’book? ‘title}} else ¢)(bib)

The last example does not return a subtree of the original tree, and illustrates how the result can restructure
information. Such restructuring cannot be performed in [9].

It should also be observed that the queries in these examples assume a particular structure on the trees, i.e. that
the labels of interest appear at predetermined depths. In the next section, we will see how to specify queries
which operate on trees in which labels can appear at arbitrary depths.

4 Structural recursion on trees

We now consider a form of structural recursion that one would naturally associate with trees.

h(¢) = ¢
h({a=t}) = f(a,h(t))
Wt Uts) = h(t) Uh(ts)

The only difference between this and our previous form of structural recursion is that h acts recursively on the
subtrees of a tree. As before we will use the syntax text(\(a,r).e)(S) for h(S) when the function f is defined by
f(a,r) = e. Intuitively the parameter r in f stands for the recursive call of h(t).

For example, to change each ’topic label to a ’subject label we may use the function change_lab defined by

change_lab(¢) = ¢
change_lab({a=t}) = if a = ’topic then {’subject=>change_lab(t)} else {a=>change_lab(t)}
change_lab(t; Uts) = change_lab(t1) U change_lab(t2)
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This will change labels at any depth in the tree. It is expressed using text(_) as

change_lab(S) def text(A(a,r).if a = ’topic then {’subject=r} else {a=r})(S)

We may also write a selection function that operates over the whole tree. tsel(p)(S) selects only those edges in
S that satisfy p; the other edges are lost and their subtrees become inaccessible. It is defined by

tsel(p)(S) def text(A(a,r).if p(a) then {a=r} else ¢)(S)

Applying this to the bib structure with the predicate p(x) = —(z="topic) will result in the topic labels and the
associated strings being removed from the tree.

We may also build a “flat” tree of all the edges in in a tree with

flat_trees(S) def text(A(a,r).{a} Ur)(S)

Then flat_trees(bib) results in {’doc, ’topic, “Genetics”, ’book, ...}. With such a transformation and the use of
the discriminating function for strings, we can easily find all the strings in the database.

A more interesting example is to find a tree containing the set of all paths from the root of the tree. We represent
a path by a list, or “vertical” tree, so that the path consisting of the sequence of labels ’doc, ’book, ’title is
{’doc={’book={title}}}. We can obtain the set of all paths with

all_paths(S) def text(A(a,r).{a} U ext(A(a1,m1)-{a=>{a1=r1}})(r))(S)

In this expression, r is bound recursively to all the paths of the subtree below the edge a. The set of paths we
want includes the single edge a together with the the paths that are formed by tacking a onto the beginning of
each of the paths in r, which is done with an application of ext(_). The result of this query will be

{’doc,
’doc={ ’topic},
’doc={ topic={"Genetics”}},
"doc={ book },
"doc=>{"book=-{ *title}},

}
As a final example of the use of text(_), consider the expression

blow_up(S) def text(A(a,r).{a=r} U r)(S5)

When S the linear tree {1={2=-{3}}} blow_up(S) produces {1=-{2={3},3},2={3},3}. When S is a linear tree
with n edges it produces a tree with 2™ — 1 edges. We shall see later that this apparent growth does not imply
that we are performing transformations that are outside PTIME.

The preceding examples show that a number of queries that are expressed with “path variables” [9] can be
computed in EXT together with text(_). We will refer to this extended version of EXT as TEXT. However there
is one extremely useful query which presents some difficulty: it is that of computing the union of a tree with all
of its subtrees. A refinement of this problem is to obtain all the edges that satisfy a certain property together
with their subtrees. For example, we might want all the books in the bib structure. In order to build such a tree
we need a more general form of recursion

DBPL-5, Gubbio, Italy, 1995 6
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h(¢) ¢
h({a=t}) = f(a,t,h(t))
h(ty Uty) h(t1) U h(t2)

in which the function f is now a three-place function taking the edge label a, the input subtree ¢, and the result of
recursively computing h on that subtree. We use the form text’(A\(a,t,r).€)(S) for this form, where the function
f is defined by f(a,t,7) = e. The union of a tree S with all of its subtrees is now given by:

all_trees(S) ef text’(A(a, t,7).{a=t} Ur))(S)

Note how all_trees differs from blow_up: all_trees({1={2={3}}}) = {1={2={3}},2={3}, {3}}.

As a further example, to find all the books in the bib database together with their subtrees we can write

text’ (M a,t,r).(if a = ’book then {a=t} else ¢)Ur))(bib)

Note that if we have one ’book tree below (or inside) another, this function will extract both of them.

It is possible to implement text’(_) in TEXT, so that this form of structural recursion presents nothing new.
However, the implementation involves the use of projection, which can cause problems when we consider operations
on cyclic structures. The direct use text’(_) is more closely related to a form of structural recursion that we shall
now examine.

5 Cyeclic structures

The languages EXT and TEXT operate on labeled trees. Surprisingly, FXT and an important fragment of
TEXT, which we call VEXT, can be extended naturally from trees to cyclic structures. This is due to the fact
that the queries in EXT and VEXT can be computed by independently processing each edge of a cyclic structure,
without needing to chase every path in the structure.

Syntactically, we describe cyclic structures with the aid of variables and equations defining these variables. Se-
mantically, cyclic structures are rooted, labeled graphs.

Consider the syntactic specification of a cyclic structure given in Figure 2. It uses the variables X1, Xa, Y1, Y3,
and four equations defining them. We recover a tree for such a specification by textually substituting in X; U X»
each variable with the right hand side of the equation defining it, and by repeating this process until all variables
are eliminated, thus unfolding a labeled tree. E.g. consider the same example from Figure 2, but with the
definitions of Y7,Y> changed to: Y1 = “Gonick” and Yo = “Wheels”. Then by unfolding we get a subtree of
the tree of Figure 1. In general the unfolded tree may be infinite. Note that we may have different syntactic
specifications denoting the same tree: these should be regarded as equal. Also, exactly those (infinite) labeled
trees are meanings of syntactic specifications of cyclic structures, which are rational, i.e. for which the set of
subtrees is finite.

Formally, a syntactic specification of a cyclic structure is:

e where
X1 = el
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X1 U X5 where
X1 = {doc ={topic ={"Genetics”},
book=>{title="Cartoon Guide to Genetics”,
authors=>Y, UYs }}}
Xy = {doc ={topic ={”"Math”},
book ={title ={” Cartoon Guide to Statistics”},
authors=Yy }}}

Y1 = {“Gonick”,
papers =X1 U Xz}
Yy = {“Wheels”,

papers = X1}

Figure 2: A specification of a cyclic structure

X = e
Here e, e1,..., e are labeled trees with markers X1, ..., Xg. More precisely, they are expressions built up using
the three constructors @, {_=_}, and U, and which may have the variables Xi, ..., X} on their leaves. The type
treex, ... x, of labeled trees with markers X;,..., X} is defined by:

treex,....x, = Prin(label x treex,,. . x, U{X1,...,Xk})
We write { 'name= “Joe Doe”} U X; U X, instead of the official {’name=- “Joe Doe”, X1, X>}.

The semantics of cyclic structures is given by rooted, labeled graphs, G = (V,E,r,l). Each such graph has
a distinguished vertex r € V called the root, and the edges are labeled with elements from label U {e}, i.e.
l: E — label U{e}, where ¢ is a special symbol not occurring in label. E.g. the cyclic structure of Figure 2 will be
interpreted as the graph given in Figure 3. Notice how we use e-edges to connect an occurrence of some variable
X; with its definition.

It is on these graphs that we can now define equality. Namely we say that two graphs G = (V, E,r,l), G' =
(VI,E',r',l") are bisimilar iff there exists a binary relation ~C V x V' s.t. (1) r ~ 7/, and (2) if v ~ v' then
for any label a € label, there exists a path v = ... 5% w in G iff there exists some path v' = ... 5% '
and w ~ w'. We state here without proof that two graphs are bisimilar iff their (potentially infinite) unfolded?
labeled trees are equal; note that according to our definition of a tree (Section 2) the children of a node form
a set, i.e. duplicates are eliminated. What we consider as a value is an equivalence class under the bisimilarity
relation. Considering duplicate elimination in the context of infinite trees is a departure from the traditional view
of rational trees [7]. That is the trees {a={},a={}} and {a={}} are equal in our data model, although in the
first tree the root has two children, but only one in the second. In the context of infinite trees, bisimulation seems
to be the right tool for duplicate elimination. Abiteboul and Kanellakis [1] discuss “pure values”, which are also
infinite, rational trees, intended for an object-oriented data model. Some of the nodes in these trees can be finite
sets too, but duplicate elimination is not discussed.

This gives us an effective procedure for deciding whether two syntactic specifications are equal. Namely (1)
convert the two specifications to rooted graphs, and (2) test whether the two graphs are bisimilar. Note that
testing for bisimilarity is a PTIME problem. By contrast, testing for graph isomorphism is believed to be outside
of PTIME. See [8] for a discussion of the relevance of bisimulation in query languages with object identities.

2During the unfolding of a graph, the ¢ edges will be removed.
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doc
topic book topic
Y2
" Genetics' ; " " i
title authors "Mat titte authors paper s sapers
"Wheds' PP
" Cartopn Guide e

" Cartoon Guide e e to Statistics’
to Genetics to X2 to X1

Figure 3: The graph associated to a cyclic structure (the label e stands for €)

Now we will extend our languages to cyclic structures. First notice that all operations in EXT can be extended
straightforwardly to cyclic structures. This is obvious in the case of 0, {-=_}, and U. To apply null of ext(f) to
some syntactic specification ¢, we first have to expose the topmost set in ¢. For this we convert ¢ into a rooted,
labeled graph G, and then restructure into a graph G’ bisimilar to G, in which no e-edge leaves the root (this is
always possible). Next we convert G’ back to a syntactic specification ¢, and on ¢’ we apply null, or ext(f).

But text cannot be extended to cyclic structures. Indeed, consider the query all paths, of Section 4. On some
infinite rational tree as input, i.e. a cyclic structure, it will return as output an infinite non-rational tree, which
lies outside of our data model.

Fortunately there exists a natural restriction of text pointed to us by Val Tannen [10], which allows us to define
most of the queries of Section 4, and which generalizes naturally to cyclic structures. We call this restriction
vext. To define vext, we start by discussing another primitive operation, substitution. Let X be some variable.
We add a new primitive to the ones already mentioned, namely the substitution substx : treex X treex — treex.
substx (s,t) will simply replace every occurrence of X in s with ¢. Formally:

substx (X, 1) f
substx ({a=>s},t) def {a=>substx (s,t)}

def

substx (t1 U ta, 1) substx (t1,t) U substx (t2,1)

An intuitive way to think about substx is to view it as a generalization of the append operation on lists. For
that, let’s represent lists as linear trees: [a1,as,...,an] becomes {a1=>{a2=>{...={ap,=X}}}}. Note that lists
end in the marker X, ak.o. nil. If s is the list [a1,...,a,] and ¢t is the list [b1,.. ., by], then substx (s,t) is the
list [a1,...,Gn,b1,...,by]. Note that had we ended the list s in the empty tree instead of the marker X, i.e.
{a1={as={.. . ={a,={}}}}}, then substx (s,t) would return s. More generaly, a tree s can be thought of as a
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branching list, having more than one endpoint. Then substx (s, t) generalizes append in that it adds ¢ in possible
many endpoints of s, namely in all those places where s ends in the marker X.

Finally we are ready to introduce the vezt construct. Namely for any function fx : label — treex, h = vextx (fx)
is defined by:

ho) o9
h{a=t}) X substx(fx(a),h(t)
h(ty Uty) def h(t1) U h(ts)

Again, notice that on “lists” vexty is simply ext on lists.

We now informally describe now how wextx (f) acts on some syntactic specification of a cyclic structure ¢t =
(e where X1 = e1,..., X = er). The syntactic specification ¢t' = vextx(fx) is obtained from ¢ by processing
every subexpression of the form {a=-e'} of e, eq,..., e as follows: we first fetch a fresh variable ¥, next replace
the subexpression {a=e'} with fy(a), and finally add the equation Y = e'. Intuitively there is a high degree of
parallelism in the computation of vextx, which can be visualized even better on rooted, labeled graphs. Namely
here, vextx (fx)(S) is computed by independently replacing each edge v = w with the tree fx(a) having v as
the root, and by drawing e-edges from the leaves X of fx(a) to w; the e-edges in the original graph are left
untouched.

We call VEXT the language obtained by extending EXT with the vext construct. Obviously the following
relationships between languages holds:

EXT C VEXT C TEXT
| S — N —

trees and cyclic structures  trees only

Here are some of the queries from Section 4 expressed with vextx:

change_lab(S) =  wvextx(Aa.if a =' topic then {'subject=X} else {a=X})(9)

tsel(p)(S) = wvextx(Aa.if p(a) then {a=X?} else 0)(S)
flat_trees(S) = wvexrtx(Aa.{a}U X)(S)
(5) (

blowup(S) =  wextx(Aa.{a=X}U X)(S)

Notice how sharing allows us to avoid combinatorial explosion of the data structure resulting from the function
blow_up. E.g. on the input tree S = {a1=>{a2=>{... {a,=0}...}}}, blow_up(S) will return:

Xo where
Xo = {01:>X1} uXi
X1 = {a2:>X2} U X2
Xn1 = {anflan} UX,
X, = {a,=>0}
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When we unfold this compact syntactic specification, we obtain a tree with 2™ nodes. In general, we have:

Proposition 5.1 VEXT is in PTIME.

Unlike text however, vexrtx does not seem to be able to express all_trees. However we can express all_trees with
a slight generalization of veztx, from one variable X to an arbitrary number of variables. First we generalize

substx by defining substx, .. x, (t,t1,-..,t,) to be the simultaneous substitution of X; with ¢, ..., X, with ¢,
in t. Then vextx, ... x,(f1,..., fn) is a construct which allows us to define simultaneously n functions h1, ..., h,
by iteration on the cyclic structure (we omit the subscripts X3, ..., X,):
m@ = 0 ha(0) % g
hi({a=s}) ¥ subst(fi(a),hi(s),...,hn(s)) ... hn({a=s}) % subst(fu(a),hi(s),..., hn(s))
hi(tiUts) % hy(ty) Uhi(ts) oo Bt Ut) % hy(t) Uhn(te)

Then we can compute all_path using veztx, x,. More interestingly, for any regular expression on labels, R, we
can write in VEXT an expression project z(S) which, on a given tree S, returns the set of all subtrees which can
be reached from the root of S using a path in R. E.g. when R = (a(bc)*)*, then selectg(S) will return the set
of all subtrees in S which can be reached from the root by a path of the form abc...bcabc...bc...abc...bc. We
invite the reader to check that, for any regular expression R, selectg(S) can be written using veztx, .. x,. It
suffices to take n as the number of states in the deterministic automaton accepting R.

6 Conclusions

We believe that the forms of structural recursion on trees described in this paper offer good prospects for the
development of powerful query languages for unstructured data. However to demonstrate this, considerable
additional work is needed. First, we need to substantiate the claim that the graph/bisimulation model provides
an effective semantics for the language developed in Section 5. Second, there appear to be some optimization
techniques for these languages: we discuss some optimization techniques in a related work [5]. An interesting
question is how schema information, when it is present, may be used in optimization as suggested in [2]. Third,
there are good syntactic forms for languages similar to EXT [4] that resemble the syntax of popular database
query languages: we address this topic, as well as more powerful language constructs in [5].
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