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Abstract

A new kind of data model has recently emerged in which
the database is not constrained by a conventional schema.
Systems like ACeDB, which has become very popular
with biologists, and the recent Tsimmis proposal for data
integration organize data in tree-like structures whose
components can be used equally well to represent sets
and tuples. Such structures allow great flexibility in data
representation

What query language is appropriate for such structures?
Here we propose a simple language UnQL for querying
data organized as a rooted, edge-labeled graph. In this
model, relational data may be represented as fixed-depth
trees, and on such trees UnQL is equivalent to the relational
algebra. The novelty of UnQL consists in its programming
constructs for arbitrarily deep data and for cyclic structures.
While strictly more powerful than query languages with
path expressions like XSQL, UnQL can still be efficiently
evaluated. We describe new optimization techniques for the
deep or “vertical” dimension of UnQL queries. Furthermore,
we show that known optimization techniques for operators
on flat relations apply to the “horizontal” dimension of
UnQL.

1

There are two good reasons to query and manipu-
late data whose structure is not constrained by a
schema. First, some systems and proposals have re-
cently emerged in which the schema is either absent or
places very loose constraints on the data; second, for
the purposes of browsing it may be convenient to forget
the schema, even though one exists. In this new “un-
structured” approach to data representation each com-
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ponent, or object, is interpreted dynamically and may
be linked to other components in an arbitrary fashion.
We represent such data in a very general framework,
which is roughly speaking an edge-labeled rooted di-
rected graph. We call this model a “labeled tree” model
because the query language we will develop is most eas-
ily thought of as a tree-traversing language, even though
all expressible queries are well-defined on cyclic struc-
tures. To justify this choice of model let us briefly ex-
amine some current systems that can be conveniently
represented in such a framework.

Unstructured data models. Biological data stor-
age poses a problem for “fixed schema” systems, because
the rapid evolution of experimental techniques requires
constant adjustment of the schema [GRS93]. It is also
convenient to have a model that accommodates missing
data. One such database system that is extremely pop-
ular within the molecular biology community is ACeDB
(A C. elegans Database) [TMD92]. Although ACeDB
has a schema, it imposes only weak constraints on the
database. A class in an ACeDB schema can be thought
of as a labeled tree with non-terminal edges labeled by
attribute names or base types and leaves labeled by base
types or by other class names. Superficially, this is like
an object-oriented model, and one could think of adapt-
ing an object-oriented query language. However, one
would need to deal with the problem that the internal
structure of each instance is a tree, and one would need
to find a better way of dealing with missing data than
that provided by object-oriented query languages. The
query language for ACeDB allows selections of objects
and pointer traversals, but it cannot perform general
projections or joins.!

Another system that uses a tree-like model is Tsim-
mis [PGMW95], which has been proposed for heteroge-
neous data integration. In Tsimmis there is no schema,
and the “type” of data is interpreted by the user from
labels in the structure. In particular, the difference be-
tween a record and a set in a Tsimmis structure is that

IThe recent TableMaker extension to ACeDB enables projec-
tions and joins, but it is a hack and does not form a compositional
query language.
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Figure 1: An example movie database.

within a record node the edge labels are all distinct,
whereas within a set node the edge labels are all the
same. A query language has been proposed for Tsim-
mis, but it allows only limited forms of “deep” traver-
sal of the data structures. Languages for restructuring
Tsimmis would also appear to be important, for Tsim-
mis is proposed as a model for data exchange. Moreover
optimization of such languages appears to be an open
issue.

Browsing. Even if a schema exists for the data
(e.g., data stored in a relational database management
system), it may be convenient to ignore it for browsing
purposes. For example, one might want to search all the
character strings in the database to determine which
tables contain a particular term. One cannot write a
generic relational algebra expression to express such a
query. Languages such as XSQL [KKS92] provide a
solution to this, and these can be extended, with some
limitations, to object-oriented databases. —However
the problem of “deep” queries and query optimization
remains. An example of a “deep” query is known to
most programmers: find a file which is somewhere in
a tree-structured file system. Utilities to perform this
particular query are usually available, but they do not
generalize easily, and dealing with recursive structures
(which can arise from the presence of symbolic links) is
usually achieved through a hack.

Edge-labeled trees. As an example of the struc-
ture we want to deal with, consider the movie database
shown in Figure 1.2 The first two subtrees out of the

2With thanks to The Internet Movie Database (to be found
at http://www.msstate.edu/Movies/). The deliberately irregular
example used here in no way reflects the details of that well-
structured and very useful database.

506

root are both movies, but they differ in how they rep-
resent actors. The third subtree represents a TV series
and has very little structure in common with movies.
Furthermore, movies/ TV series refer to each other, cre-
ating cycles in the structure. The situation is quite
similar to that of a bibliographical database (cf. the ex-
amples given in [PGMW95]), where information about
heterogeneous documents and their referencing relation-
ship is represented in a graph-like structure.

Note that information only resides at labels. To
express a structure in which information also resides
at nodes (both ACeDB and Tsimmis allow this), we
simply “migrate” that information down to a new edge
attached to that node. Also note that there are three
kinds of labels in the tree: character strings, integers
and symbols—the latter corresponding to attribute
names. Atomic data values such as strings and integers
may occur anywhere in the tree, not just at terminal
edges. This is similar to ACeDB, which allows integer
labeled fields.

Outline of the paper. In the following sections
we first develop the labeled tree data model and discuss
correspondences with relational and nested relational
databases. We then develop the query language UnQL
(for Unstructured Query Language) through examples.
On fixed-depth structures UnQL has the expressive
power of the nested relational algebra. However, it
can also express traversals of a tree of arbitrary depth,
and these searches can be controlled by the use of
regular expressions on paths. So far, this language is
still limited in that it cannot restructure the database
at arbitrary depths. We then give a more general—
and more complex—construct that can restructure the
database at arbitrary depths. After summarizing the



UnQL constructs, we give a calculus into which our
languages can be translated and provide optimization
techniques in this calculus. In particular we show that
“horizontal” optimizations for relational structures can
be used and that these have “vertical” counterparts
that apply to deep queries. We conclude with some
questions about the connection between UnQL and
other languages.

2 The Data Model

Restricting ourselves for the moment to structures
without cycles, we shall start with an explicit syntax
for the construction of edge-labeled trees:

o {} — the empty tree,

o {I =t} — the tree whose root has an outgoing edge
labeled | attached to the subtree t,

e t; Uty — the union of trees ¢; and ¢, formed by
coalescing the roots of ¢; and t,.

We shall also use the syntactic sugar {ly = t1,l2 =

ta, .. .,ln :>tn} for {ll :>t1}U{l2 =>t2}U' . 'U{lnitn}.
For example, the tree
A
B C

is specified by {A={B={},C={}},D={}}. Wecan
further simplify the syntax by shortening the notation
for terminal edges, | = {}, to [, and by omitting the
braces around singleton trees {I = t}. Our example
then becomes {A = {B,C},D}.

Since labels carry all the basic information in this
model, we need to specify the types of data that can be
used as labels. We assume that the usual base types
String, Integer, Real, etc., are available. These are
the types that would be used as values in a relation.
In addition we shall use a new type Symbol for labels
that would correspond to attribute names in a relation.
We write numbers and symbols literally (the latter
usually capitalized) and use quotation marks for strings,
e.g., “cat”. In what follows we make the simplifying
assumption that labels can be symbols, strings, integers,
etc; in fact, the type of labels is just the discriminated
union of these base types.

Relational and nested relational databases.
Relational databases are easily encoded as trees. Start-
ing with tuples, if a relation has attributes A;, A,

.., Apn, a tuple (4 :v1, A2 :vq,..., A, v,) may be
encoded as {41 = vi, Ay = va,..., A, = v,}. Next,
choosing a special label “T'up” to indicate the encoding
of a tuple, we can encode a relation as {Tup=t;, Tup=
ta,...,Tup=t,}, where t1,ts,...,t, are the encodings
of the tuples in the relation. Finally, the database itself
is a set of relations named Ry, R, ..., R,, and the en-
coding of the database is {R; = r1,Rs = r3,..., Ry =
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Tn}, where 71,79,...,r, are the encodings of the asso-
ciated relations. For example, Figure 2 shows a simple
relational database, first presented conventionally, then
as a tree, and then in this encoding. Nested relational
databases can be encoded similarly.

Cyclic structures. These can be built by extend-
ing our syntax for trees so that we can tie the leaf
nodes back into the tree. We introduce tree markers
X;1,Xs, ..., and use a further syntactic construction:

ewhere X1 =e1, X0 =e€2,..., X, = €5,

This expression denotes a (possibly cyclic) “tree”. In
it e,eq,e2,...,6, are tree expressions built up from
the previous tree constructors augmented with tree
markers, which may be used wherever a tree is used.
For example,

X1 where X7 = {AI>X2,C = {D,E:> Xl}},
Xy = {B = Xz}

denotes the cyclic structure depicted in Figure 3 (a). We
shall continue to use the term “tree” to describe such
structures, understanding that they are really rooted
directed connected graphs.

Cyclic structures are easiest to draw with the aid
of e-edges, which are edges with no label. An e-edge
from node v to node w denotes that a copy of every
edge emanating from w should be attached to v. For
example, consider the following, rather tricky cyclic
structure®: X; where X; = {4 = (X1 U X2)}, Xy =
{B = ({C} U X;1)}. We draw it, rather naturally,
as in Figure 3 (b). Furthermore, we can prove that
any graph with e-edges is “equal” in a sense which is
made precise through the notion of bisimulation [Mil89])
to one without e-edges: the graph in Figure 3 (b) is
equivalent to that in Figure 3 (c). See [Kos95, BDHS96)
for details and related work.

Types. The type of cycle-free labeled trees has a
simple description. Let Label be the type of edge labels
and, for any type 7, let Pg,(7) describe the type of finite
sets of 7. The type for labeled trees Tree satisfies the
equation Tree = Py (Label x Tree).

Informally, this equation says that a tree is a set
of pairs of labels and trees. Following [BTS91], we
can obtain a natural form of computation for this type
based on structural recursion. An initial version of this
idea was pursued in [BDS94]. This paper describes
new languages that are more general restrictions of
structural recursion and are well-defined on cyclic
structures; it also explores optimization techniques. In
the development of these languages, it is important to
remember that we are dealing with just two data types:
Label and Tree.

3Recall that markers may be used wherever trees may be used:
hence, X; U X3 is a valid tree expression.
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Figure 2: Representations of a relational database.

3 UnQL: Selection Queries

We begin by presenting some examples of UnQL that
query the tree down to some fixed depth. On data
structures that represent relational databases, such
queries are equivalent to relational algebra queries.
We then give examples that query to an arbitrary
depth, and retrieve information from anywhere in the
tree. Even though such queries contain complex “path
expressions,” they are nevertheless meaningful for cyclic
structures.

3.1 Scratching the Surface—the Top-Level
Fragment of UnQL

Consider some simple examples on the relational data-
base of Figure 2, which we assume is named D B.

Example 3.1 The expression

select ¢
where R1 =\t + DB

says “compute the union of all trees ¢ such that
DB contains an edge R1=-t emanating from the root.”
There is only one such edge in Figure 2; this query
therefore simply returns the set of tuples in R1. The
returned expression is:

{ Tup={A="a",B=2,C =3},

Tup={A="b",B=4,C = 5}}
There are some important differences between our
comprehension syntax [BLST94] and that of relational
calculus or languages derived from SQL. In the where

part of the expression (there is no from component),
the form R1 = \t < DB is a generator, which has
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two components, a pattern R1 = \t (everything to the
left of the “generator” («) arrow) and a tree DB (the
right-hand side of the < arrow). A tree is simply
a set of edge/subtree pairs, so the generator matches
the pattern to each of these pairs. Only those edges
labeled R1 will match. When such a match occurs, the
variable \¢ is bound to the associated subtree, and the
expression in the select clause is evaluated and added to
the result.

When variables are introduced in UnQL, they are
flagged with a backslash. They can then be used
later (without the backslash) in the where part of the
comprehension as well as in the select part. This explicit
binding of variables is needed to avoid ambiguities that
would arise in nested queries.

Example 3.2 The following expression uses a label
variable \! to match any edge emanating from the root.
select ¢
where \l =\t + DB
The result is the union of all tuples in both relations—a

heterogeneous set that cannot be described by a single
relation.

Example 3.3 Here we join R1 and R2 on their com-
mon attribute C' and then project onto A and D:
select {Tup={A=2,D = z}}
where R1 = Tup= {A=\z,C = \y} < DB,
R2=Tup={C=y,D=\z2}+ DB
Rl = Tup = {A = \z,C = \y} is a tree pattern.

It matches any subtree of DB starting at the root,
continuing with an R1 edge, then with a Tup edge which



root root
X1

@ (b)

root
X2

X

Figure 3: Cyclic structures.

has two edges labeled A and C respectively. Moreover it
binds z and y to the subtrees after A and C. Note that
the variable y is bound in the pattern of one generator
and then used as a constant in the pattern of the second.

Example 3.4 This query performs a group-by opera-
tion on R2 along the C column:

select {z= (select y where
R2=Tup= {C=z,D=\y} + DB)}
where R2 = Tup=>C=\z = {} + DB

The use of \z = {} is needed to bind z to an edge label
rather than a tree, so that the expression z = ... in
the select clause makes sense. In contrast, \y ranges

over trees. The output from this last query is the tree
{3 :> {7’c”}7 5 :> {7’d77 , ”e” }}.

Example 3.5 Turning to the movie database in Fig-
ure 1, we see that there are some queries that can be
answered by the techniques we have already developed.
For example, give the titles and casts of all entries—
movies, TV shows, etc.

select {Tup = {T'itle = z,Cast = y}}

where Entry = _= {T'itle = \z,Cast = \y} «+ DB
Here the “wildcard” symbol - matches any edge label; its
use is equivalent to binding a fresh anonymous variable
at that point. Also note that the query has returned a

tree that is a set of pairs, but the components of these
pairs (z and y) are trees.

Example 3.6 The next example is more problematic.
We want a binary relation consisting of actress/actor
and title tuples for movies. The problem is that the
information is not uniformly located within the tree.
select {Tup = {Actor = z,Title = y}}
where
Entry = Movie = {Title = \y, Cast = \z} + DB,
\z = {} « 2 U (select u where _ = \u + 2),
isstring(x)
The assumption we have made is that the names we

want will be found immediately below the C'ast edge or
one step further down. Moreover we only want those

509

edges that are strings. This query illustrates the use
of a condition, which is the second construct that can
occur in the where part of a comprehension. We also
assume that the type of labels is a discriminated union,
so properties such as isstring should be available.

3.2 Taking the Plunge: Deep Queries.

It is apparent from the previous examples that we need
more expressive power if we are to look for data whose
depth in the tree is not predetermined by any schema.

Example 3.7 Perhaps the simplest of all queries that
look arbitrarily deep into the database is to find all edges
with a certain property. For example, to find the set of
all strings in the database:

select {I}
where x =\l = _ < DB, isstring(l)

Here the _x is a “repeated wildcard” that matches
any path, i.e., sequence of edges, in the tree. Such a
construct is proposed in [PGMW95]. However, we shall
find some useful queries where we need more than this,
i.e. we need to specify regular expressions on paths. For
this, we adopt a grep-like syntax.

One may wonder whether queries containing a _x con-
struct are well defined on cyclic structures, given that
the number of paths in such structures is infinite. How-
ever, since cyclic structures have only a finite number
of distinct subtrees, there is only a finite number of dis-
tinct assignments of labels and trees to the variables in
the where clause, so the output of the query is still finite.

The use of a leading _x is so common that we shall
use a special abbreviation p < t for x=p « t for any
pattern p and any tree expression t. The query above
then becomes:

select {/}
where \l = _ <+ DB, isstring(l)

Example 3.8 Here we use consecutive “deep” genera-
tors to find all the movies involving “Bogart” and “Ba-
call”:

select { Movie = x}

where Movie = \z <+ DB,



? Bogart” = _ < z,
?Bacall” = _ =

This will find all movie edges in the database (no
matter where they are) and return those edges, with
their subtrees, that contain both “Bogart” and “Bacall”
somewhere beneath them.

Example 3.9 A problem with the example above is
that it may return more than is required. For example,
a movie will be returned if it refers to a movie in which
Bogart and Bacall are involved. In order to avoid such
paths we use a more complicated pattern in a path:

select { Movie = x}
where Movie = \z <+ DB,
["Movie]x = ” Bogart” = _ + xz,
["Movie]x = ” Bacall” = _ + x
Following grep, the pattern ["Movie]*+ matches any

path that does not contain the label Movie. Arbitrary
regular expressions may be used on labels.

4 UnQL: Restructuring Queries

All the queries discussed so far have only exploited
depth by pulling out subtrees. In this section we
describe the traverse query construct, whose output tree
can represent arbitrarily deep changes in the input tree.
Consider first a simple example:

Example 4.1 Replace all SpecialGuest labels with a
Featuring label:

traverse DB giving X

case SpecialGuest = _ then X := {Featuring = X'}

case \l = _ then X := {I= X}

The construction says that we have to replace every edge
of the tree DB with some tree as follows. Whenever we
see an edge labeled SpecialGuest in DB, we replace it
with the tree {Featuring = X }: in essence this is just
an edge, leading to a marker X. Whenever we see an
edge labeled something else, like [, we replace it with
the tree {{=X}. The X’s of the different trees are now
joined as follows: each X-leaf of some tree replacing an
edge e is joined with the roots of the trees replacing
the successors of e. The order in which we write the
two case statements matters: had we reversed them, we
would have produced a tree identical to the original one.

The restructuring performed by the traverse construct
is relatively simple, in that it acts only locally—on
edges. This simplicity allows it to have meaning on
cyclic structures (cycles will simply be transformed into
other cycles), but limits its expressive power. We
can increase its expressiveness significantly by allowing
several markers instead of one, while still confining
ourselves to local restructurings, as illustrated in the
following example.
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Figure 4: Replacing all Special Guest edges underneath
TV Shows. The new root is the root of the first
tree. Note that part of both trees are inaccessible from
this root: they need not be constructed during query
evaluation.

X2:=

! Fexturi ng

Example 4.2 Suppose we want to replace every edge
Special Guest with a Featuring edge, but only in
TV Shows, and leave the SpecialGuest edge for other
kinds of movies untouched. Being part of a TV .Show
is not local information available at that edge, and in
general we don’t know how far apart the TV .Show edge
is from its underlying SpecialGuest. The trick here
is to comstruct two trees in parallel, instead of one,
having edges going from the first to the second one,
as illustrated in Figure 4. The first tree, ¢1, will be an
identical copy of the input database DB. The second
tree, ta, will be a copy of DB with all SpecialGuest
edges replaced by Featuring. In addition, every
edge labeled TV Show in t; will be redirected to the
corresponding node in t3. As a consequence, every edge
in DB will be replaced by two “small” trees, and we
will use two markers X; and X5 to keep track of them:

traverse DB giving X1, X»

case TV Show = _ then X; := {TV Show = X,}
case SpecialGuest = _ then X5 := {Featuring = X5}
case \l = _ then X; := {{= X,},

Xy :={l=X,}

In this construction, pattern matching is done twice
for each edge, once for X; and once for X,. Clauses
that do not provide an assignment to the marker under
consideration are disregarded. Thus, on a TV Show
edge, the first clause would succeed for X; and the last
clause for X5.

By convention, the final result is the tree rooted at
the first marker X, that is, t;. Parts of ¢; and ¢; will
be superfluous, like the edges in ¢; beneath a TV Show
edge, and those in ¢ above a TV Show edge. Since they
are inaccessible from the root they can be discarded; in



fact, during the execution of this query those parts of
t1 and t2 need not even be constructed.

Example 4.3 Consider the following deep-nest exam-
ple: in a given tree we want to nest all edges la-
beled A. That is, every subtree of the form {A=¢;, A=
ta,...,A=t,} Ut, where ¢t has no top-most A edges,
has to be replaced with {A =1t U...Ut,} Ut. The
query is given below: for simplicity we assume that no
A-edges occur at the topmost level and that there are
no two consecutive A-edges in the tree.

traverse DB giving X, X»
case A = _ then X; :={}, X0 := X;
case \l => A= _then X1 :={l= (X1 U{A=> X,})},
X2 = {}

case \l = _ then X7 = {l= X1}, Xo :={}

traverse and select are typically executed by traversing
the tree and, in the process, constructing the resulting
tree. When two such queries are composed, it might
appear that one has to traverse the whole tree, build
an intermediate result, and then traverse the result.
However, we show in Section 6 that the composed query
can be optimized: we “fuse” together the two traversals
into a single one and eliminate the intermediate result.
For example, recall the query in Example 4.2 returning a
tree T' with some of its Special Guest edges replaced by
Featuring edges. Now assume that we want to compose
this query with: select {SpecialGuest = t} where
Special Guest=>\t < T. By composing the two queries
we obtain the set of all SpecialGuests, but excluding
those from TV Shows. Of course this can be easily
expressed as a single select query. We will show in
Section 6 how this single query can be derived from
simple algebraic equations.

5 Summary of UnQL

For completeness, we briefly enumerate UnQL’s opera-
tors: {}, {-=_}, U, @, if _ then _ else, select, traverse. We
have already seen examples of all these with the excep-
tion of @, which is described in Section 6; see [BDHS96]
for a more complete description of traverse. Here we
summarize the syntax for select:

select £/
where C1,Cy, ..., Cnp

FE is another UnQL expression and each C; is either a
generator or a condition. Conditions are predicates on
labels such as Iy = s or isstring(l), and tree emptiness
tests like isempty (t). Generators are of the form P « T,
where P is a pattern and T is a UnQL expression.
A pattern P is either (1) a tree constant or a tree
variable, or (2) {R; = Pi,..., Ry = P} with each P;
a pattern, and each R; either a variable \[, or a regular
expression. We abbreviate {R; = P;} with R; = P;.
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Regular expressions may use, but not bind variables,
hence we can have \l = \t + DB and lx = \t « DB,
but not (\l)x = \t « DB. Some examples of more
complex patterns are: (= _)x=\l=\t < DB binds !
to an edge label which is at an even depth in DB.
[TV Show]x =\l = ["Special Guest]x =1 =\t + DB
binds ! to an edge label which occurs at least twice
in DB, first before any TV Show edge and second before
any SpecialGuest edge.

Recall that the tree model naturally encodes rela-
tional databases as trees of depth 4 (Figure 2). Sim-
ilarly, it encodes nested relational databases as trees of
a fixed depth. On these inputs, UnQL has the same ex-
pressive power as relational algebra, or nested relational
algebra.

Theorem 5.1 On trees encoding relational databases,
or nested relational databases, UnQL has exactly the
same expressive power as relational algebra, or nested
relational algebra respectively.

However, note that UnQL can be more succinct than
relational algebra: the UnQL query

select {Tup =t}
where _= Tup =1t + DB,
_="Smith” <t

selects all tuples containing the string “Smith” from
the database. Ignoring for the moment the fact that
the result is a heterogeneous set, one can translate
this query into relational algebra, but there will be a
different translation for each database schema: as the
schema becomes more complex, so does the translated

query.

6 A Calculus for UnQL and its
Optimizations

We now show that UnQL is equivalent to a simple cal-
culus, called UnCAL for unstructured calculus. Follow-
ing [BBW92], we use the term calculus in the sense of
lambda calculus (a formalism with variables and func-
tions), rather than in the sense of relational calculus (a
logic, with variables and quantifiers). We sketch a sim-
ple, effective procedure for translating UnQL queries
into UnCAL expressions. By simplifying UnQL into
UnCAL, we achieve two purposes. First, we can prove
properties about UnQL, for example that all queries are
defined even on cyclic structures and are computable in
PTIME. Second, and more important, we derive opti-
mization techniques for UnQL based on the algebraic
identities that hold for UnCAL. In this section we show
some of these equations and illustrate the corresponding
optimizations.

6.1 The Calculus UnCAL

The salient construct in UnCAL is its recursion operator
gext, which is the mechanism underlying the traverse



construct. Like traverse, this is a rather unorthodox
operator, in that it uses tree markers in an essential
way. While real-life examples probably will not put
too much burden on these markers, the interactions
between different sets of markers that result during the
optimization steps are, as we shall see shortly, somewhat
delicate. Hence UnCAL is quite picky about keeping
track of the markers. For a finite set X of markers,
we will denote by Treey the set of trees having only
markers in X. Then, X C X' implies Treex C Treex:.
Furthermore, for a reason that will become apparent
shortly, we will assume that we can put together two
markers to build a new one; that is, X - Y will be a
new marker built from X and Y, and it will be distinct
from all other markers built in this way. For two sets
of markers X and ), X - ) denotes the set of markers
X Y, with XeXandY € ).

UnCAL’s operators, which are listed in Figure 5,
exploit the dual nature of our trees: sets along their
horizontal dimension and branching lists along the
vertical one. UnCAL has set-like operators for the
horizontal dimension of trees and list-like operators for
the vertical dimension. This is best illustrated by the
union operator U, which joins two trees horizontally,
and the append operator @, which joins them vertically.
As expected, append is more complex than union. In
an append expression, t Qy 5, t is a tree of type
Treex and § is an X-indexed family of trees of type
Treey. Such families occur often in UnCAL, and we
write them as § = {X1 := s1,...,X,, = s,}, when
X = {Xi,...,X,}; we denote the set of X-indexed
families of trees with ) markers with Tree§. The result
of append is obtained by replacing each marker X; in ¢
with the tree s;. The )Y markers in the s; are preserved
in the output, which is therefore of type Treey.

As a simple example with only one marker, consider
t={A=B,C=X}UX and! s = {B,D = E}. Then
tQixys={A=B,C={B,D= E},B,D = E}. For
an example with two markers, let ¢ = {A = (X; U
Xs), B=({C}UX)}, and let §be the { X1, X }-indexed
family {X; := {B,D},Xs := {B,D = E}}. Then
tQrx, x,3 §={A={B,D,D= E},B= {C,B,D}}.
See Figure 6 (a) and (b).

UnCAL’s most complex operator is gexty(f)(T).
Here f is a function taking a label I and a tree t as
inputs and returning an X-indexed family of trees with
markers X, while the result is an X-indexed family of
trees. gext(f)(T") has the same meaning as a certain
restricted form of traverse:

traverse T giving X
case \! = \¢ then f(I,?)

We will describe the semantics of gext in detail next.
First we consider the case where X has only one marker,

4Strictly speaking s is the { X }-indexed family {X := {B,D=
E}}: we omit mentioning X when it is clear from the context.
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XeXx l: Label t: Treex
{}: Treex X : Treex {l=1t}: Treex
l; : Label 5 : Label t: Treex
Iy =1, : Bool isempty (t) : Bool

b:Bool t;:Treex to: Treexy
if b then t; else t5 : Treey

t1: Treexy to: Treex t: Treey §: Treeg‘,‘}

t1 Uty : Treey

t@X 5 Treey

f : Label x Treey — Tree§
gexty(f)(t) : Tree.y

t: Treey

Figure 5: The rules for UnCAL.

Figure 6: Two examples of append, tQt'.
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Figure T7: Visualization of gext(f)(T): f is applied
independently to each edge, and the resulting “small”
trees are joined.

gext(f)(T)

say X. Then we describe gext as a recursive process.
Let g(T) = gext;x}(f)(T), with T" a tree having at

most markers Y7,...,Y,. Then:
ah) =
g{i=1) = 1) e g(t)
9(Th UTy) o 9(T1) U g(T>»)
g(¥y) def Y, fori=1,n

This suggests a computation method in which we
start from the root and go downwards in the tree.
But one wonders if gext loops forever on cycles. The
answer is no: one can show [BDHS96] that on a cyclic
structure T = (Y7 where Y1, =Th, ..., Y, =T,), g(T) is
Y1 where Y1 = g(Th), ..., Y = g(Th).

Alternatively, it is useful to view gext as a parallel
process. Namely to compute gext;y,(f)(T), we start
by making a copy v’ for every node v in the tree T.
Next, we take each edge | = t in T going from vertex
v to w, and replace it with f(I,t). When doing this,
we identify® the root of f(I,t) with the vertex v’ and
identify all leaves labeled X with w'. See Figure 7 for
an illustration.

We can prove [BDHS96] that the recursive and
parallel processes describing gext are equivalent. The
parallel one makes it clear that the computation does

not go into an infinite loop on a cyclic structure and
def

justifies the somewhat arbitrary equation g(Y;)
Y;. However, the recursive view is sometimes more
appropriate when designing queries.

Now we turn to the general case, when X
{X1,...,Xn}. Then gext, allows us to define simulta-
neously m mutually recursive functions g;, i = 1, m, as
shown in Figure 8. When we apply gext . (f) to a tree
with n markers Y3,...,Y,,, we get a tree with mn mark-
ers, labeled X;-Y;, i =1,m, j = 1,n.

We specialize gext (f) to two important cases. The

5Equivalently, join them with e edges.

513

first is when X = (. In this case only the topmost level
of the tree denoted by ¢ is processed. This is a classical
operation on sets which we call ext:

f : Label x Tree — Tree t : Tree
ext(f)(t) : Tree

with the meaning ext(f)({l1 = t1,...,ln = tn}) =
fly,t1)U---U f(ln,ts). The second case is when f(I,t)
depends only on the label I, not on the tree t. We call
this vext.

f : Label — Treex t: Treey
vexty (f)(t) : Treeﬁ,y

When X has a single marker X, then vext is
exactly ext on lists. Indeed, assume that we en-
code a list [A4;,...,A4,] “vertically” as {A; = {42 =
...{A4,}...}}, and assume that f(I) returns a list “end-
ing in X” (i.e., of the form {B; = {By = ...{B,, =
X}...}}), for every label I. Then vext is described by
vext(f)([A1, .- -, 4n]) & F(A1)@...Qf(A,).

An example of vext is the query deepflatten(T"), which
returns the set of all subtrees of t. In UnQL, this is
expressed as

select ¢
where % =\t « T

In UnCAL we express it as the X;-component of:

VeXt{X17X2} ()\le =X U {l = XQ},XQ = {l = XQ})
(T)

More generally, for any deterministic finite automaton
there exists a vexty expression that pulls up to the top
level all subtrees reachable by a path accepted by that
automaton. Moreover, the automaton may have not
only labels, but also previously bound variables, or even
negation (i.e., # [) on its edges. The number of markers
in X is one plus the number of states of the automaton.
In particular, all queries select t where R =\t « T
from Section 3, where R is a regular expression, can be
translated into vext.

Theorem 6.1 UnQL and UnCAL express the same
set of queries. Moreover, there exists an effective
translation from UnQL to UnCAL.

UnCAL is a simpler formalism than UnQL. Hence
we can more easily prove properties about UnCAL than
about UnQL. For example:

Theorem 6.2 All queries expressible in UnCAL (and,
hence, in UnQL) are defined on all cyclic structures and
are computable in PTIME.

6By convention, in this case f returns a single tree, and
gext (f) returns a single tree too.



ad) € 0
a{l=1) € £, Qxg(t)
aTuT) € g(T)ug (D)

a) € Xy

m{}) € 0
gn{l=1) € fu(l,) Qug(t)
gn(MUT) € gu(T1) Ugm(T)
gm(¥)) € Xp-Y; (1)

Figure 8: The definition of gext(f)(T). Here f(I,t) and g(t) are X-indexed families {X; := fi1(I,1),..., X\ =
fm (1)} {X1 = g1(1), ..., Xom 1= g (1)} and g(T') = gextr(f)(T).

6.2 Optimizations in UnCAL

The main advantage of having a simple formalism is
that it enables us to derive optimization rules. Opti-
mization rules for set-based query languages centered
around ext and set union U have been considered previ-
ously [Won94]. Surprisingly, they hold in identical form
for the vertical dimension, with the slight twist that
sometimes we have to restrict ourselves to vext instead
of gext. Rather than considering all optimization rules,
we shall focus on two: the first is a simple equation
pushing selections down a join tree, the second a rather
complex loop fusion, putting maximum strain on the
usage of markers in UnCAL.

Example 6.3 We start with the following simple opti-
mization rule for ext, adapted from [Won94]:

ext (A(L,t).if ptheneelsee’) (T) =
if pthen ext (A\(l,t).e) (T) else ext (A(l,t).e") (T)
(when [ and ¢ do not occur free in p)

This extends naturally to vext and gext as:

gext (\(l,t).if ptheneelsee') (T) =
if p then gext (A(I,t).e) (T') else gext (\(l,t).€’) (T)
(when [ and ¢ do not occur free in p)

Using this, we derive the classical optimization rule
pushing selections down a join tree for the vertical
dimension of UnCAL. To see how this works, consider
the following wvertical selection-join query:

traverse 1 giving X
case \a = _ then
X := (traverse t, giving Y’
case \b = _ where p(a) then
Y :={f(a,b)=>Y})

Here each edge a of t; satisfying p(a) is replaced with
a full copy of the tree t2; edges not satisfying p(a) are
removed. The copy of ¢y is obtained by replacing each
of its labels b with a new label f(a,b). To make the
query nontrivial, we assume that ¢, had initially some
markers X. The query gets translated into the fol-
lowing UnCAL expression: vextsxy (Aa. vextyyy (Ab. if

p(a) then {f(a,b) = Y} else {}) (t2)) (t1)-

The problem is that the predicate p is applied in the
inner loop, while it would be obviously less expensive to
apply it in the outer loop, as in:

traverse t1 giving X
case \a = _ where p(a) then
X := (traverse to giving Y’
case \b= _ then
Y :={f(a,b)=Y})

which is translated into vextix) (Xa. if p(a) then
vextiyy (Ab.{f(a,b)=>Y}) (t2) else {}) (t1). The rule for
if described earlier and the simple rule vext(f)({}) = {}
allows us to transform the first query into the second
one.

The second optimization rule corresponds to the
vertical loop fusion in [GP84]. Consider the expression
vext(g)(vext(f)(t)). One can visualize it as a pipeline
process in which the edges of ¢ are fed one by one into the
function f, which transforms every label into a “small”
tree f(a). The new edges b produced by f are further
fed into g, which replaces each such edge with another
“small” tree g(b). One can optimize this process by
traversing ¢ only once, and replacing every edge a with
the tree vext(g)(f(a)). This makes the intermediate
result vext(f)(t) unnecessary, and may even speed up
the computation dramatically (e.g., when some of the
g(b) trees are empty) by pruning early the computation
of vext(f). In short, we perform an optimization by
replacing vext(g)(vext(f)(t)) with vext(vext(g) o f)(¥)
(here o denotes function composition).

Getting this rule to work well was difficult until we
discovered the way in which vextx(f)(t) must interact
with markers existing in ¢, which is essentially given in
equation (1). Before listing the optimization rules, let
us consider an example.

Example 6.4 Take the query in Example 4.2, which
replaces all SpecialGuest edges with Featuring edges
in the TV Shows of the movie database, and suppose
this query defines a view T. T can be expressed as
vextsx, x,}(f)(DB), where f is graphically represented
in Figure 9. Now assume that we want to query the
view to obtain the set of all SpecialGuests in T. This
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Figure 9: Graphic representation of the functions

f and g.
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tv_show
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9

special_guest
special_guest special €
9

| =1

featuring

Figure 10: Graphic representation of the function h =
vext(g) o f.
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can be written as select {SpecialGuest = t} where
_ = SpecialGuest = \t € T or, equivalently, as:
traverse T giving Y1,Y5
case SpecialGuest = _ then
Y1 = {SpecialGuest = Y5}
case \a = _then
Yi:=Y1,Ys = {a=Yo}
This is precisely vexty, y,1(9)(T), where the func-
tion g is represented graphically in Figure 9. Query-
ing the view T entails computing the composition
vextry, v,}(9)(vextsx, x,1(f)(DB)). This is a pipeline
process as described earlier, and is equivalent to
vextz(h)(DB), where Z =Y -X ={Y;-X;,Y>-X;,Y7 -
Xs,Y5- X5}, and h is obtained by applying g locally on
the “small” trees produced by f. The best way to un-
derstand the function h is graphically (see Figure 10).
Nevertheless, we can write down the resulting query,
consisting of a single traverse expression:
traverse T giving Y7 - X7,Y5 - X1,Y1 - X0, Y5 - X
case TV Show = _ then
Y1-X1:=Y1-Xo,
Ys - X1 = {TVShow=Ys - Xa})
case Special Guest = _then
Y1 - X, := {SpecialGuest =Y, - X1 },
Y5 - X5 := {Featuring = Ys - X»})
case \l = _ then

Yi-Xy =Y Xy,
Yi-Xo =Y - Xy,
Ys - X4 :{l:>Y2X1},

Yy Xy i={l=Y, Xy}

Further optimizations are possible by “reducing” the
number of states (markers): in our example the tree
corresponding to Y; - Xo is empty, because the only
edge leaving from this “state” is an e-edge into the same
state, hence this marker can be eliminated.

We give next the optimization rules in their general
form. As mentioned earlier, all 9 rules in [Won94] apply
to the vertical operators in UnCAL. Instead of listing all
of them, we show only the most powerful ones, together
with their corresponding horizontal versions.

Theorem 6.5 The following equations hold:

ext(f)(ty Uta) = ext(f)(t1) U ext(f)(t2)

vexty (f)(t1 Qy t2) = vextx(f)(t1) Qr.y vexty (f)(t2)
ext(g)(ext(f)(t)) = ext(ext(g) o f)(t)

vextx (g)(gexty (f)(t)) = gexty.y(vextx(g) o f)(t)

The second equation emphasizes the parallel nature
of vext. We can compute vexty(f) on t; @y ta by
applying it independently on ¢; and ¢ (note that this
fails for gext), and then appending the two results. Note



how the markers interact here: ¢; has markers ), while
t2 is a Y-indexed family of trees. Then vexty(f)(t1)
has markers in X - ), hence the index in @ on the
right hand side. Since ¢ is a Y-indexed family of trees,
vexty (f)(t2) is a X - Y-indexed family of trees, obtained
by aggregating all X-indexed families of trees obtained
by applying vextx(f) to each tree in the Y-family ¢,.

The last equation is the vertical loop fusion in its
most general form: Example 6.4 is an instance of
this equation. Note that the loop fusion works even
when the first loop is a gext: the second loop however
needs to be a vext. Also note that the new loop
function, vextx(g) o f, will produce mn markers, where
m and n are the number of markers produced by f and g
respectively.

7 Conclusions and Related Work

We have adopted a labeled tree abstraction for a wide
variety of structured and unstructured data sources, and
we have shown that it is possible to develop simple query
languages with an underlying optimizable algebra for
querying and transforming labeled tree structures. We
intend to incorporate at least the comprehension based
fragment of UnQL into our existing implementation
of CPL (Collection Programming Language [Won94,
BDH"95]). However there are some important open
questions.

Syntax. The syntax for making deep queries can
probably be improved. There are deep restructuring
operations expressible in UnCAL whose translation into
traverse . .. giving ... is rather cumbersome.

Expressive power. Certain restructuring queries
appear not to be expressible in UnCAL because they
require a fix-point operation. In view of Theorem 5.1
we know that transitive closure (expressed in terms of
fixed-depth structures) is not expressible in UnQL. A
more interesting problem is a generalization of the “edge
merging” example at the end of Section 4. Merging
sibling A edges at one level leads to the possibility that
more A edges at the next level down will become siblings
that can also be merged. It is easy to see that the
result of repeatedly merging sibling A edges until no
more merges are possible is well-defined, but it does not
appear to be possible to compute this in UnQL.

Connections with “graph logic”. Another ap-
proach to querying labeled trees is to use some variety
of “graph logic” [CM90]. It is possible to express at
least the vext fragment of UnCAL in Datalog, given a
graph representation of the input tree. We represent the
tree by a set of (oid,label, 0id) triples and construct a
program that expresses an output graph as a predicate
on (oid',label,o0id") triples where oid' values are con-
structed by a Skolem function on the input oids, similar
to id-terms in F-logic [KL89]. Whether Datalog opti-
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mizations have anything to do with the optimizations
we have presented here is an open question.

Other optimizations. Examination of the exam-
ples in Section 6 will indicate that, when a schema is
present, one can obtain many useful optimizations from
“pruning” the search, i.e., not searching subtrees that
are known not to contain relevant structures. The prob-
lem here is how to describe schemas. We have seen how
to do this for relational databases, and the same idea
should generalize to object-oriented databases. How-
ever, there may be much looser notions of what a schema
is for this labeled tree model.
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