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BioKleisli: A Digital Library for Biomedical Researchers �Susan B. Davidson, Christian Overton, Val TannenDept. of Computer and Information Science & Dept. of GeneticsUniversity of PennsylvaniaPhiladelphia, PA 19104Email: fsusan,coverton,valg@central.cis.upenn.eduLimsoon WongInstitute of Systems Science,Heng Mui Keng Terrace, Singapore 119597Email: limsoon@iss.nus.sgAugust 12, 1996AbstractData of interest to biomedical researchers associated with the HumanGenome Project (HGP)is stored all over the world in a variety of electronic data formats and accessible through avariety of interfaces and retrieval languages. These data sources include conventional relationaldatabases with SQL interfaces, formatted text �les on top of which indexing is provided fore�cient retrieval (ASN.1), and binary �les that can be interpreted textually or graphically viaspecial purpose interfaces (ACeDB); there are also image databases of molecular and chemicalstructures. Researchers within the HGP want to combine data from these di�erent data sources,add value through sophisticated data analysis techniques (such as the biosequence comparisonsoftware BLAST and FASTA), and view it using special purpose scienti�c visualization tools.However, currently there are no commercial tools for enabling such an integrated digitallibrary, and a fundamental barrier to developing such tools appears to be one of language designand optimization. For example, while tools exist for interoperating between heterogeneousrelational databases, the data formats and software packages found throughout the HGP containa number of data types not easily available in conventional databases, such as lists, variants andarrays; furthermore, these types may be deeply nested. We present in this paper a languagefor querying and transforming data from heterogenous sources, discuss its implementation in asystem called BioKleisli and illustrate its use in accessing data sources critical to the HGP.�This research was supported in part by DOE DE-FG02-94-ER-61923 Sub 1, NSF BIR94-02292 PRIME, AROAASERT DAAH04-93-G0129, and ARPA N00014-94-1-1086.1



1 IntroductionA vast amount of information is currently available in electronic form with internet access. Theability to use this information involves several distinct problems: �rst, knowing where the infor-mation is that pertains to a particular area of interest; second, retrieving the information rapidly;third, e�ciently analyzing the information and potentially transforming it into a di�erent form; andfourth, viewing the results in an appropriate manner. Within a particular domain of interest, userstypically solve the �rst problem by formally or informally notifying each other of the existence ofvarious data sources through workshops, conferences, publications, registration on community webpages, etc. That is, there is general knowledge of what the various primary data sources are andsome level of documentation available on how to access the data sources and retrieve information.There may also be some general agreement on what the best mechanisms are for visualizing varioustypes of data, contributing to a solution to the fourth problem. For example, postscript �les aretypically presented using ghostview or some such display package, and 3-D chemical structuresare typically viewed using a variety of sophisticated graphical packages. However, a fundamentalbarrier exists to solving the remaining problems since the format of the data and functionality ofaccess routines for the data can vary drammatically from data source to data source. It thereforeis di�cult, if not impossible, to use a single language or access mechanism to obtain, combine andtransform data from multiple sources.A prime example of this is the Human Genome Project (HGP), whose goal is to sequence the 24distinct chromosomes that comprise the human genome, producing physical as well as genetic maps.The bene�t of such in depth understanding of human genetic makeup is to enable things like tar-geted drug development and gene therapy. Several primary sources of sequence data and citations toscienti�c literature publishing the data have been set up under the support of extensive governmentfunding (such as NIH and DOE); a number of smaller databases also exist at centers charged withsequencing a particular human chromosome; and a number of databases containing ancillary infor-mation about other model organisms, metabolic pathway information and related information arealso available. These databases are described in various journals, such as the Journal of Computa-tional Biology, and discussed widely at the relevant conferences; pointers to the web sites of most ofthese data sources are also collated on various web pages (a useful example is \Pedro's BioMolecularResearch Tools", http://www.public.iastate.edu/~petdro/research_tools.html). Thus, thelocation of most data that is relevant to biomedical researchers is known, and data is accessible bysubmitting queries by email or by remote login.In a 1985 National Academy of Sciences report, \Models for Biomedical Research: A New Perspec-tive," Morowitz et al [16] argue that biological research has reached a point where \new generaliza-tions and higher order biological laws are being approached but may be obscured by the simple massof data." The authors go on to propose the creation of a Biomatrix in which data, information andknowledge are combined to provide an integrated view of biology. However, despite the fact thatthis data is electronically available, the heterogeneity of format and limited information retrievalfacilities pose a fundamental barrier to creating the Biomatrix. Biomedical data sources includeconventional relational databases with SQL or OPM [13] interfaces, formatted text �les on top of2



Publications = f[title: string,authors: fjj[name: string,initial: string]jjg,journal: <uncontrolled: string,controlled: <medline-jta: string, % Medline journal title abbreviationiso-jta: string, % ISO journal title abbreviationjournal-title: string, % Full journal titleissn: string>> % ISSN numbervolume: string,issue: string,year: int,pages: string,abstract: string,keywd: fstringg]gDescription Notation ASN.1terminologylist fjj� jjg sequence ofset f�g set ofrecord [l1 : �1; : : : ; ln : �n] sequence(labeled �elds)variant <l1 : �1; : : : ; ln : �n> choice(tagged union)Figure 1: Sample complex type typical of ASN.1 data sources.which indexing is provided for e�cient retrieval (ASN.1 [31, 33]), binary �les that can be inter-preted textually or graphically via special purpose interfaces (ACeDB [44]), and image databasesof molecular and chemical structures. These formats have been adopted in preference to databasemanagement systems for several reasons, chief among which is that the data is complex and noteasy or natural to represent in a relational DBMS. Typical data types used in these formats includedeeply nested records, sets, lists (sequential data) and variants (union types).An example of a complex type, Publication, is shown in Figure 1. Note the nesting of a set ofkeywords (strings) within the keywd record �eld of the Publication type, the nesting of a list1 ofauthor records within the authors record �eld, and the use of a variant or \tagged union" typewithin the journal �eld representing that publications are either controlled journal entries (also avariant type), or uncontrolled entries containing the name of the person who performed the dataentry (an informal review process).While this complexity of type and operations associated with the data might naturally suggest1A list type is used rather than a set since the order of authors is very important in scienti�c publications.3



the use of an object-oriented model, at the time that many of the sequence data sources wereestablished relational systems were widely perceived as the most reliable and stable of databaseproducts. Object-oriented database products also did not at that point in time (and arguably noteven today) adapt well to schema evolutions [19]. Since schema evolution is frequent within HGPdata sources, this was problematic. Schemas evolve rapidly when scienti�c data is being modeledsince the data stored depends heavily on the experimental techniques used, and experimentaltechniques are constantly being improved. Thus the need to model complex objects, and the desireto have a system that they could adapt in the face of schema evolution led to the adoption ofexpressive formats such as ASN.1 and ACeDB. Other reasons for using formatted �les include thefact that they are accessible from languages such as Fortran and C, and a number of useful softwarepackages exist that work with these �les across a wide a variety of platforms. Furthermore, scientistscommonly operate with limited budgets and have not seen the need to invest in expensive databasemanagement systems { until recently, as the sizes of their databases has bumped up against thelimits of home-grown �le systems, and the level of funding for the HGP has increased.The use of relational systems to model such complex data has often led to fragmented, unintuitivedesigns. Several of the major HGP data sources have therefore recently been using an objectfront-end called OPM (the Object Protocol Model [13]) for their relational databases to create amore intuitive design for users. OPM is a bare-bones object model with the additional notion ofa built in protocol model to represent laboratory experiments and process ows. The most recentrelease of the Human Genome Database (GDB 6.0), a major source of HGP information, has beenimplemented in OPM using the OPM schema design tools, which map an OPM schema into anormalized relational schema with constraints. OPM front-ends can be queried using a restrictedobject query language; queries are then automatically translated into optimized SQL queries forexecution.To meet the challenge of the Biomatrix, several approaches have been taken by researchers associ-ated with the HGP (see [26] for an overview of these approaches): data warehousing, in which datafrom various data sources are converted, merged, and stored in a centralized DBMS { examplesof this are the (relational) Integrated Genomic Database (IGD) [38] and (Prolog) Genobase [35];hyperlinking approaches, in which links are set up between related information in di�erent datasources to provide browsing capabilities between databases { examples include SRS [18], WebDBget[2], the ExPASy WWW server by Bairoch, and Genome Net; and standardization of the major datasources in a common format. In fact, standardization in a relational format was as recently as onlya few years ago widely perceived within the HGP community to be the only complete solution tothe problem of the Biomatrix. In a summit meeting report published by the Department of Energy(DOE) in 1993, several data retrieval tasks that involve combining data from di�erent HGP datasources were claimed to be unanswerable \until a fully relationalized [genomic] sequence databaseis available" [17].As with any other collection of legacy systems, it is in fact unlikely that creating the Biomatrix bystandardizing on the relational model will work even if such an agreement could be reached. First,many researchers are happy with their existing formats and information retrieval tools and simplywill not switch; and second, there still remains the problem of interacting with complex analysis4



tools to add value to the data. To create the Biomatrix, it is therefore necessary to develop a systemwhich can query and transform the existing data from one complex format to another. A completequery language which operates against the existing data sources will also enable new classes ofqueries to be posed to the existing data sources since the information retrieval languages associatedwith data formats such as ASN.1 and ACeDB are typically very limited. For example, GenBank(a primary source of HGP genetic sequence data) is accessed through an information retrievalpackage called Entrez, which simply selects data through pre-computed indexes; no pruning (�eldselection) from data or joins of data can be performed. The existing information retrieval interfacesfor such data sources must therefore be augmented by a complete query language in which suchtransformations can be expressed.A major step towards enabling the development of the Biomatrix is therefore the design of alanguage for querying and transforming data that is maintained in complex data formats as well asthat maintained in conventional databases. The language should be powerful enough to performarbitrary transformations; more precisely, it should be \complete." For example, with nestedrelational data it should have the power of the nested relational algebra. We describe in section2 of this paper such a query language called the Collection Programming Language (CPL).Equally important to the expressive power of CPL is that it is amenable to optimization. It isan interesting historical note that the relational model was initially believed to be a compellinglysimple but impractical idea until optimization techniques were developed, especially for the joinoperator. Optimization techniques are even more important in a distributed environment wherenetwork delays can cause intolerable response times. In such an environment, techniques such aspipelining and parallelism should be exploited to reduce latency. These factors have been takeninto consideration in the implementation of CPL in a system called CPL-Kleisli, which is describedin Section 3.To demonstrate how CPL-Kleisli can be used in developing the Biomatrix, in Section 4 we givea brief background to the biology and data sources associated with the HGP and describe aninstantiation of CPL-Kleisli called BioKleisli, which is currently being used for informatics supportof the HGP Philadelphia Center for Chromosome 22. We also discuss how BioKleisli has been usedto answer many of the \impossible" data retrieval tasks described in the DOE summit meetingreport. It should be noted that while our examples deal mainly with relational Sybase and ASN.1data sources, the techniques work equally well with a large number of data formats we have studied,including ACE, FASTA, GCG and EMBL as well as object-oriented databases. We then discussin Section 5 a tool called BioWidget developed in at Penn for visualizing biomedical information,and discuss how it is used within BioKleisli.2 CPL: A Query Language for Collection typesThe principal idea that has guided the design of CPL (the Collection Programming Language) isthat of type orthogonality. This is an unusual approach in the design of query languages, but itis one of the major advances in recent years for programming languages in general. Since query5



languages are special-purpose programming languages, once their particularities are understoodmany ideas from general-purpose languages are seen to specialize pro�tably for query languages.This is true for concepts related to type systems, a point of view strongly advocated by PeterBuneman and his associates over the years [34, 5, 8, 4, 9, 7, 6].According to the type orthogonality principle, the design of a language is structured around itstype system. The primitives of the languages are divided in groups according to the type constructsthey support. Adding new type constructs is as easy as adding a set of primitives. The expressivepower is achieved through combinations of the primitives. A well-chosen set of primitives will avoidthe \add-on" situation often found in language design: upon realizing that there doesn't seem tobe way of programming some desired construct with what was originally proposed, the constructis added as an ad-hoc primitive.A less obvious bene�t of type orthogonality is that choosing primitives can go hand in hand withunderstanding the basic laws they obey. This is particularly relevant for query languages, wherehigh-level source-to-source transformations are essential for making many queries actually feasible.The transformation laws that govern the primitives can be applied repeatedly and in combinationwithin optimizers, thus exploiting opportunities that high-level customized transformations maymiss. This is the case with the so-called monad optimizations performed by the Kleisli system inimplementing CPL queries, a new and e�ective approach to optimizing the collection fragment ofobject-oriented queries [52].Following the type orthogonality principle, CPL is based on a type system that allows arbitrarynesting of the collection types { set, bag and list { together with record and variant types. Thetypes are given by the syntax� := bool j int j string j : : : j f�g j fj� jg j fjj� jjg j <l1 : �1; : : : ; ln : �n> j [l1 : �1; : : : ; ln : �n]Here, bool j int j string j : : : are the (built-in) base types. The other types are all constructors andbuild new types from existing types. [l1 : �1; : : : ; ln : �n] constructs record types from the types�1; : : : ; �n. <l1 : �1; : : : ; ln : �n> constructs variant types from the types �1; : : : ; �n. f�g, fj� jg, andfjj� jjg respectively construct set, bag, and list types from the type � . We have already given inFigure 1 an example of a CPL type that we call Publication.For each data type, we will have two kinds of primitives: constructors and primitives for decompo-sition. 2 By combining constructors we have a syntax for values of any type. Thus it can be arguedthat CPL includes its own data format for the data it can represent. The syntax for constructingrecords is [l1 = e1; : : : ; ln = en]; <l = e> is used for variants, fe1 : : : eng for sets; and similarly formultisets and lists. For example, a fragment of data conforming to the Publication type isf[title=\Structure of the human perforin gene",authors=fjj[name=\Lichtenheld",initial=\MG"], [name=\Podack",initial=\ER"]jjg,journal=<controlled=<medline-jta=\J Immunol">>,2Sometimes known as destructors, an overly aggressive term. \Deconstructors" would be nicer, but this term hasfound a loftier calling. 6



volume=\143",issue=\12",year=1989,pages=\4267-4274",abstract=\We have cloned the human perforin (P1) gene....",keywd= f\Amino Acid Sequence", \Base Sequence", \Exons", \Genes, Structural" g]: : :gThis example shows just the �rst publication record in a set of such records. It is easy to translatefrom ASN.1 syntax into this format, as it is for a variety of other data models. By treating arelation as a set of records, it is also straightforward to represent a relational database in thisformat. In fact, the type system of CPL (which is slightly larger than the description given here)allows us to express most common data formats including those that contain object identities andarrays, which are briey discussed later. We should also remark here that we do not, in general,represent whole databases in this format; it is used for data exchange in CPL-based systems suchas Kleisli, between the CPL-related modules and the drivers for various data sources.Coming to primitives for decomposition, we begin with records which use simple �eld selection:p.authors. Decomposition of variants is trickier and is best incorporated in a user-friendly syntaxby pattern-matching, as shown below. For the collection types (sets, bags, lists) we use monadoperations, as motivated in [4, 9]. The monad operations form the basis of CPL's implementationlanguage, NRC (the Nested Relational Calculus). A presentation of NRC is beyond the scopeof this paper (see instead [4, 9]), but the basic idea is that all three collection types (sets, bagsand lists) use \extension" as a decomposition operation with the same type structure, and, moreimportantly, obeying the same laws. As an example, extension for sets is ext(f)fa1; : : :ang =f(a1) [ � � � [ f(an) where f : � ! f� 0g. While suitable for optimizations, NRC is hard to usedirectly. For a user-friendly syntax, we follow Wadler's work [47] and use a comprehension syntax,which is then translated by the implementation into NRC, as explained in [7]. With it, the syntax ofCPL resembles, very roughly, that of relational calculus. However there are important di�erencesthat make it possible to deal with the richer variety of types we have mentioned and to allowfunction de�nition within the language. Thus, the only decomposition operation for collections isthe comprehension. As a matter of style, CPL programs become dominated by comprehensions.As an example of a comprehension, the following is a simple CPL query that extracts the title andauthors from a database DB of the type Publicationf[title = p.title, authors = p.authors]j np <� DBgNote the use of np to introduce the variable p. The e�ect of np <� DB is to bind p to each elementof the set DB. This set is traversed and the elements in the head of the comprehension (the portionto the left of j) are collected for the result. In the case of bags, duplicates are kept, and in the caseof lists the order of traversal is mantained in the result.The use of explicit variable binding (np as opposed to plain p) is needed if we are to use databasequeries in conjunction with function de�nition or pattern matching as in the example below, whichis equivalent to the one above. Note that the ellipsis \: : :" matches any remaining �elds in the DBrecord. 7



f[title = t, authors = a]j [title = nt, authors = na, : : :] <� DBgIn another example, the following two queries are equivalent to each other:f[title = t, authors = a]j [title = nt, authors = na, year = ny, : : :] <� DB, y = 1988 gf[title = t, authors = a] j [title = nt, authors = na, year = 1988, : : :] <� DB gApart from the fact that the queries above return a nested structure, they can be readily expressed inrelational calculus, or SQL. Going beyond SQL, the following queries perform simple restructuring:f[title = t, keyword = k]j[title = nt, keywd = nkk, : : :] <� DB, nk <� kk gf[keyword = k, titles = fx.titlej nx <� DB, k <� x.keywd g]j ny <� DB, nk <� y.keywd gThe �rst query \attens" the nested relation; the second restructures it so that the databasebecomes a database of keywords with associated titles. Operations such as these can be expressedin nested relational algebra and in certain object-oriented query languages. The strength of CPLis that it has more general collection types, allows function de�nition and can also exploit variants,which may be used in pattern matching:f[name = n, title = t ]j [title = nt, journal = <uncontrolled = nn>, : : : ] <� DB gThis gives us the names of \uncontrolled" journals together with their titles. The pattern <uncontrolled= nn> matches only uncontrolled journals and, when it does, binds the variable n to the name.Although variants are unusual in traditional data models, they are widely found in data formats inthe biological domain and are extremely important in CPL. In traditional data models, variants canbe circumvented to some extent by splitting sets of records up into multiple sets of di�erent typesof records. For example, Publication could be replaced two sets of records, the �rst representingpublications in uncontrolled journals and the second representing controlled journals (which inturn needs to be split in medline etc). While such representations are used routinely in relationaldatabases, it is interesting to note that they were rejected by NCBI for GenBank. Using variantsmakes the Publication type signi�cantly more intuitive and natural, and they are easily supportedwithin a query language as CPL demonstrates. The object-oriented data model has other ways ofcircumventing variants, based on inheritance but they seem also quite arti�cial [15].CPL supports �rst-class function types, hence higher-order functions, but in this paper we havechosen to present only the �rst-order fragment, without explicit function types. For this fragment,functions can be regarded as parameterized macros. Note however that this language is still higher-order in the sense embodied in the comprehension construct. The syntax of functions is given bynx)e, where e is an expression that may contain the variable x. We can give this function (or anyother CPL expression) a name with the syntax de�ne f == e which causes f to act as synonymfor the expression e. Thus, the titles of papers relating to a given keyword can be expressed as thefunction de�ne papers about == nx )fpj np <� DB, x <� p.keywdgPattern matching may also be used in function de�nition, using a vertical bar \j" to separatepatterns:de�ne journal == <uncontrolled = ns> )[name=s, type="unctrl"]j <controlled = <medline-jta = ns>> )[name=s, type="Medline"]8



j <controlled = <iso-jta = ns>> )[name=s, type="ISO"]j <controlled = <journal-title = ns>> )[name=s, type="Full"]j <controlled = <issn = ns>> )[name=s, type="ISSN"]At the risk of some confusion and loss of information, this function �nds the identi�er or title of ajournal. We may use this function in an expression such asf[title=t, name =journal(v).name, type=journal(v).type] j [title=nt, journal = nv, : : :] <� DBgwhich gives us another example of transforming into a relational database format.Arrays. Arrays are commonly found in scienti�c data formats. While no information is lostwhen they are represented as lists, comprehensions on lists do not conveniently express the varietyof operations needed on arrays. The problem of �nding the right primitives for array manipulationin a query language has been recently addressed by Libkin, Machlin, and Wong [24] who treatmulti-dimensional arrays as partial functions of certain �nite domains. The basic primitive is anarray \tabulation" construct, [j e j i < n j], which is essentially a function de�nition together withan upper bound for the index (which ranges between 0 and n� 1). There is also subscripting, A[i],and an operation that gives the size of the array, len(A). (This is syntax for one dimension, butthere are corresponding constructs for arbitrary �nite dimensions.) As an example, the followingexpression extracts the even-indexed elements of an array A:[j A[2 � i] j i < len(A)=2 j]:A prototype system that supports an extension of CPL with arrays has been implemented [24].Array operations are available in the latest CPL-Kleisli version as complex object library calls.Object Identity. While ASN.1 illustrates the complex types typically found in HGP databases,other databases and data formats such as ACeDB also make explicit use of object identity. Forquerying databases with object identity the type system of CPL can be extended with a referencetype and the language extended to include a dereferencing operation and a reference pattern. Notethat this does not give the language the power to create or update references. This approach can beextended for querying object-oriented databases by adding recursive types. Interfaces to ACeDBdatabases and Shore [11] have been built with this technique [20].It is also possible to use CPL for creating and populating an object-oriented database. For somesystems (such as ACeDB) we can use a text format for describing a whole database in which theobject identi�ers are explicit values. We can then generate such �les with the existing machineryof CPL together with some output reformatting routines. For object-oriented databases that hidethe management of object identi�ers, it is usually an easy matter to make CPL generate its outputpackaged as a sequence of updates for OODB system that we wish to populate.These examples illustrate part of the expressive power of CPL. A more detailed description of thelanguage is given in [7] and the theory behind it is presented in [9]. An important property of9



NRC and hence of comprehension syntax is that it is derived from a more powerful programmingparadigm on collection types, that of structural recursion [3]. This more general form of com-putation on collections allows the expression of aggregate functions such as summation, as wellas functions such as transitive closure, that cannot be expressed through comprehensions alone.The advantage of using comprehensions is that they provide a user-friendly syntax but are stillequivalent and easily translated to NRC which has a well-understood set of transformation rules[52, 46, 45] that generalize many of the known optimizations of relational query languages to workfor this richer type system. It is not clear how such optimizations can be realized with structuralrecursion. Most of the aggregates however can be formalized as monad algebras and the optimiza-tion rules for monads generalize for these [23], a promising avenue for the optimization of aggregatequeries.3 KleisliCPL is implemented on top of an extensible query system called Kleisli3, which is written entirelyin SML [29]. The current implementation of CPL which is being used in support of the HGP isshown in Figure 2. Kleisli is extensible in many ways: It could be used to support many otherhigh-level query languages by replacing the CPL module. We call the current prototype CPL-Kleisli to distinguish the low-level user interface language being used. CPL-Kleisli could be alsoused to support many di�erent types of external data sources by modifying the drivers. The driversthat we have currently implemented (Sybase, ASN.1, ACeDB, BLAST and OPM) are su�cient forconnecting to the primary data sources associated with the HGP, and form the basis of BioKleisli.Furthermore, the optimizer of Kleisli can be customized by adding di�erent rules and applicationstrategies.The core of the CPL-Kleisli system is divided into two main components, as shown by the dottedline in Figure 2. The �rst component provides high-level language support and consists of theCPL module, the type module, the NRC module, and the optimizer. The second component isthe query engine and consists of the data driver manager, the primitive manager, and the complexobject library.When a query is submitted to CPL-Kleisli, it is �rst processed by the CPL module which translatesit into an equivalent nested relational calculus (NRC) expression. The abstract calculus NRC isbased on that described in [9], and is chosen as the internal query representation because it is easy tomanipulate and amenable to machine analysis. It should be noted that the same approach is takenby many relational systems by translation to the relational algebra or to other more convenientformalisms. The NRC expression is then analyzed by the type module to infer the most generalvalid type for the expression, and is passed to the optimizer module. Once optimized, the NRCexpression is then compiled by the NRC module into calls to the complex object library. Theresulting compiled code is then executed, accessing data drivers and external primitives as needed3The system is named after the mathematician H. Kleisli, who discovered the characterization of monads thatplays a central role in the manipulation of sets, multisets and lists in our system.10
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through pipes or shared memory.A few comments on these modules are in order.The CPL Module implements CPL by providing a parser for CPL programs and translatingthem into NRC (see [7] for details). Note that Kleisli can be used to support many di�erent high-level query languages by replacing this module. For example, it would be quite easy to build anSQL-Kleisli or an OQL-Kleisli [12] simply by implementing a parser for these languages, and byimplementing their translation into NRC.The Type Module implements a parametric type system that supports record polymorphismas described by [21]. It contains routines for type uni�cation as well as type inference.To illustrate the type system, let us go back to an example presented in the previous section.de�ne papers about ==nx )fpj np <� DB, x <� p.keywdgRecall the de�nition above, where DB is assumed to have type Publications. Our system infers thatthe function papers about has type string ! Publications, discovering that the variable x must havethe same type as the keywd �eld of a publication record and that the output must have the sametype as DB.Now consider a generalization of papers about in which DB is also passed as an input argument:de�ne papers about' ==[search key = nx, database = nDB ])fpj np <� DB, x <� p.keywdgThe type module infers that papers about' has type[search key : 0a; database : f[keywd : f0ag;0 b]g] ! f[keywd : f0ag;0 b]gThe structure of the de�nition of papers about' imposes some constraints on the structure of theinput and these constraints are reected in the above inferred type. Namely, the database �eld ofthe input must be a set of homogeneous records having a partially determined type 0b, which hasat least the �eld keywd, which in turn must be a set of objects having an undetermined type 0a;in addition, the search key �eld must have the type 0a; and lastly, the output must have the sametype as the database �eld of the input.The 0a above is a type variable and it can be instantiated to any type. The 0b above is also atype variable, but it has been constrained so that it can only be instantiated to any record typehaving the �eld keywd. A type having type variables is called a polymorphic type. If a function haspolymorphic type, then it can be applied to any input whose type is an instance of the polymorphictype. Our polymorphic type is also parametric [28]: All occurrences of the same type variable must12



be instantiated consistently. That is, if an occurrence of 0a is instantiated to int, all other occurrencesof 0a must also be instantiated to int.For example, papers about' can be applied to [search key = "Exons"; database = DB], where DBconforms to the Publication type; in this case the output is also of type Publication. The samefunction could also be applied to an input such as [search key = 1; database = FOO], where FOOis a database of type f[keywd : fintg]g. In this case the output also has type f[keywd : fintg]g.There are two points worth noting here. First, FOO and DB have di�erent types, but the functionpapers about' works on both of them, illustrating the power of polymorphism and our ability towrite queries that can survive many schema changes of the data sources. It is possible to de�ne inan object-oriented language like C++ a function that acts polymorphically; however, its type mustbe explicitly declared, as opposed to being inferred. Second, the output type is always the same asthe database �eld of the input type, illustrating the accuracy of parametric polymorphism. It turnsout that it is impossible to achieve this e�ect in general in an object-oriented language like C++,whose type system su�ers from the defect of losing type information [10].The NRC Module implements the internal implementation language NRC. It provides expres-sion manipulation routines, which are heavily utilized by the optimizer module, as well as routinesfor compiling NRC expressions into program calls to the Complex Object Library. The expressionmanipulation routines include useful operations such as testing equivalence of expressions, extrac-tion of free variables, renaming of bound variables, extraction of subexpressions of certain forms,expression substitution, pretty printing, testing for certain properties, etc., which are designed tosupport the rapid development of new rewrite rules.The Optimizer consists of an extensible number of phases, each of which consists of a rule baseand a rule application strategy. The system currently has six basic rule application strategies suchas one that applies rules in a top-down manner, one that applies rules in a bottom-up manner, onethat applies rules only to maximal redices, and so on. It also has several rule bases for optimizationssuch as �lter promotion, pipelining, motion of invariant codes, migrating joins to external servers,and so on. More rule bases and strategies can be inserted to exploit the capabilities of new datadrivers and new primitives as they are added to the system.Optimizations in Kleisli can be grouped into two categories: \monadic optimizations", or rewriterules which fall out from the equational theory of monads on which CPL is based, and \non-monadic optimizations", which introduce new operators rather than merely rewriting expressionswithin NRC. Some examples of monadic optimizations include:� Vertical loop fusion, which combines two loops into one to reduce the amount of intermediatedata. It is applicable when the �rst loop is a producer and the second loop is a consumer.� Horizontal loop fusion, which combines two loops into one. It is applicable when there are twoindepedent loops over the same set: Instead of �rst doing one loop and then the other loopin a process requiring the set to be traversed twice, both loops are performed simultaneously.13



� Filter promotion, which corresponds to migrating a piece of invariant code out of a loop.� Reducing the size of intermediate data by reducing the number of �elds, which corresponds tomoving projections down to intermediate results and base relations in the relational algebra.Details of these optimizations are beyond the scope of this paper (see [51, 52]), however, the impor-tant thing to notice is that the monadic optimizations generalize many known optimizations for therelational algebra to complex objects. Moreover, they allow us to move the largest possible SQLsubquery of a CPL expression to the relational server, minimizing the amount of data transferedover the net and taking advantage of the powerful commercial optimizers of those systems.The most important of the non-monadic optimizations are dedicated to improving the performanceof joins across data sources, that is, joins that cannot be moved to database servers and must beperformed locally. To do this, two join operators have been added as additional primitives to thebasic Kleisli system: the blocked nested-loop join [22], and the indexed blocked-nested-loop joinwhere indices are built on-the-y (this is a variation of the hashed-loop join of [30]). The join rule-set is dedicated to recognizing under what conditions to apply which join operator. For example,the indexed join can be used only if equality tests in the join condition can be turned into indexkeys. In addition, the optimizer also parallelizes joins involving remote sources to reduce latency.As the system is fully compositional, the inner relation in a join can sometimes be a subquery.To avoid recomputation, we have therefore also introduced an operator to cache the result of asubquery on disk. Rules to recognize when the result of an inner subquery can be cached mustthen check that the subquery doesn't depend on the outer relation.More complete examples of non-monadic optimizations can be found in [53, 52].The Complex Object Library provides routines for the manipulation of sets, bags, lists,records and variants, and forms the core of the query execution engine. The manipulation routinesare and are designed according to the principles of structural recursion [9]. Support is also providedfor data parallelism and lazy evaluation.The PrimitiveManager Module This module implements an environment for managing prim-itives de�ned within CPL (macros) as well as primitives imported from external systems. Forexample, external software such as sequence analysis routines and image analysis routines can beused as �rst-class citizens in CPL once they have been registered with the primitive manager.The primitive manager maintains the type and CPL de�nition of all macros, the CPL de�nitionbeing used for optimization as macros are unfolded within queries. CPL-Kleisli also providesa \materialize" command. When a user materializes a macro, compiled code is produced andrecorded by the primitive manager. From then on, the materialized macro behaves like an externalblack-box primitive.Since an external primitive is implemented externally and imported into CPL, its type and compiledcode must be maintained by the primitive manager. For primitives written in SML, the compiled14



code can consist of the entire external function de�nition. Primitives written in other languages,such as C, must be wrapped in an SML wrapper which calls the external software using standardthings like the C interface to SML and system calls. The compiled code of this wrapper is thenmaintained by the primitive manager. Information about where the software is and how it canbe run must be available to the SML wrapper either by hardwiring it into the wrapper code, orobtaining it indirectly from a Unix environment, an external �le or as input arguments when theprimitive is invoked.Although no optimizations that require access to the code of external functions can be performed,the primitive manager allows primitives to be annotated with various properties such as whetherit is commutative, associative, idempotent, expensive, etc. These annotations can be used byoptimization rules to optimize subexpressions involving these primitives. For example, a rule forconstant-folding will optimize ((5 + x) + 6) to (11 + x), by checking that the imported primitive\+" is annotated to be commutative and associative.The Driver Manager Module provides an environment for managing data drivers for exter-nal data sources. In the BioKleisli implementation illustrated in Figure 2, drivers are providedto Sybase, ASN.1-Entrez, OPM and ACeDB databases as well as the BLAST sequence analysispackage. To access an external data source, Kleisli submits a request to the corresponding datadriver. The driver forwards the request, possibly after some translation, to the data source. Whenthe data source responds, the data driver passes the response back to Kleisli in an agreed uponexchange format. Currently, all our drivers uses the same self-describing data exchange format.New drivers can be added to the system by registering them with the Data Driver Manager.In contrast to primitives, data drivers have state, e.g. in the form of socket connections, which isalso managed by the data manager module. For each data drive, the manager maintains:1. Its input type.2. A function to produce the output type of a driver call. The function is provided with theNRC-representation of the input argument to the driver call during type inference (i.e. atcompile time). Note that the output type of calls to a driver may vary. For example, in oneSybase call, the query may produce a relation with two columns and in another call the querymay produce a relation with three columns.3. A suggested concurrency level. Since many DBMS are multi-user systems, it is possible tomaintain multiple connections against a single server. These connections can be used tointroduce parallelism to the execution environment. The driver manager will try to keep asmany connections to the drivers active as suggested by this level.Further details on Kleisli can be found in the reference manuals [50, 49].The ease with which Kleisli can be modi�ed has proved extremely useful as various extensions toBioKleisli and CPL have been made. Adding new drivers (such as generic Oracle and ACeDB15



drivers) and adding new non-monadic optimization techniques (such as a semi-join operator) hasbeen fairly routine. We are also exploring using statistical optimization techniques such as size andselectivity to re-order joins across multiple databases and to \engineer" several stereotypic queriesin BioKleisli (see Section 4). For example, the same data is replicated at di�erent data sources;however, the access times for obtaining data and the capabilities of the server varies drammaticallyfrom site to site. Results of these experiments have currently been hard-coded into the stereotypicqueries; at the same time we are exploring ways of encoding this knowledge in the optimizationrules.We have also found it relatively easy to extend CPL in various ways. One extension is the additionof arrays [24], which entailed de�ning the primitive operations on arrays (see Section 2) and theirassociated optimization ruleset. We are now extending CPL so that we can connect to object-oriented databases by de�ning a new abstract data type { reference { together with a dereferenceoperation and equality.4 BioKleisli: Towards the BiomatrixBioKleisli is a customization of CPL-Kleisli which was developed in 1994 and is currently beingused both for informatics support of the Philadelphia Center for Chromosome 22 as well as forthe wider HGP community. There are two primary modes of use of the system: through the CPLinterface, and through a number of multidatabase user views.CPL is a compact, complete language for working with deeply nested complex data types. Dueto its close syntactic ties with the relational calculus, most database programmers �nd it easy toprogram in. However, most users of BioKleisli are not database programmers and prefer a moreintuitive (if limited) point and click type of interface. We have therefore put together a number ofstereotypic parameterized queries (or multidatabase user views) and made them available over theWeb. The queries appear as simple GUIs such as the one shown in Figure 3.4 Implementing thesescreens involves �ring o� CPL queries using the input parameters speci�ed by the user.The stereotypic queries were originally drawn from the list of impossible queries published by DOE,and have been augmented on-demand from the HGP user community. The signi�cant interest inthis system is testi�ed to by the tremendous increase in Web hits to our site, which has gone from19 hits in July 1995 to 683 hits in July 1996.To give the avor of how BioKleisli is being used and why these stereotypic queries are interesting,we start with a brief introduction to the biology behind the queries and the data sources involved.We then outline the stereotypic queries, and describe in detail how one of them is implemented.4This executable form along with those associatd with the queries below can be found athttp://agave.humgen.upenn.edu/cpl/cplhome.html. 16



Figure 3: Sample View Interface4.1 A Brief Biology LessonIn bacteria and higher organisms, genetic information is recorded in DNA (deoxyribonucleic acid), along chain polymer composed of units or bases drawn from the four deoxyribonucleotides adenosine(A), guanine (G), cytosine (C), and thymidine (T). DNA is normally found as a double-strandedhelix with the two strands running in opposite directions and held together by bonds betweencomplementary A and T, or G and C pairs, where one member of the pair is on each strand(Figure 4D). Exactly the same information is contained in each DNA strand, an important propertyduring cell division when the complement of each strand is synthesized to form two copies of theoriginal DNA which are then partitioned into the two new daughter cells. For the purposes of thispaper, we can ignore the chemical properties of DNA and its constituent subunits and simply viewit as a string of characters over the alphabet A,G,C,T.DNA of up to several hundred million characters in length is packaged by structural proteins to formchromosomes. Figure 4A and B show the 24 distinct chromosomes (two sex chromosomes, X and Y,plus twenty-two others) found in humans. Figure 4C is an ideogram of a typical human chromosome(number 15) showing the alternating dark and light bands visible under a microscope when thechromosome is stained. Each chromosome has a unique banding pattern which is described by a(more-or-less) standard nomenclature adequate for both normal and abnormal chromosomes.The most important information recorded in DNA is that for genes, which encode the instructionsfor building proteins. Proteins are the workhorses of the cell, performing the primary enzymaticand structural functions required for life. Like DNA, they are long-chain polymers, in this caseformed from a set of 20 distinct amino acids. Proteins are synthesized from the information in genes17
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Figure 4: Physical Mapping of a Chromosomein a two step ampli�cation process depicted in Figure 5. The �rst step, transcription, copies theinformation in a gene to an initial RNA molecule (RNA or ribonucleic acid is very similar to single-stranded DNA) which is then edited to form messenger RNA (mRNA) by removal of introns () andthe addition of a tail of A subunits. The average size of mRNAs in higher organisms is 1200-1500nucleotides. The mRNA is then translated into protein by cellular machinery which reads thesequence in blocks of three nucleotides. The mapping from nucleotide triplets to amino acids ishighly conserved throughout all living organisms.It is the ultimate goal of the HGP to determine the complete three billion long sequence of theDNA contained in the human genome and to sequence the genomes of a number of importantmodel organisms including yeast, the fruit y D.melanogaster, the nematode C.elegans, and mouse.Sequencing DNA means determining the exact order of A's, C's, T's, and G's on the string. Al-though there are techniques for directly sequencing short lengths of DNA (approximately 400 to500 bases), current methods are not practical for sequencing an entire chromosome at one time.Consequently the HGP set mapping the chromosomes as its initial goal to be followed by large-scale,high-throughput sequencing. Mapping involves ordering unique markers along the chromosome touse as landmarks to orient sequencing projects and more immediately to aid in localizing genes.Large-scale mapping projects have already proven extraordinarily successful, leading to the discov-18
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Figure 5: Physical Mapping of a Chromosomeery of numerous genes involved in human disease, and preparing the stage for the high-throughputsequencing phase of the HGP which is now underway.Mapping. A variety of di�erent techniques are used to order markers along the chromosome.These can be broken down into two main categories: genetic and physical mapping. Genetic map-ping determines the order and relative distance between markers for observable traits such as thosefor genetic diseases or, more recently, for variations in DNA sequence among individuals. Physi-cal mapping orders markers based on the characteristics of chromosomes or the underlying DNAwithout reference to genetic variations among individuals. For example, the banding pattern ofchromosomes is a low resolution form of physical mapping. Far higher resolution mapping can behad through techniques using cloned probes and Sequence Tag Sites (STS's). In these approaches,the chromosome of interest is randomly fragmented into overlapping pieces of experimentally ma-nipulable size (50,000-1 million bases). These pieces are then reassembled into a linear orderingrepresenting their order in the original DNA string. To discover the relative ordering of fragments,it is crucial to be able to ascertain when the sequence of two pieces of DNA overlaps, that is, whenthe pieces come from neighboring sites in the original string. Sequence overlap between two piecesof DNA can be detected by showing that their sequences contain the sequence of a third, much19



shorter fragment, called a probe. The linear ordering on the pieces yields a linear ordering on theprobes whose sequence is contained in them, and vice versa. The probes then become the desiredmap landmarks and may be used to sequence areas of special interest, such as regions thought tobe related to inheritable disease.Physical mapping and its relationship to DNA sequence is illustrated in Figure 4C-F. At the top ofthis �gure, a chromosome is depicted with the banding patterns visible under a microscope, whichthemselves function as landmarks at the coarsest level of granularity. Vertical lines denote markers(probes). Horizontal lines denote larger, overlapping DNA fragments whose sequence containsmarker sequence. Below, the sequence of a tiny substring of DNA is shown.4.2 BioKleisli Data SourcesAs illustrated in Figure 2, BioKleisli currently connects to Sybase, ASN.1-Entrez, ACeDB andOPM database systems as well as the BLAST sequence analysis package. This capability, whichis still only in its initial stages, provides access to many of the major databases and resourcescommonly requested in the HGP. For the purposes of this paper, we will focus on the followingdata sources:� The community archival nucleic acid sequence data banks,GenBank, EMBL, DDBJ, andGSDB. GenBank (National Center for Biotechnology Information (NCBI), National Libraryof Medicine, USA), EMBL (European Molecular Biology Laboratories, EBI, UK) and DDBJ(DNA Data Bank of Japan, Japan) are part of a worldwide consortium for archiving andcurating the DNA and RNA sequence data for all organisms and selected ancillary informa-tion. The common exchange and distribution format for sequence data is as a at �le, buteach resource maintains its own internal format and access capabilities. GenBank for exam-ple uses the data exchange format ASN.1 as their internal data model and has developeda custom information retrieval system, ASN.1-Entrez, for WWW-based access data access.The National Center for Genome Resources (USA) maintains a mirror of GenBank, GSDB,as a Sybase database. GSDB is accessible via the WWW through an SQL interface. Whilethe size of the sequence databases are relatively modest at present, less than 5 gigabytes inat �le format, the rate of growth has been exponentially for over a decade with a doublingtime of about 18 months.� The Genome Database (GDB [37]), located at The Johns Hopkins University, is a centralrepository of information on the physical and genetic map of the human genome. It is thesole integrated source of mapping information but it draws from a number of independentdatabases on chromosome speci�c or technique oriented information on mapping. Unlikesequencing data, mapping information is intertwined with speci�c experimental protocolswhich has led to considerably more complex data representation requirements. The latestrelease of GDB (ver 6.0) has been completely reimplemented from a Sybase version to anOPM version. Although it is still possible to query the underlying relational form of GDB20



6.0 by SQL, the primary form of access to GDB 6.0 is through an object broker which tra�csin the OPM query language.� BLAST is a software package for performing comparisons of a query nucleic acid or proteinsequence against a database of sequences (GenBank for instance). It employs a string compar-ison algorithm tuned for biological sequences. Conceptually, BLAST searches resemble textretrieval system. The output from BLAST is formatted in either a verbose human readableform or as ASN.1 data structures.The Sybase driver can be used without modi�cation to connect to any Sybase relational database.The driver takes as input any TransactSQL statement (e.g., an SQL query), and returns a CPLset, bag, or list equivalent to the resulting relational table. Generally the SQL commands receivedby the driver are generated by CPL's optimizer in the course of pushing joins, selections, etc. tothe Sybase server. Thus in most cases the SQL statements are guaranteed to be correct. In theremaining cases, the driver supports a protocol by which it can communicate errors back to CPL.Furthermore, it supports a number of high-level (i.e. not expressed in SQL) metadata querieswhich allow CPL to retrieve schema information in a manner speci�c to relational databases, butnot speci�c to any particular relational database. This is because the driver presents an abstractrelational view of the metadata. To take full advantage of this feature we have implemented a CPLmodule which caches relational metadata locally, allowing the system to typecheck user-speci�edSQL statements prior to passing them to the drivers.The ASN.1-Entrez driver is used to connect to ASN.1-GenBank [33]. We have developed asimilar driver to access BLAST servers. These drivers [33, 31] are signi�cantly more complicatedthan the Sybase one because there is no real query language interface for ASN.1. The selection ofASN.1 values from Entrez is accomplished through pre-computed indexes in the style of informationretrieval systems, i.e. one whose syntax simply uses boolean combinations of index-value pairs. Nopruning or �eld selection from values can be speci�ed; e.g. if the value were a set of records therewould be no way to specify a projection over certain �elds of the records in that set. Although suchpruning could be done to an ASN.1 value after it has been retrieved into the CPL environment, weminimize the cost of parsing and copying ASN.1 values by pruning at the level of the ASN.1 driver.For this purpose, we have developed a path extraction syntax that allows for a terse description ofsuccessive record projections, variant selections, and extractions of elements from collections.The OPM/Object Broker driver is used to connect to any database operating under GDB's ObjectBroker architecture (i.e. GDB 6.0). The object broker is based on OPM and hence the driveraccepts queries in the OPM query language. In a way similar to the Sybase driver, the OPM drivercan also perform metadata queries, something which the OPM query language does not support.The driver uses GDB's \OBMETA" library for this purpose, which unfortunately requires localcopies of all the schema �les, making the consistency issue a problem. However, the Object Brokerclient libraries do support a mode in which the individual components (OPM objects in this case)of a query result can be processed as soon as they are available. This is ideal for CPL's pipeline-oriented optimization rules, which strive to minimize query response time in addition to minimizingoverall query time. 21



In contrast to the generic Sybase data driver, the ASN.1 and OPM data drivers are much moredatabase speci�c. The nature of NCBI's ASN.1 libraries make it very di�cult to write source codethat is divorced from the schema of the data being accessed. The situation is similar to that forOPM, in which a schema �le is read, processed, and stored in some compiled format that mustsubsequently be linked to by applications querying the database (i.e. OPM's "query translator"module.Numerous other drivers also exist, including an ACeDB driver, an ObjectStore driver, an Oracledriver, and a WWW driver, the latter capable of retrieving documents through the http protocol.4.3 Answering the \Unanswerable" QueriesUsing BioKleisli, we have put together several stereotypic biomedical database queries and madethem available over the Web. Since users of this HGP digital library system are not databaseexperts, we have paid careful attention to developing \multidatabase user-views" of the availablebiological data sources. Seven major classes of such parameterized queries are currently available,with new ones being added by request from the user community. They were chosen to test systemperformance in formulating and executing distributed queries while providing functionality to thegrowing HGP user community. These queries are shown below with the databases accessed indicatedin parenthesis.� Gene/Location query: \Find protein kinase genes on human chromosome 4." (GDB.)� Sequence/Size query: \Find mapped sequences longer than 100,000 base pairs on humanchromosome 17." (GDB and GSDB.)� Mapped EST query: \Find ESTs mapped to chromosome 4 between q21.1 and q21.2." (GDBand GSDB.)� Primate alu query: \Find primate genomic sequences with alu elements located inside a genedomain." (BLAST and GSDB.)� BLAST Sequence/Feature query: \Find sequence entries with homologs of my sequence insidean mRNA region." (BLAST and GSDB.)� Human genome map search: \Find human sequence entries on human chromosome 22 over-lapping q12." (GDB, GSDB and ASN.1 GenBank.)� Non-human homolog search: \Find information on the known DNA sequences on humanchromosome 22, as well as information on homologous sequences from other organisms."(GDB, ASN.1 GenBank and BLAST.)To illustrate how BioKleisli is used to answer these queries, we will go through the last query (non-human homolog search) in some detail. The strategy taken is to access GDB for information aboutthe GenBank identi�ers of DNA sequences known to be within the chromosomal region of interest22



(in this case, the whole of chromosome 22). GenBank is then queried to retrieve the sequence entriesalong with precomputed links to homologous sequences (i.e., sequences with signi�cant similarity tothe original). Only links to non-human organisms are selected. To produce the correct groupingsfor this query, the answer is printed as a nested relation.The GDB Query. Since a Sybase driver is registered within BioKleisli, driver functions can beused as primitives in CPL to access GDB. For example, the following CPL code opens a sessionwith GDB, and de�nes a function Loci22 which ships the given SQL query to GDB. The SQLquery joins three tables in GDB (locus, object genbank ref and locus cyto location) together oncommon identi�er �elds, and extracts the locus symbol from the locus table and genbank ref fromthe object genbank eref table. The locus cyto location table is used to restrict entries to lie onchromosome 22. We shall shortly see how that this rather complex SQL query is actually generatedfrom CPL by the optimizer in BioKleisli.de�ne GDB == Open-Sybase([server=\GDB",user=\cbil", password=\bogus" ]);de�ne Loci22' == GDB([query= \select locus symbol, genbank reffrom locus, object genbank eref, locus cyto locationwhere locus.locus id = locus cyto location idand locus.locus id = object genbank eref.object idand object class key = 1and loc cyto chrom num = '22' "]);In this example, the user has completely speci�ed the query in SQL. However, the monadic opti-mizations of Kleisli together with some additional rewriting rules can move selections, projectionsas well as joins from CPL into Sybase queries. In fact, it has been proved [52] that the optimizeris able to push any subquery not involving nested relations and not using powerful operators (suchas group-by) that involves a single relational server down to that server.To write the query entirely in CPL, we �rst de�ne an SQL-template function GDB Tab for queriesagainst GDB:de�ne GDB Tab == nTable )GDB([query=\select * from " ^ Table ]);(where ^ denotes string concatenation). The previous query, Loci22', can now be written entirelywithin CPL as:de�ne Loci22 == f[locus symbol= x, genbank ref= y]j[locus symbol=nx,locus id=na, : : :] <� GDB Tab(\locus"),[genbank ref=ny,object id=a,object class key=1, : : :] <� GDB Tab(\object genbank eref"),[loc cyto chrom num=\22", locus cyto location id=a, : : :] <� GDB Tab(\locus cyto location")g;23



The optimizer migrates not only all selections and projections to the Sybase server, but also movesthe local joins to joins on the server where pre-computed indexes and table statistics may beexploited. Thus, although the second version of Loci22 appears to send three queries to GDB andperform the join within CPL, the optimizer would reconstruct it as in the �rst version, resulting ina single SQL query being shipped.The ASN.1 GenBank Query. To illustrate use of the ASN.1 driver functions, suppose we wantthe following information:Retrieve equivalent identi�ers corresponding to the accession number M81409.de�ne GenBank == Open-ASN([server=\NCBI", user=\cbil",password=\bogus"]);de�ne entrez-get-na-summary == naccession )GenBank([db=\na", select= \accession " ^ accession, path=\Seq-entry", args= \-D" ]);de�ne ASN-IDs == naccession )f x.uidj nx <� entrez-get-na-summary(accession)gASN-IDs(\M81409");The driver responds to the ASN-IDs(\M81409") query by sending the index lookup select=\accessionM81409" to the nucleic acid division in Entrez (db=\na" { this division contains GenBank), whichreturns the entries with accession number M81409. The \-D" ag tells the Entrez driver to extractonly summary information for records having this accession number. The summary information isa record, one of whose �elds (uid) is the ASN.1 sequence identi�er requested.Although not shown in this example, the optimizer migrates projections on ASN.1 data from CPLto Entrez as was done with the Sybase driver. Although general rewrite rules for the translation ofCPL queries to path expressions are not available, we are currently investigating type inferencingfor path expressions in order to provide such a translation.Revisiting the non-human homolog search query. We are now in a position to put thesetwo pieces together and answer the non-human homolog search query. Loci22 returns accessionnumbers for known DNA sequences on chromosome 22. ASN-IDs returns ASN.1 sequence idsfor given accession numbers. To �nd homologous sequences for these ASN.1 entries, we use pre-computed similarity links which are available in Entrez via the function NA-Links. NA-Links takes anASN.1 sequence identi�er and returns a set of records describing linked entries. The �nal solutionto our query can then expressed using these functions as:f[locus=locus, homologs=NA-Links(uid)]j nlocus <� Loci22, nuid <� ASN-IDs(locus.genbank ref)gNote that the query itself is quite simple, and that most of the e�ort was spent �guring out wherethe relevant data was stored.Performance results. To give an idea of the size of the result of the non-human homolog searchquery, there are approximately 2,000 locus entries on chromosome 22 (i.e. generated by the Loci2224



call). Each of these entries results in about 10-15 homologs being scanned by the NA-Links call, ofwhich about 5 are non-human entries. So there are about 10,000 (nested) tuples in the result.As would be expected, optimizations have a profound impact on the performance of this query,particularly on that for Loci22 since it involves a relational server. When Loci22 is implementedas written it involves three loops over the three GDB tables. The locus table would be retrievedin one access to GDB; each tuple in the locus table would then generate two additional accesses toGDB to �nd entries in object genbank eref and locus cyto location that matched on the identi�er�elds. The resulting thousands and thousands of accesses to GDB not only takes forever but getsyou kicked out of their system.Migrating selections to GDB causes only those entries that are on chromosome 22 to be re-trieved from locus cyto location; each of those entries then causes separate accesses to the ob-ject genbank eref and locus tables. Total execution time of the query is roughly 602 seconds, withthe response time to the initial result record being 270 seconds.Migrating both selections and projections to GDB reduces the size of intermediate results andhence communication time from the server. Total execution time of the query becomes roughly 118seconds, with the response time to the initial result record being 66 seconds.When the join is also performed at the GDB server, the execution and response times becomeabout 10-15 seconds. Most of this time is spent parsing the result.5 VisualizationAs in most disciplines, the graphical display of biological data is critical if users are to gain full valueof the information. A considerable amount of biological data relates to structural features at themolecular, cellular, tissue and organism levels, and lends itself naturally to graphical representation.Even non-structural information, such as biochemical and genetic pathways, can be rendered in anintuitive graphical form. Not surprisingly, numerous graphical user interfaces (GUIs) have beenbuilt either for single applications or as front-ends to various digital libraries.In the area of genomics, one of the most successful digital libraries has been the ACeDB familyof databases. ACeDB owes much of its popularity to a well-thought out and comprehensive setof GUIs that include database schema and instance browsers, and integrated displays for geneticmapping, physical mapping, and sequence data among others [44]. However, as is the case withvirtually all GUIs developed in the genomics community, the ACeDB GUIs are not portable acrossapplications and are in fact closely wedded to the underlying database schemas. During the lastseveral years, work in our group has culminated in the creation of a set of GUIs written in Java,which were distilled from previous work done in Motif, Postscript [39], and tcl/Tk [40]. This GUIset, termed bioWidgets, was speci�cally designed with the goals of portability, reusability andrapid prototyping in mind. The last is particularly important in an environment where requirementschange frequently in response to the introduction of new experimental technology or new strategicapproaches to experimentation. As an outgrowth of this work, bioWidgets are used extensively in25



the online BioKleisli stereotypic queries previously described.The overarching philosophy behind bioWidget is the creation of adaptable, reusable software, de-ployed in modules that are easily incorporated in a variety of applications, and in such a wayas to promote interaction between those applications. Many genome centers create such customsoftware when existing frameworks do not address their requirements. Largely because of the needfor rapid development, the degree of customization of the tools, the availability of local support,the pressures to move on to the next application, and the lack of incentive to \productize", suchsoftware is legendary for its failure to transport well to other environments. Thus, large genomecenters have done surprisingly little in the way of software sharing and reuse. One of our mainconcern is the support of rapid prototyping of applications by bioinformatics professionals in largerresearch centers.The widgets in bioWidget encapsulate recurring themes in graphical objects and their behaviors, re-lieving the programmer of many tedious details. In addition, it achieves a common \look-and-feel"by way of features like a standard menubar and a common, context-sensitive help system. In addi-tion to the general support and help widgets, the current bioWidget package includes: map.class, asystem supporting the creation of various forms of abstract sequence schematics, genome maps andmap objects on canvases; multi-map.class, an extension of map.class that simultatneously displaysand coordinates multiple genetic and physical maps; sequence.class, a widget that creates a scrollingwindow of sequence data and again supports various domain-speci�c operations. A typical bioWid-get applet, launched from Netscape in response to the query \Find primate genomic sequences withalu elements located inside a gene domain" is shown in Figure 6. The applet displays the same datain the form of a sequence schematic created using the map widget and the annotated sequence(i.e. labeled sub-sequences) using the sequence widget. The two widgets communicate so thata feature or region selected in one is highlighted in the other. Textual information on selectedfeatures is extracted from the database and presented in yet another pop-up window.bioWidget, which has already proved very successful in support of the bioKleisli project as wellas other projects at the University of Pennsylvania, it is now being adopted by a wide communityof bioinformatics researchers and developers as part of a consortium e�ort. The master version isavailable for distribution from WWW site http://agave.humgen.upenn.edu.6 ConclusionsAlthough in this paper CPL-Kleisli has been presented in the context of a particular application{ BioKleisli { the system is in fact a general-purpose toolkit for integrating a wide variety ofheterogeneous data sources and application programs. The issue of integrating heterogeneous datasources is not new, and is a topic that has been dealt with extensively in the computer scienceliterature over the past 15 years [43, 41, 25, 32, 48, etc.]; it is also the focus of an ARPA-fundedinitiative called \I3". The chief distinction between our approach and these is the complexity of datatypes that we model and query, and the ability to transform between complex types. Althoughthe model in [1] encompasses many of the types we consider (sets, records and variants), the26



Figure 6: BioKleisli GUI implemented using bioWidgetstransformations considered are limited and queries are not supported. Our approach also contrastswith that taken by [36] which has a very simple data model and expresses types dynamically.However, when static type information is available it is extremely valuable for specifying andoptimizing queries as illustrated with the stereotypic query in Section 4.However, BioKleisli is one of the �rst serious attempts at creating an integrated digital library forbiomedical researchers. Using BioKleisli, we have performed almost all of the data retrieval taskslabeled as \impossible" in the 1993 DOE summit meeting report [17]; those that remain unansweredhave not been attempted since some of the data that is needed is not currently available. Fromthis perspective, as well as from the drammatic increase in web hits to our stereotypic queries,BioKleisli has been extremely successful.Creating a digital library system for a particular area of interest { such as BioKleisli for the HGP{ opens a number of opportunities that are not available when merely providing browsing accessto arbitrary data sources over the internet. Since the locations of the major data sources areknown, there is less need for web crawling queries to �nd potentially relevant data. Since thedata management systems of relevant data sources are known (e.g. Sybase, Entrez, etc), genericdrivers for those systems can be written; type information associated with the data can also bemaintained and exploited during optimization. Since the general content of data sources is known27



(i.e. the data-types and their structure), queries can be written directly against the source schemas.Furthermore, since the ways in which the user community wants to interact with the data sourcesand visualize the results of queries is known, customized \user-views" of the data can be created anddistributed as we have done for the stereotypic queries discussed in Section 4 using the bioWidgettoolset of Section 5.Within the HGP, there is also some guarantee that the sequence data is \complete" since thereare strong political and social incentives for scientists to submit sequence information to the majordata sources.5 For example, many journals require submission of sequence information to GenBankprior to publication of an article. In this way, primary literature references can be maintained alongwith the actual sequence data; the GenBank accession number may also appear in the paper toenable database searches on related sequence information.There are also e�orts within the HGP community to provide semantic matching at the data levelbetween the major data sources, for example, �nding which protein sequence entries in PIR orloci in GDB correspond to nucleic acid sequence entries in GenBank. The formation of such linksacross data sources at the data level requires deep domain knowledge and the use of heuristictechniques to \guess" at the links. Surprisingly, considerable progress has been made in thisarea as evidenced by abstracts at the 1995 Meeting on the Interconnection of Molecular BiologyDatabases [27] reporting on a number of such linking tables. This goes hand-in-hand with thepragmatic Web-browser approaches being taken by many bioinformatics systems developers [18, 2].Within BioKleisli, these linking tables are also extremely useful for joining data across di�erentdata sources.One of the biggest remaining challenges to forming the Biomatrix is, in our opinion, dealing withthe complexity of schemas when writing ad-hoc queries across multiple databases. In implementingthe impossible queries as well as several others given to us by the community, we found that itwas sometimes extremely di�cult to determine exactly which data sources contribute best to theanswer. We believe that this problem is most likely to be solved by domain experts using goodschema documentation tools (such as those in [14]) and graphical front-ends for query formulating(such as those in [42]). However, the problem is far from solved with these approaches.Acknowledgements. We would like to thank Peter Buneman for his help, suggestions and ex-amples, and Kyle Hart and Jonathan Crabtree for their implementation work on Kleisli.References[1] Serge Abiteboul and Richard Hull. IFO: A formal semantic database model. ACM Transactionson Database Systems, 12(4):525{565, December 1987.5Although the data is relatively complete it is not without error. There are major e�orts to annotate and cleanup sequence data. 28
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